Extending a flexible unit-bar framework to a rigid one

Hiroshi Maehara

College of Education, Ryukyu University, Nishihara, Okinawa, Japan

Received 4 January 1991

Abstract

We prove that (1) a flexible unit-bar framework G in \mathbb{R}^n can always be extended to a rigid unit-bar framework in \mathbb{R}^n, and (2) G is 'congruent' to a subgraph of a rigid unit-bar framework in \mathbb{R}^n if and only if the Euclidean distances between joints of G are all algebraic numbers. Meanwhile, it is proved that a previous result on a framework in \mathbb{R}^2 [for any real algebraic number $r > 0$, there is a rigid unit-bar framework in \mathbb{R}^2 having two vertices with distance r apart] extends to any dimension.

1. Introduction

A framework in Euclidean n space \mathbb{R}^n is a graph whose vertices are points in \mathbb{R}^n and whose edges are line segments connecting two vertices. In a framework, vertices and edges are usually called joints and bars. If all bars of a framework are of unit-length, then it is called a unit-bar framework. A framework in \mathbb{R}^n is called flexible if we can deform the framework in \mathbb{R}^n, that is, we can continuously move the joints in \mathbb{R}^n preserving the length of bars so that at least a pair of joints change their mutual distance. A framework is rigid if it is not flexible.

Let G be a flexible unit-bar framework in \mathbb{R}^n. Then, by adding some bars of appropriate lengths, we can always extend G to a rigid framework. But, how about when only unit-bars are available? Can we always extend G to a rigid unit-bar framework in \mathbb{R}^n? If necessary, we may deform G as far as its graph structure remains unchanged.

Exercise. Extend the flexible unit-bar framework F of Fig. 1 to a rigid unit-bar framework in the plane. (A solution will be given at the end of the paper.)
If we deform F of Fig. 1 so that we can connect some two joints, (say, x, y) by a unit-bar, then some two joints (say, u, v) of F coincide, which changes the graph structure of F. Hence, to extend F to a rigid one, we need to add some extra joints, which may increase the degree of flexibility. Thus, even in the plane case, it is not obvious if a flexible unit-bar framework can always be extended to a rigid one.

Theorem 1. Any flexible unit-bar framework F in \mathbb{R}^n can be extended to a rigid unit-bar framework G in \mathbb{R}^n.

This theorem is used to extend a result in [4] to higher dimension. The Euclidean norm is denoted by $| |$.

Theorem 2. For any $n \geq 2$ and any real algebraic number $r > 0$, there exists a rigid unit-bar framework $G(xy, r)$ in \mathbb{R}^n which contains two joints x, y satisfying $|x - y| = r$.

Two frameworks are said to be congruent if there is an isomorphism between them that preserves the Euclidean distances between joints. A subgraph F of a framework G is said to be rigid in G if, in any deformation of G, F always goes to a congruent one.

In Theorem 1, F is not necessarily congruent to a subgraph of its extension G. Concerning a congruent embedding, we have the following.

Theorem 3. A unit-bar framework F in \mathbb{R}^n is congruent to a subgraph of a rigid unit-bar framework in \mathbb{R}^n if and only if the Euclidean distances between joints of F are all algebraic numbers.

A unit n-simplex in \mathbb{R}^n is a regular n-simplex with unit side-length. Its 1-skeleton forms a rigid unit-bar framework of order $n + 1$, which is called simply a clique in \mathbb{R}^n. A clique-work W in \mathbb{R}^n is a unit-bar framework made from a finite sequence of cliques Q_1, \ldots, Q_k by attaching in such a way that each Q_i, $i \geq 1$, shares a complete subgraph of order n with some Q_j, $j < i$. Note that a clique work is a rigid unit-bar framework in \mathbb{R}^n.

The next theorem will be used to prove Theorem 1.
Theorem 4. Let \(Q \) be a fixed clique in \(\mathbb{R}^n \), \(n \geq 3 \). Then, for any open set \(U \neq \emptyset \) in \(\mathbb{R}^n \), \(Q \) can be extended to a clique-work which has a joint in the set \(U \).

