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1CNRS, UMR7622, Université Pierre et Marie Curie, 9 Quai St Bernard, Bat. C, 6E, Case 24, 75252 Paris Cedex 05, France
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SUMMARY

Muscle progenitors, labeled by the transcription
factor Pax7, are responsible for muscle growth
during development. The signals that regulate the
muscle progenitor number during myogenesis are
unknown. We show, through in vivo analysis, that
Bmp signaling is involved in regulating fetal skeletal
muscle growth. Ectopic activation of Bmp signaling
in chick limbs increases the number of fetal muscle
progenitors and fibers, while blocking Bmp signaling
reduces their numbers, ultimately leading to small
muscles. The Bmp effect that we observed during
fetal myogenesis is diametrically opposed to that
previously observed during embryonic myogenesis
and that deduced from in vitro work. We also show
that Bmp signaling regulates the number of satellite
cells during development. Finally, we demonstrate
that Bmp signaling is active in a subpopulation of
fetal progenitors and satellite cells at the extremities
of muscles. Overall, our results show that Bmp
signaling plays differential roles in embryonic and
fetal myogenesis.

INTRODUCTION

Skeletal muscle development, growth, and regeneration rely on

muscle stem cells. An important goal is to understand the source

and the nature of the signals regulating these muscle stem cells

during myogenesis.

During vertebrate development, the successive phases of

primary (embryonic), secondary (fetal), and postnatal (adult)

myogenesis leading to the formation of skeletal muscles involve

different muscle progenitor populations. Primary myogenesis is

the formation of the first multinucleated muscle fibers from

embryonic progenitors, which differentiate by fusing with each

other. This will establish the scaffold of muscles. This phase is

usually considered to take until Embryonic Day (E) 6 in the chick

(Stockdale, 1992) and E14.5 in the mouse (Biressi et al., 2007a).

Secondary myogenesis depends upon fusion of fetal progeni-

tors, which give rise to secondary fibers. Secondary myogenesis

is important for the growth and maturation (fiber type) of muscles
Deve
during embryonic development. During the perinatal period,

there is considerable growth of muscle, mediated by adult

muscle progenitors—the satellite cells. During all adult life, satel-

lite cells reside around the muscle fibers in a quiescent state, and

are solicited for muscle homeostasis, hypertrophy, and regener-

ation. Embryonic, fetal, and adult progenitors differ in their

in vitro characteristics (Biressi et al., 2007a; Stockdale, 1992).

In vivo, they will generate primary, secondary, and adult fibers,

respectively, which differ in their morphology, myosin heavy

chain isoforms, and muscle genes that they express (Biressi

et al., 2007a; Stockdale, 1992). Over time, these muscle progen-

itors have distinct genetic requirements (Hutcheson et al., 2009;

Lepper et al., 2009). However, despite this heterogeneity over

time, a pool of resident progenitors is maintained in developing

muscles during embryonic development and postnatal growth.

The paired-box transcription factors, Pax3 and Pax7, define

this progenitor cell population during all the stages of skeletal

muscle formation (Hutcheson et al., 2009; Kassar-Duchossoy

et al., 2005; Relaix et al., 2005; Schienda et al., 2006). In the

absence of both Pax3 and Pax7, muscle development is arrested

(Relaix et al., 2005). Pax3 defines the embryonic myoblast pop-

ulation, and is required for its formation, while Pax7 labels fetal

and adult myoblasts, and is required for their formation (Hutche-

son et al., 2009; Kassar-Duchossoy et al., 2005; Relaix et al.,

2005). However, Pax3 and Pax7 function is dispensable for adult

muscle regeneration (Lepper et al., 2009).

The signals regulating the pool of muscle progenitors during

embryonic, fetal, and perinatal myogenesis have not been clearly

identified. Classical signaling pathways, such as the Notch and

Wnt pathways, were thought to be involved in this process. Notch

signaling is involved in the maintenance of embryonic and fetal

muscle progenitors and in the generation of satellite cells during

mouse embryogenesis (Schuster-Gossler et al., 2007; Vasyutina

et al., 2007). Components of the canonical and noncanonical Wnt

pathways have been implicated in the proliferation of embryonic

muscle progenitors in chick somites (Galli et al., 2004), in the

maintenance of fetal muscle progenitors in mouse limbs (Hutch-

eson et al., 2009), and in the expansion of satellite cells (Le Grand

et al., 2009; Otto et al., 2008; Perez-Ruiz et al., 2008). However,

modification of Wnt signaling has provided conflicting results

concerning muscle differentiation, with various manipulations

of Wnt signaling reported to both inhibit and promote myogenic

differentiation in vitro (Gavard et al., 2004; Goichberg et al.,

2001; Kim et al., 2008; Perez-Ruiz et al., 2008) and in vivo

(Anakwe et al., 2003; Hutcheson et al., 2009).
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Figure 1. Bmp Signaling Is Active at the Tendon/

Muscle Interface

(A and B) Transverse E10 limb sections were simulta-

neously incubated with the PSmad antibody showing

active Bmp signaling (green) and the Pax7 antibody (red)

revealing the muscles. Arrows point to PSmad expression

at the muscle borders, and the arrowhead shows active

Bmp signaling in a feather bud.

(C–E) Longitudinal E9 limb sections were simultaneously

incubated with the PSmad antibody showing active Bmp

signaling (green) and the MF20 antibody (red) revealing

the muscles. Arrows point to the PSmad+ cells in muscles,

and arrowheads indicate to the PSmad+ cells in tendon

regions.

(F–Q) Forelimbs of E9 chick embryos were cut trans-

versely and incubated with either PSmad and Pax7 anti-

bodies (F–K) or PSmad and MF20 antibodies (L–Q).

(I–K) are higher magnifications of (F–H). Arrows point to the

Pax7+ cells displaying active Bmp signaling, while arrow-

heads indicate PSmad+ cells not expressing Pax7.

(L–N) Lower magnifications of (O)–(Q).

(O–Q) Arrowheads indicate the PSmad expression in

MF20+ fibers at the borders of muscles, while arrows

indicate PSmad+ cells outside MF20+ fibers.

(H, K, N, and Q) The merged pictures of (F) and (G), (I) and

(J), (L) and (M), and (O) and (P), respectively, combined

with Hoechst labeling. r, radius; u, ulna.
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Bmps (bone morphogenetic proteins) constitute a subgroup of

the transforming growth factor (TGF)-b super family, the

members of which act through heteromeric complex of serine/

threonine kinase receptors. Smad1, Smad5, and Smad8

(referred as Smad1/5/8) are the specific intracellular transducers

of Bmp ligands. Upon Bmp stimulation, Smad1/5/8 are phos-

phorylated by Bmp-activated receptors, associate with

Smad4, and translocate into the nucleus to regulate gene

expression (Massague, 2008; Nohe et al., 2004). Bmps are

usually considered potent inhibitors of embryonic, fetal, and

adult muscle differentiation (Amthor et al., 1998; Biressi et al.,

2007b; Dahlqvist et al., 2003; Frank et al., 2006; Tzahor et al.,

2003), although application of low levels of Bmps upregulates

Pax3 expression during primary myogenesis in early chick limbs
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and somites (Amthor et al., 1998, 1999). The

in vivo role of Bmp signaling on fetal muscle

growth and satellite cell formation during devel-

opment has never been addressed.

In the present study, we show that Bmp gain-

of-function experiments increased the number

of fetal muscle progenitors and satellite cells.

The increase in fetal progenitor number was

accompanied by an increase in the number of

fetal muscle fibers. Conversely, blocking of

Bmp signaling led to the opposite phenotype

(i.e., a global diminution in the number of fetal

progenitors and of satellite cells, ultimately

leading to small muscles). We have identified

a subpopulation of Pax7+ cells responding to

Bmp signaling at the extremities of the muscles

close to the tendons, which produced Bmp4.

We conclude that active Bmp signaling at the
tips of muscles regulates the correct number of fetal progenitors

and satellite cells during myogenesis.

RESULTS

Active Bmp Signaling Is Increased
at the Muscle-Tendon Interface
In order to define the cells in which Bmp signaling was active, we

used an antibody that detected phosphorylated Smad1/5/8

(referred as PSmad), reflecting active Bmp signaling pathway

(Faure et al., 2002). In chick limbs, this PSmad antibody labeled

the ectodermal buds (Figure 1A, arrowhead), consistent with the

presence of Bmp4 transcripts in this tissue (see Figure S1A

[arrowhead] available online). In E10 muscles, Bmp activity



Figure 2. Bmp Signaling and Cell Division

(A and B) Forelimbs of E9 chick embryos were cut longitudinally and then

incubated with the PSmad and MF20 antibodies.

(C and D) is a larger view of the muscle extremities displaying intense Bmp

activity. Arrowheads in (C) and (D) point to PSmad+ cells displaying a

metaphasic state, indicating a mitotic figure.

(E) A higher magnification of a PSmad+ cell displaying a metaphasic state.

(F) View of the muscle tips from longitudinal sections showing PH3+ cells

that are PSmad positive (arrowheads) or PSmad negative (arrow).

(G) Forelimbs of E8 chick embryos were cut longitudinally and then incu-

bated with the PSmad and Pax7 antibodies. High magnification of the

muscle tips shows PSmad+ and Pax7+ cells displaying mitotic figures.

Arrowheads indicate two PSmad+ and Pax7+ cells being in a metaphasic

state.
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displayed a restricted location (Figures 1A and 1B, arrows), close

to the Bmp4 expression in tendons (Figures S1A and S1B).