2. The plane case

First we consider the plane case. The following theorem was proved in [4].

Theorem A. For any real algebraic number \(r > 0 \), there exists a rigid unit-bar framework \(G(xy, r) \) in \(\mathbb{R}^2 \) which contains two joints \(x, y \) satisfying \(|x - y| = r \).

Using this theorem, the plane case of Theorems 1 and 3 can be easily proved. Suppose that \(F \) is a flexible unit-bar framework in \(\mathbb{R}^2 \). Fix a unit-bar \(uv \) of \(F \) on the plane. Since \(F \) is flexible, there is a movable joint \(x \) of \(F \). Move \(x \) so that \(|x - u| \) becomes an algebraic number \(r \). Then, take a rigid unit-bar framework \(G(xu, r) \) as in Theorem A, and attach it to \(F \). If \(x \) is still movable, then make the distance \(|x - v| \) algebraic, and attach a rigid unit-bar framework \(G(xv, |x - v|) \). Then \(x \) becomes fixed. In this way we can fix all movable joints of \(F \), and get a rigid unit-bar framework \(G \) on the plane. This proves Theorem 1.

If the Euclidean distances between joints of \(F \) are all algebraic numbers, then we need not deform \(F \) to extend to a rigid one. This proves the 'if' part of Theorem 3. The 'only if' part of Theorem 3 follows from the next theorem which is a special case of [3, Theorem 2].

Theorem B. Let \(F \) be a rigid unit-bar framework in \(\mathbb{R}^n \). Then the Euclidean distances between joints of \(F \) are all algebraic numbers.

3. Proof of Theorem 1 for \(n \geq 3 \)

In the following, we assume Theorem 4, which will be proved in Section 7. We are going to construct a rigid unit-bar framework \(G \) in \(\mathbb{R}^n \) by deforming \(F \) and adding joints and unit bars to it.

Take a fixed clique \(Q \) in \(\mathbb{R}^n \), and attach \(F \) to \(Q \) so that they share the largest possible subgraph. Let \(H \) be the resulting framework. Note that the clique \(Q \) of \(H \) is fixed at some position in \(\mathbb{R}^n \). If \(H \) is rigid, then we are done. If \(H \) is flexible, take a joint \(x \) which can continuously move. Then it is possible to move \(x \) along a 'smooth' curve \(\Gamma \) in \(\mathbb{R}^n \) (see e.g. [1, 5]). By Theorem 4, we can build a clique-work \(W \) on \(Q \) such that a joint \(v_0 \) of \(W \) is sufficiently near the curve \(\Gamma \) (but not on \(\Gamma \)). Since \(Q \) is fixed, every joint of the clique-work \(W \) is also fixed. Let \(v_0, v_1, \ldots, v_n \) be the joints of a clique of \(W \). Denote by \(S_i \) the unit hypersphere centered at \(v_i, 1 \leq i \leq n \). Then any line through \(v_0 \) penetrates some \(S_i \). And since \(v_0 \) is sufficiently near \(\Gamma \), the curve \(\Gamma \) also penetrates some hypersphere \(S_i \). Now
move the joint \(x \) along \(\Gamma \) until it comes to the point on the hypersphere \(S_i \), and then connect \(x \) with \(v_i \) by a unit-bar. Then \(x \) is constrained on the hypersphere \(S_i \). If \(x \) can move along a smooth curve on \(S_i \), then we can build another appropriate clique-work \(W' \) on \(Q \) and take a hypersphere centered at a joint of \(W' \) which cuts the curve, and connect \(x \) with the center of the hypersphere by a unit-bar. Then \(x \) is constrained in the intersection of two hyperspheres, which is an \((n - 2) \)-dimensional sphere. If \(x \) can still move, then repeat similar operations. Since each time the dimension of the sphere on which \(x \) is constrained decreases by one, after at most \(n \) times of such operations, the vertex \(x \) will be fixed.