Longitudinal sections along the muscle axis confirmed the

preferential location of Bmp-responsive cells at the muscle

extremities (Figures 1C–1E, arrows), close to the tendons, where

Bmp4 is produced (Figures S1C and S1D). In order to define

which muscle cell types were responsive to Bmp signaling, we

compared PSmad location at the tips of muscles with that of

Pax7, expressed in fetal muscle progenitors and with that of

myosin heavy chains, exclusively expressed in multinucleated

muscle fibers. We clearly observed PSmad in Pax7+ cells

(Figures 1F–1K, arrows), showing that a subset of Pax7-positive

cells located near the muscle extremities was responsive to Bmp

signaling. We also observed PSmad inside the MF20+ fibers,

close to the muscle extremities (Figures 1L–1Q, arrowheads).

We conclude that Bmp signaling is active at the muscle-tendon

interface, and that a subpopulation of fetal muscle progenitors

close to the muscle extremities is responsive to Bmp signaling.
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Bmp Signaling and Cell Proliferation
We next analyzed the proliferating state of the cells display-

ing active Bmp signaling. Analysis of longitudinal sections

along the muscle axis highlighted PSmad+ cells outside the

muscle fibers (at the tips of muscle), which were displaying

mitotic figures (Figures 2A–2E, arrowheads), indicating that

these PSmad+ cells were dividing. Consistently, PSmad+

cells at the muscle extremities were positive for the prolifer-

ating marker, phospho histone H3 (PH3) (Figure 2F). Finally,

these dividing PSmad+ cells at the tips of muscles were

also Pax7+ (Figure 2G). Since analysis was performed on

sections, it was impossible to obtain significant data about

whether the Pax7+ cells were proliferating more at the tips

of muscle than in other muscle regions. We conclude that

the muscle progenitors displaying active Bmp signaling

pathway at the tips of muscles proliferate.

Activation of Bmp Signaling Increases the Number
of Fetal Muscle Progenitors and Fibers
In order to define the role of Bmp signaling in fetal muscle

growth, we modified Bmp signaling with the replicative

RCAS virus in chick embryonic limbs (Duprez et al., 1996a).

In order to avoid the Bmp effect on cartilage (Duprez et al.,

1996a, 1996b), grafts were performed in the dorsal aspects

of E5 wings. By performing such grafts, the virus progres-

sively spread to infect the dorsal mesenchymal tissues,

including muscles, tendons, vessels, and connective tissues,

but spared the cartilage elements and the ventral limb regions

until E9 (Figures S2A–S2D). These types of grafts specifically

targeted secondary myogenesis, as opposed to primary myo-

genesis. Grafts of control cells did not modify limb muscle

formation (Figures S2E–S2M). Ectopic Bmp4 activity in dorsal

limb regions altered fetal muscle formation (Figure 3). PSmad

expression was clearly increased in the mBmp4-infected regions

of experimental limbs compared to the normal restricted expres-

sion of PSmad at the borders of muscles in control limbs (Figures

3A–3C). Following Bmp activation, 90% of the Pax7+ cells

expressed PSmad, while only 15% of the Pax7+ cells were

PSmad+ in normal conditions (Figures 3D–3J). This demon-

strated that Pax7+ cells were directly responding to the ectopic

activation of Bmp signaling following Bmp4 overexpression.

Following Bmp signaling activation, the number of Pax7+ cells

displayed a two-fold increase compared to control muscles

(Figures 3D, 3G, and 3K–3M). Consistently, the number of
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Figure 3. Ectopic Bmp Signaling Increases the Number of Fetal Muscle Progenitors and Fibers

Bmp4-grafted (A, B, D–F, K, N, and O) and controlateral (C, G, H, I, L, and P) forelimbs from E9 chick embryos were cut transversely and analyzed for activated

Smad1/5/8 and muscle markers by immunohistochemistry. (A–C) Adjacent sections of experimental and control wings were hybridized with mBmp4 probe (A)

and incubated with the PSmad antibody (B and C). Ectopic activation of Bmp signaling increased the number of Pax7+ cells in dorsal limb regions (D versus G).

Following Bmp4 exposure, 90% of Pax7+ cells were PSmad+ (E, F, and J), while 15% of Pax7+ cells were PSmad+ in normal conditions (H–J). The number of

MF20+ fibers following Bmp4 treatment was also increased (K–M). Histograms are expressed as means and standard error of the mean (SEM). Analysis of

the dorsal muscle areas indicated a global increase of 15% of dorsal muscle surface area in Bmp4-treated muscles compared with control muscles (M–P).

Asterisks in the histograms indicate the different p values: *p < 0.05; **p < 0.01; ***p < 0.001. ANC, anconeus; EDC, extensor digitorum communis; EIL, extensor

incidis longus; EML, extensor medius longus; EMU, extensor metacarpi ulnans; r, radius; u, ulna. Dorsal is at the top.
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Pax7+ cells expressing PH3 displayed a two-fold activation

(Figure 3M). This increase in the number of Pax7+ cells was

clearly accompanied by an increase in the number of MF20-

positive cells (Figures 3K and 3L). The Bmp4-treated muscles

displayed smaller MF20+ fibers compared with the control fibers

(Figures 3K–3M), consistent with the notion that Bmp4 increases

the number of fetal muscle fibers, which are smaller than embry-

onic fibers (Biressi et al., 2007a; Stockdale, 1992). Moreover, the

global area of dorsal muscles, visualized with the MF20 anti-

body, was slightly but significantly increased following Bmp4

activation compared with the control limbs (Figures 3M–3P).

Since, upon Bmp signal, the expression of the Bmp receptor,

BmpR-IA was induced (Figures S1E–S1H), we asked whether
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a constitutively active form of BmpR-IA (caBmpRIA) could

mediate the Bmp4 effect on muscle progenitors. Ectopic expres-

sion of caBmpRIA (Zou et al., 1997) increased the number of

Pax7+ progenitors and fibers in dorsal infected areas compared

with control limbs (Figure S3). The similar effect on fetal muscle

progenitors and fibers observed with Bmp4 and caBmpRIA indi-

cates that Bmp4 is acting via BmpR-IA to regulate secondary

myogenesis.

Secondary myogenesis is marked by fiber type differentiation

(Duprez et al., 1999; Kardon et al., 2002). We compared slow

muscle differentiation with active Bmp signaling in normal and

experimental conditions. We did not observe any obvious

correlation between active Bmp signaling and slow muscle
nc.



Figure 4. Blocking Bmp Signaling Diminishes the Number of Fetal Muscle Progenitors and Fibers

Noggin-grafted (A, B, D–F, J, L, and M) and controlateral (C, G, H, I, J, and N) forelimbs of E9/E10 chick embryos were cut transversely and analyzed for activated-

Smad1/5/8 and muscle markers. (A and B) Adjacent sections of experimental right wings were hybridized with chick Noggin probe (A) and incubated with the

PSmad antibody (B) in order to observe the inhibition of Bmp signaling in dorsal limb muscles expressing Noggin. (A–C) Following Noggin overexpression,

Bmp activity is clearly downregulated in a dorsal and posterior muscle, the EMU, compared to normal condition. The noggin-infected muscles appear smaller

compared to the control muscles (B, C, K, L–N), while the density of the Pax7+ cells appears only slightly modified (D–K). Asterisks in (C) indicate the feather buds.

Dorsal is to the top. Histograms are expressed as means and standard error of the mean (SEM). **p < 0.01.

Developmental Cell

Bmp and Fetal Muscle Progenitors
differentiation in normal conditions or after ectopic Bmp activa-

tion (Figures S4), suggesting that Bmp signaling does not pro-

mote slow differentiation.

From all the Bmp gain-of-function experiments, we conclude

that Bmp signaling is sufficient to increase the number of fetal

muscle progenitors and fibers.

Noggin-Mediated Blocking of Bmp Signaling Reduced
the Global Number of Fetal Muscle Progenitors
and Fibers
In order to analyze the consequences of the absence of Bmp

signaling for limb fetal muscle formation, we misexpressed

Noggin, known to be a potent inhibitor of Bmp signaling (Groppe

et al., 2002; Pizette and Niswander, 2000), with the RCAS virus.

Blocking of Bmp signaling following Noggin overexpression led

to a disappearance of PSmad expression in Noggin-infected

regions compared with the restricted expression of PSmad in
Deve
control limbs (Figures 4A–4C), showing that Noggin-treated

muscles were not able to respond to any Bmp signal. Consistent

with the Bmp involvement in feather formation (Lin et al., 2006), the

E10 Noggin-infected limbs displayed a total absence of feather

buds compared with control limbs (Figures 4A–4C). The inhibition

of Bmp signaling by Noggin led to small muscles compared with

the control limbs (Figures 4B, 4C, 4M, and 4N). Conversely to

the positive Bmp effect on Pax7+ cells, we observed a slight

diminution in the number of Pax7+ progenitors compared with

the control muscles (Figures 4D–4I). Normalized to area, this dimi-

nution was modest (Figure 4K). There was no change in the

density of differentiated cells, and no obvious change in fiber

morphology in E10 Noggin-treated muscles (Figures 4J and 4K).

Combined with the clear global diminution of muscle size (Figures

4K–4N), we conclude that blocking Bmp signal in embryonic

muscles led to a global diminution in the number of fetal muscle

progenitors and fibers during secondary myogenesis.
lopmental Cell 18, 643–654, April 20, 2010 ª2010 Elsevier Inc. 647



Developmental Cell

Bmp and Fetal Muscle Progenitors
Bmp Signaling and Tendon Markers
Muscle and tendon interactions occur during fetal myogenesis

(Edom-Vovard and Duprez, 2004). Since Bmp4 transcripts

were located in tendon cells (Figures S1A–S1D), and active

Bmp signaling was also observed in tendon regions in addition

to muscles extremities (Figure 1C, arrowheads), we analyzed

the consequences of Bmp misexpression for tendon markers.