In the same way we can fix all movable joints, whence we can get a rigid unit-bar framework \(G \) in \(\mathbb{R}^n \) which contains a subgraph isomorphic to \(F \). \(\Box \)

4. A generalized octahedron

A unit-bar framework in the plane isomorphic to the bipartite graph \(K(2, 2) \) is clearly flexible. However, any unit-bar framework in \(\mathbb{R}^3 \) isomorphic to the complete tripartite graph \(K(2, 2, 2) \) is rigid since it is congruent to the 1-skeleton of a regular octahedron with unit side-length. For \(n \geq 3 \), a unit-bar framework in \(\mathbb{R}^n \) isomorphic to the complete \(n \)-partite graph \(K(2, 2, \ldots, 2) \) is called a generalized octahedron, and is denoted by \(O_n \).

Lemma 1. For \(n \geq 3 \), (1) the joints of \(O_n \) span \(\mathbb{R}^n \), and (2) \(O_n \) is rigid in \(\mathbb{R}^n \).

Proof. If \(n = 3 \), the lemma is clearly true. Suppose that the lemma is true for \(n - 1 \), and consider the case \(n \). Let \(x, y \) be a pair of non-adjacent joints of \(O_n \). Then the other \(2(n - 1) \) joints always lie on the hyperplane which perpendicularly bisects the line segment \(xy \). Hence the subgraph of \(O_n \) induced by these \(2(n - 1) \) joints is considered as an \(O_{n-1} \) in \((n - 1) \)-space. Then it spans \((n - 1) \)-space and is rigid in the \((n - 1) \)-space by inductive assumption. Therefore, the \(2(n - 1) \) joints and \(x, y \) span \(\mathbb{R}^n \), and since \(x \) and \(y \) are at unit distance from the \(2(n - 1) \) joints that span a hyperplane, the whole \(O_n \) must be rigid in \(\mathbb{R}^n \). \(\Box \)

Note that every chordless 4-cycle of \(O_n \), \(n \geq 3 \), is a square.

5. Proof of Theorems 2 and 3

Proof of Theorem 2. By Theorem A, it will be enough to show that for any rigid unit-bar framework \(F \) in the plane, there is a rigid unit-bar framework in \(\mathbb{R}^n \) which contains a subgraph congruent to \(F \). And hence it is enough to show the next lemma.
Lemma 2. Let F be a rigid unit-bar framework in \mathbb{R}^n, $n \geq 2$. Then there exists a rigid unit-bar framework in \mathbb{R}^{n+1} which contains a subgraph congruent to F.

Proof. We regard F as a framework on a hyperplane Π in \mathbb{R}^{n+1}. Let F' be the translation of F by a unit vector perpendicular to Π. For a joint v of F, the translation of v is denoted by v'. Now connect each pair v, u' by a unit-bar. Then we get a realization $F \times I$ of the Cartesian product of F and the complete graph K_2. For any unit-bar uv of F, the 4-cycle $uv'u'v$ of $F \times I$ is a square. To each such square, attach a generalized octahedron O_{n+1} so that the square becomes rigid. The resulting framework is denoted by H.

First we show that F is rigid in H. Since O_{n+1} is rigid in \mathbb{R}^{n+1}, for any bar uv of F, the square $uv'u'$ is rigid in H. And since F is connected, we can deduce that for any joints u, v of F, the two unit-bars uu', vuv' are parallel, and hence all bars of F are perpendicular to uu'. Hence, under any deformation of H that fixes the bar uu', F remains in the hyperplane Π. Therefore F cannot change its shape, and hence F is rigid in H.

Now by Theorem 1, we can extend H to a rigid unit-bar framework G. Then G contains a subgraph congruent to F. \square

Proof of Theorem 3. Since the 'only if' part follows form Theorem B, we show the 'if' part. Suppose that F is a flexible unit-bar framework in \mathbb{R}^n in which distances between joints are all algebraic numbers. For each non-adjacent pair of joints x, y in F, we attach a rigid unit-bar framework $G(xy, |x - y|)$ as in Theorem 2. Let H be the resulting graph. Then it is clear that F is rigid in H. Now, extend H to a rigid unit-bar framework G. Then G contains a subgraph congruent to F. \square

6. Some lemmas

To prove Theorem 4, we use the fact that the dihedral angle between two facets of a regular simplex of dimension ≥ 3 is irrational when measured by degree. This fact was also used by Dehn to solve Hilbert's third problem.