The expression of the tendon marker, Scleraxis, was not

modified 2 days after activation or blocking of Bmp signaling,

while the increase and diminution of muscle differentiation

started to be observed in E7 Bmp- and Noggin-treated limbs,

respectively (Figures S5A and S5B). At 4 days after grafting,

ectopic activation of Bmp signaling did not modify the tendon

pattern visualized with Scleraxis and collagen1 expression,

despite the increase of muscle mass (Figures S5C and S5D).

Nevertheless, we observed a diminution of the tendon marker

expression in Noggin-treated limbs (Figures S5E and S5F).

However, we interpreted this diminution as being the conse-

quence of the muscle loss, since muscles are necessary for

late tendon formation (Edom-Vovard et al., 2002; Kardon,

1998). We conclude that the Bmp effect on muscle is not a conse-

quence of a tendon defect.

Bmp Signaling Regulates the Number
of Satellite Cells during Muscle Development
We next analyzed whether the modification in the number of

muscle progenitors following Bmp misexpression subsequently

altered satellite cell formation. Satellite cells are identified by

their location between the muscle fiber and the basal lamina

(Mauro, 1961). During late fetal stages, Pax7+ progenitor cells

adopt a satellite cell position. Satellite cells are observed in

E18 chick (Feldman and Stockdale, 1992; Hartley et al., 1992)

and in E18.5 mouse (Relaix et al., 2005) embryos. During late

fetal stages, it has been estimated that the majority of Pax7+ cells

are satellite cells (Hartley et al., 1992; Relaix et al., 2005). At E18,

the global size of chick Bmp4-treated muscles was difficult to

analyze, since the Bmp4 virus had spread to the cartilage

elements and increased cartilage formation at the expense of

muscle, a phenotype previously reported (Duprez et al., 1996a,

1996b). However, in the remaining muscles, Bmp4 exposure

increased the number of satellite cells by a factor three com-

pared with control limbs (Figures 5A–5F). The number and the

size of muscle fibers were difficult to quantify, since the residual

Bmp4-treated muscles were rarely transverse on transverse limb

sections. However, in the few muscles cut transversely, we

observed a slight increase in the fiber number, and the fiber

size was unchanged (Figures 5C, 5D, and 5F). Conversely,

analysis of E18 limbs after Noggin exposure showed a marked

diminution of muscle size (Figures 5K and 5L). Cell measure-

ments showed a decrease of 25% in the number of Pax7+ cells

per unit area in Noggin-treated muscles compared with control

muscles (Figures 5G–5L). The global diminution of muscle size

combined with the diminution of Pax7+ cell density in Noggin-

treated muscles showed that blocking of Bmp signaling

decreased the number of satellite cells. This decrease in satellite

cell number was accompanied by a diminution in the number of

muscle fibers in noggin-treated muscles compared with the

control muscles (Figures 5I–5L). Finally, we observed an increase

in the fiber size in noggin-treated muscles compared with control
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limbs (Figures 5I0, 5J0, and 5L). Interestingly, we observed

active Bmp signaling in Pax7+ cells at the tips of E18 muscles

(Figures S6), indicating that this population of satellite cells, close

to the muscle extremities, were responsive to a Bmp signal,

similarly to the situation during early fetal myogenesis (E8).

We conclude that Bmp signaling is important for satellite cell

formation in chick embryonic limbs.

Activated Satellite Cells in Mouse Adult Muscles
Displayed Active Bmp Signaling
In E18 chick embryo, Bmp signaling was observed in a subpop-

ulation of satellite cells close to the muscle tips (Figures S6). In

order to determine which population of satellite cells displayed

active Bmp signaling in postnatal muscles, we first used the

mouse single myofiber system, which allows a clear visualization

of adult satellite cells within their niche in vitro (Zammit, 2008;

Kuang et al., 2007). In adult muscles, Pax7 is expressed by

quiescent, activated, and self-renewing satellite cells, but not

by differentiated myocytes, nor by myonuclei (Collins et al.,

2005; Shefer et al., 2006). PSmad expression was not observed

in quiescent satellite cells in freshly isolated myofibers (T0 of

culture, Figure 6A), indicating that satellite cells do not respond

to Bmp signaling in resting conditions. However, PSmad was

observed in all dividing clusters of Pax7+ satellite cells along

the isolated fibers after 3 days of culture (Figure 6B), showing

that activated satellite cells displayed active Bmp signaling.

Satellite cell heterogeneity is also illustrated with the orientation

of cell division, which has been shown to determine the fate of

the satellite cells (Kuang et al., 2007). Pax7+ cells undergoing

apical-basal division mainly divide asymmetrically, leading to

the differentiation of one daughter cell, while Pax7+ cells dividing

in a planar orientation give rise to two self-renewing daughters

via symmetric expansion (Le Grand et al., 2009). In chick embry-

onic muscles, we noticed that the PSmad-dividing cells close to

the tips of muscles often (but not exclusively) displayed a division

plane parallel to the axis of the fiber (Figures 2C and 2E; Figures

S7). Since this observation was impossible to quantify in muscle

tissues, we analyzed PSmad location during the first set of divi-

sion of Pax7+ cells along the isolated fiber. We observed that

Pax7+ cells undergoing planar and apical-basal divisions both

expressed PSmad (Figures 6C and 6D). However, analysis of

the regionalization of the clusters of dividing cells along the

fibers showed that there were more clusters near the tips

compared to the center of the fibers (Figures 6E and 6F). This

observation indicated heterogeneity of the distribution of acti-

vated satellite cells along the isolated fibers. We conclude that

Bmp signaling is active in all dividing Pax7+ cells in isolated

fibers, the only regionalization being the preferential location of

the Pax7+ dividing clusters close to the tips of the isolated fibers

versus the middle.

Following muscle injury, Pax7+ satellite cells are solicited and

massively activated to regenerate the injured muscles (Zammit,

2008). We used the muscle regeneration system to determine

whether active Bmp signaling was observed in activated Pax7+

cells in vivo. We analyzed tibialis anterior (TA) muscles 4 days

after cardiotoxin injection during the proliferative phase of

satellite cells. In adult TA muscles, very few Pax7+ cells were ob-

served. These quiescent Pax7+ cells were not PSmad+. PSmad

displayed a punctual expression in a subset of myonuclei
nc.



Figure 5. Misexpression of Bmp Signaling Affects the Number of Satellite Cells in the Embryo

Bmp4-grafted (A and C) and controlateral (B and D) forelimbs of E18 chick embryos were cut transversely and analyzed for Pax7 and Laminin markers by

immunohistochemistry. Exposure to Bmp4 increases the number of satellite cells compared with control muscles by a factor of three (A–D and F). (E) Pax7

and Laminin labeling showing the location of the Pax7+ cells beneath the basement membrane in E18 chick limb muscles. Noggin-grafted (G and I) and contro-

lateral (H and J) forelimbs of E18 chick embryos were cut transversely and analyzed for Pax7 and Laminin markers by immunohistochemistry. Noggin-treated

muscles were dramatically reduced compared with control muscles (K and L). Blocking of Bmp signaling diminished the number of satellite cells compared

with control muscles by a factor of 1.5 (L). Following Noggin overexpression, the number of muscle fibers was diminished, and the Noggin-treated fibers

were hypertrophic (I0, J0, and L). Histograms are expressed as means and standard error of the mean (SEM). *p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure 6G). In regenerating conditions, the number of Pax7+

cells increased dramatically, as did the number of PSmad+ cells

(Figure 6H). Most of the Pax7+ cells were also PSmad+ (Fig-

ure 6H), showing that activated satellite cells displayed active
Deve
Bmp signaling during the muscle regeneration process. In

regenerating muscle, PSmad expression was also induced in

myonuclei and in muscle connective tissue cells (Figure 6H

and data not shown).
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Figure 6. Proliferating Satellite Cells Displayed Active Bmp Signaling in Adult Mouse Muscle

(A–D) PSmad expression at 0 hr (A), 72 hr (B), and 40 hr (C and D) after isolation of single myofibers from EDL of 2-month-old mice. Quiescent Pax7+ cells were not

expressing PSmad (A), while activated Pax7+ cells displayed active Bmp signaling, assayed by the expression of PSmad (B). During the first division of satellite

cells, Pax7+ cells undergoing planar (C) or apical-basal (D) -orientated division displayed active Bmp signaling (arrows in C and D).

(E) The distribution of activated satellite cells was analyzed along the axis of the mouse isolated fibers. After 72 hr in culture, all Pax7+ cells were activated and

formed clusters of activated satellite cells, all of which were PSmad+ (data not shown). Counts were performed in different regions along the isolated myofibers.

(F) The segments closest to the tips displayed significantly more clusters of activated satellite cells compared with other segments.

(G and H) Pax7 (red) and PSmad (green) expression on transverse sections of control TA muscle (G) and of regenerating TA muscle (H) 4 days after cardiotoxin injury

in mouse hindlimbs. In H, high magnifications show the same picture, with Hoechst, Pax7, PSmad, and a superposition of the Pax7 and PSmad labeling pattern

(merged). Arrows point to examples of double Pax7+/PSmad+ cells in regenerating conditions. Histograms are expressed as means and standard error of the mean

(SEM). The p value is 0.01.
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Figure 7. Schematic Representation of Bmp Function during Muscle

Growth

In normal conditions, a Bmp signal produced by the tendons acts on a subpop-

ulation of Pax7+ cells located at the tips of muscle. Activation of Bmp signaling

in these muscle progenitors will activate their proliferation and induce their

differentiation. This will allow longitudinal muscle growth. Bmp gain-of-func-

tion experiments lead to an increase in the number of muscle progenitors

and fibers, while Bmp loss-of-function experiments lead to a decrease in the

number of muscle progenitors and fibers.
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Bmp and Fetal Muscle Progenitors
From these experiments, we conclude that active Bmp

signaling was detected in activated/dividing Pax7+ cells in adult

isolated fibers and during adult regenerative myogenesis.