Lemma 3. Suppose that $0 < \theta < \pi/2$, $\theta \neq \pi/3$, and $\cos \theta$ is a rational number, and let ρ be the rotation of \mathbb{R}^2 around a point z through the angle θ. Then for any point $p \neq z$ in \mathbb{R}^2, the point set

$$\{p, \rho(p), \rho^2(p), \rho^3(p), \ldots\}$$

is dense on the circle of radius $|p - z|$ centered at z.

Proof. It will be enough to show that ρ is not a cyclic transformation, that is, θ/π is not rational. Hence we show $\cos(k\theta) \neq \pm 1$ for $k = 1, 2, 3, \ldots$.
Let \(\cos \theta = m/n \) (an irreducible fraction). Since \(\theta \neq \pi/3 \), we must have \(n > 2 \). Applying the additive formula for cosine, we can get

\[
\cos(k + 1)\theta + \cos(k - 1)\theta = 2 \cos(k\theta)\cos \theta.
\]

Hence we have

\[
\cos(k + 1)\theta = 2 \cos(k\theta)\cos \theta - \cos(k - 1)\theta.
\]

Using this formula, it can be easily proved by induction on \(k \) that (1) if \(n \) is odd, then \(\cos(k\theta) = a/n^k \) for some integer \(a \) relatively prime to \(n \), and (2) if \(n \) is even \((=2s)\) then \(\cos(k\theta) = b/(2s^k) \) for some integer \(b \) relatively prime to \(s \).

In [2], the irrationality of \(\theta/\pi \) was proved by using a rectangular lattice.

Lemma 4. Let \(\theta \) be the angle between two facets of a unit \(n \)-simplex in \(\mathbb{R}^n \) (see Fig. 2). Then \(\cos \theta = 1/n \).

Proof. Let \(h \) be the ‘altitude’ of a unit \((n - 1) \)-simplex. Then by the cosine law, we have

\[
1 = 2h^2 - 2h^2 \cos \theta.
\]

Hence

\[
\cos \theta = 1 - 1/(2h^2).
\]

To compute \(h \), consider a unit \((n - 1) \)-simplex in \(\mathbb{R}^{n-1} \) with vertices \(o, x_1, \ldots, x_{n-1} \), where \(o \) is the origin. Then

\[
h = \|(x_1 + \cdots + x_{n-1})/(n - 1)\|.
\]

Since \(o, x_1, x_2 \) form a equilateral triangle of unit side, \((x_i, x_j) = 1 \) and \((x_i, x_j) = \frac{1}{2} \) for \(i \neq j \). Therefore,

\[
h^2 = (x_1 + \cdots + x_{n-1}, x_1 + \cdots + x_{n-1})/(n - 1)^2 = n/(2(n - 1)).
\]

Thus,

\[
\cos \theta = 1 - (n - 1)/n = 1/n.
\]

Let \(\Delta \) be a fixed unit \(n \)-simplex in \(\mathbb{R}^n \). If we rotate \(\Delta \) around the \((n - 2) \)-space spanned by some \(n - 1 \) vertices of \(\Delta \), then the remaining two vertices would draw one and the same circle. Such a circle is called an associated circle of the unit.

![Fig. 2.](image-url)
n-simplex Δ. For each vertex x of Δ, exactly n associated circles of Δ pass through the vertex x.

Lemma 5. Let $\Delta = x_0x_1 \cdots x_n$ be a fixed unit n-simplex in \mathbb{R}^n. Then the tangent vectors at x_0 of the n-associated circles through x_0 are linearly independent.