DISCUSSION

We have demonstrated that Bmp signaling is crucial for estab-

lishing the correct number of fetal muscle progenitors and fibers

and that of satellite cells during development. In addition, we

have shown that the fetal muscle progenitors and satellite cells,

which are responsive to Bmp signal, are preferentially located at

the tips of the muscles close to tendons, where a Bmp signal is

produced.

Bmp Signaling Regulates the Number of Pax7+ Fetal
Progenitors Not at the Expense of Muscle
Differentiation
We have demonstrated that Bmp signaling regulates the number

of fetal muscle progenitors during chick limb myogenesis. Wnt

and Notch signaling pathways have also been shown to be

involved in regulating the number of fetal muscle progenitors

in mouse embryos (Hutcheson et al., 2009; Schuster-Gossler

et al., 2007; Vasyutina et al., 2007). Inhibition of Wnt or Notch

signaling in the embryo has been shown to decrease the number

of Pax7+ cells, although the reduction appears more dramatic

in the absence of Notch activity than after the blocking of

b-catenin. The blockade of Notch signaling resulted in an

uncontrolled myogenic differentiation of embryonic muscle

progenitors, leading to a progressive depletion of the myogenic

progenitor pool and to the ultimate phenotype of very small

muscles (Schuster-Gossler et al., 2007; Vasyutina et al., 2007).

We believe that Bmp signaling acts on fetal muscle progenitors

by a different mechanism to that of Notch, since we did not

observe any obvious increase of muscle differentiation following

Noggin overexpression, nor any transient inhibition of muscle
Deve
differentiation following Bmp4 overexpression at early stages

after grafting (see MF20 labeling in Figures S5A and S5B). Our

in vivo experiments argue for a role of Bmp signaling regulating

the number of fetal muscle progenitors, not at the expense of

muscle differentiation. The exact relationships between Bmp

signaling and the Notch and Wnt signaling pathways remain to

be determined in the context of maintenance of the fetal muscle

progenitor pool.

An increase of proliferation of human fetal skeletal muscle

progenitors after Bmp4 exposure in vitro has already been

observed (Frank et al., 2006). However, in contrast to our

in vivo results, this effect was followed by an inhibition of skeletal

muscle differentiation. One explanation would be that, in vitro,

muscle progenitors have a limited choice of fate—either prolif-

erate or differentiate, one being at the expense of the other.

We favor the idea that Bmp signaling does not act on the balance

between proliferation and differentiation, but activates the prolif-

eration of a subpopulation of Pax7+ progenitors, not at the

expense of skeletal muscle differentiation.

Bmp Signaling and Skeletal Muscle Differentiation
Previous in vitro and in vivo studies have led to the conclusion that

Bmp is a potent repressor of skeletal differentiation in all muscle

progenitors (Amthor et al., 1998; Biressi et al., 2007b; Dahlqvist

et al., 2003; Frank et al., 2006; Tzahor et al., 2003). In contrast

to these studies, we clearly show that overexpression of Bmp

signaling led to an increase in the number of fetal muscle fibers,

while blocking of Bmp signaling led to small muscles. Although

this is likely to be the consequence of the Bmp effect in regulating

the number of muscle progenitors, we do not exclude an addi-

tional and direct role of Bmp signaling in the fetal skeletal muscle

differentiation process. Consistent with this idea is the presence

of PSmad in nuclei of differentiated muscle fibers at the tips of the

muscles, close to the tendons (Figures 1E and 1L–1Q). One

hypothesis is that Bmp signal, in addition to increasing the

proliferation of a subpopulation of Pax7+ cells, also drives these

cells to fuse to form myotubes. The involvement of Bmp signaling

on muscle differentiation requires more attention.

Bmp Signaling and Satellite Cells
We have shown that Bmp signaling influences the generation of

satellite cells during development. Experimental chick work and

genetic labeling in mice have demonstrated a continuous lineage

between embryonic, fetal, and then satellite cells during devel-

opment (Gros et al., 2005; Hutcheson et al., 2009; Relaix et al.,

2005). Consequently, a modification in the number of fetal

muscle progenitors is logically expected to have a consequence

for satellite cell formation. However, the reduction of muscle

progenitor numbers observed in distal limb muscles of Lbx1

mutant mice was not correlated with a prevention of satellite

cell formation in these affected muscles (Vasyutina et al.,

2007). Conversely, the increase in the number of Pax7+ cells

during fetal myogenesis in the myostatin mutant mice (Manceau

et al., 2008) was not followed by an increase in satellite cell

number in this mutant (Amthor et al., 2009). The following lead

us to believe that the increase in the satellite cell number upon

Bmp treatment is not only a consequence of the effect on fetal

progenitor number, but also results from an action of Bmp

signaling on satellite cell formation: the absence of obvious
lopmental Cell 18, 643–654, April 20, 2010 ª2010 Elsevier Inc. 651
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correlation between the number of fetal progenitors, and that of

satellite cells; the exacerbation over time of the muscle pheno-

types following Bmp gain- and loss-of-function; and the similar

location of Bmp-responsive cells at the tips of the muscles

during fetal myogenesis (E10) and satellite cell formation (E18).