Proof. Let C_i be the associated circle through x_0 and x_i. Then the center z_i of C_i is the barycenter of the $(n-2)$-face opposite to the edge x_0x_i. Let z be the barycenter of Δ. Then the line x_iz is perpendicular to the facet opposite to the vertex x_i. And since the plane x_0x_iz contains z, the line x_iz meets the line x_0z_i perpendicularly. Hence the vector $\overline{x_iz}$ is parallel to the tangent line of C_i at x_0.

Since the n vectors $\overline{x_iz}$, $i = 1, \ldots, n$ are linearly independent, the lemma follows. \qed

For a point p of \mathbb{R}^n and a non-empty set Y in \mathbb{R}^n, let $d(p, Y) = \inf \{|p - y|: y \in Y\}$.

Lemma 6. Let x be a vertex of a unit n-simplex Δ in \mathbb{R}^n. For any real $r > 0$, there is an $\epsilon = \epsilon(r) > 0$ such that if $|x - p| < r + \epsilon$ then $d(p, C) < r$ for some associated circle C of Δ.

Proof. Let $x = x_0, x_1, \ldots, x_n$ be the vertices of Δ. Denote by C_i the associated circle of Δ passing through x_0, x_i, and let Y be the union of the n associated circles C_1, \ldots, C_n. Since the tangent vectors of C_is at x are linearly independent by Lemma 5, any hyperplane passing through $x = x_0$ cuts one of the circles C_1, \ldots, C_n.

Hence any hypersphere through x cuts one of the circles C_1, \ldots, C_n. Therefore,

$$d(w, Y) < |w - x| \quad \text{for every } w \neq x.$$

Let δ be the supremum of $d(w, Y)$ for w with $|w - x| = r$. Since the set of points w satisfying $|w - x| = r$ is compact, and $d(w, Y)$ is continuous on w, the sup δ is attained at some point w. Hence $\delta < r$.

Now, put $\epsilon = r - \delta$, and suppose that $|x - p| < r + \epsilon$. Let q be the point on the half line xp such that $|x - q| = r$. Then $d(q, Y) \leq \delta$. Hence

$$d(p, Y) \leq |p - q| + d(q, Y) < \epsilon + \delta = r.$$

And since Y is compact, $d(p, Y) = |p - y|$ for some y of Y. \qed

7. **Proof of Theorem 4**

Suppose there is an open ball with center p in \mathbb{R}^n such that no clique-work containing Q has a joint in the open ball. Let r be the sup of radius of such balls
centered at \(p \). Then for any \(\varepsilon > 0 \), there is a clique-work \(W \) containing \(Q \) which has a joint \(x \) within distance \(r + \varepsilon \) from \(p \). We may suppose that \(\varepsilon \) was chosen as in Lemma 6. Let \(\Delta \) be the unit \(n \)-simplex spanned by a clique \(Q' \) in \(W \) that contains the joint \(x \). Then by Lemma 6, there is an associated circle \(C \) of \(\Delta \) through \(x \) such that \(d(p, C) < r \). Let \(z \) be the center of this circle \(C \). Fix an orientation on the circle \(C \), and consider the sequence of points

\[
x = x_0, x_1, x_2, x_3, \ldots
\]

on \(C \) such that the directed angle \(\angle x_i x_{i+1} = \theta \), where \(\theta \) is the angle between two facets of \(\Delta \). Then by Lemmas 3, 4, these points are dense on \(C \). Hence there is some integer \(m \) such that \(|x_m - p| < r \). Now, in the point set

\[
\{ \text{vertices of } \Delta \} \cup \{ x_0, x_1, x_2, x_3, \ldots, x_m \},
\]

connect every pair of points with unit-distance apart by a unit-bar. Then we get a unit-bar framework \(W' \), and it is not difficult to see that \(W' \) is a clique-work. Since \(W \) and \(W' \) share the clique \(Q' \), we can attach them at \(Q' \), and get a bigger clique-work, which has a joint \(x_m \) such that \(|x_m - p| < r \). This contradicts the choice of \(r \). \(\square \)

8. Solution of exercise

Fig. 3 shows a solution of the exercise from Section 1.

Fig. 3. Solution of exercise.

References