Finally, the absence of active Bmp signaling in quiescent adult

satellite cells and the presence of active Bmp signaling in prolif-

erating satellite cells in adult myofibers and in regenerating

muscles strongly suggests that Bmp signaling is important for

activated satellite cells in the adult. However, its precise role in

adult muscle myogenesis remains to be determined.

Bmp Signaling during Muscle Growth
We have observed that a subpopulation of fetal progenitors and

satellite cells responding to Bmp signaling are preferentially

located at the tips of muscles, close to the tendons in chick

embryos. In addition, clusters of activated satellite cells are

more concentrated at the extremities of isolated adult muscle

fibers. This preferential location is fully consistent with previous

observations that there is a greater concentration of Pax7+

satellite cells at the ends of growing skeletal muscle fibers of

post-hatch chicken (Allouh et al., 2008), and an increase of satel-

lite cell proliferation close to the tendons (Tsujimura et al., 2006).

Moreover, studies have highlighted that the ends or terminal tips

of skeletal muscle fibers are the preferential sites for longitudinal

growth. Nuclei are preferentially added to the ends of growing

myotubes in rats during secondary myogenesis (Zhang and

McLennan, 1995), and new sarcomeres tend to be added serially

more at ends rather than in the middle of the muscle fibers of

adult mice (Williams and Goldspink, 1971). We propose that a

Bmp signal in tendons acts on a subset of Pax7+ cells at the

tips of the muscles to activate and maintain their proliferation.

This Bmp signal will maintain a pool of Pax7+cells that have the

possibility of undergoing proliferation or differentiation. These

Pax7+ cells could either be incorporated at the extremities of

the muscle fibers or proliferate. Active Bmp signaling at the

muscle tips would be responsible for the progressive longitudinal

growth of muscles during myogenesis (Figure 7).

EXPERIMENTAL PROCEDURES

Chick Embryos

Fertilized chick eggs from commercial sources (JA 57 strain; Institut de Sélec-

tion Animale, Lyon, Fraance; White Leghorn from HAAS, Strasbourg, France)

were incubated at 37�C. Embryos were staged according to days in ovo.

Production and Grafting Recombinant/RCAS-Expressing Cells

The GFP/RCAS (Le Guen et al., 2009), Bmp4/RCAS (Duprez et al., 1996a),

caBmpRIA/RCAS (Zou et al., 1997), and Noggin/RCAS (Pizette and Niswan-

der, 2000) -expressing cells were prepared for grafting as previously described

(Edom-Vovard et al., 2002). Pellets of approximately 50–100 mm in diameter

were grafted into the dorsal regions of the right wings at E5. The embryos were

fixed 2–14 days after grafting. At various times after grafting, embryos were

harvested and processed for immunohistochemistry or in situ hybridization

to tissue sections. The left wings were systematically used as internal con-

trols. In total, 40 Bmp4-treated, 8 caBmpRIA-treated, and 30 Noggin-treated

embryos were analyzed at E7 (n = 20), E9/E10 (n = 52), and E18 (n = 6).

In Situ Hybridization to Tissue Sections

Normal or manipulated wings were fixed in farnoy (60% ethanol, 30% formal-

dehyde, 40% and 10% acetic acid) and processed for in situ hybridization to

wax tissue sections, as previously described (Tozer et al., 2007). The grafted
652 Developmental Cell 18, 643–654, April 20, 2010 ª2010 Elsevier I
right wings and the control left wings from the same manipulated embryos

were precisely positioned in the same way for transverse sectioning. This

allows an easy comparison between grafted and control wings at the same

proximodistal level. The digoxigenin-labeled mRNA probes were used as

previously described: chick and mouse Bmp4 (Duprez et al., 1996a); Chick

and human BmpR-IA (Zou et al., 1997); chick Noggin (Pizette and Niswander,

2000); chick Scleraxis (Edom-Vovard et al., 2002); and Collagen 1 (Tozer et al.,

2007).

Immunohistochemistry

For antibody staining, control and manipulated chick wings were fixed with

paraformaldehyde 4% and then cut in 12 mm cryostat sections. Differentiated

muscle cells were detected with the monoclonal antibody, MF20, recognizing

sarcomeric myosin heavy chains (Developmental Hybridoma Bank). Two

isoforms of the slow myosin heavy chain (SM2 and SM3) were detected with

the monoclonal Na8 antibody (Developmental Hybridoma Bank). Fetal progen-

itors and satellite cells were detected with the monoclonal Pax7 antibody

(1/100; Developmental Hybridoma Bank). Active Bmp signaling was detected

with the polyclonal PSmad antibody recognizing the complex Bmp-activated

receptor-phosphorylated Smad1/5/8 (1/100; Cell Signaling). Laminin was

detected with a Laminin polyclonal antibody (Sigma). Proliferating cells were

visualized with the PH3 antibody (Cell Signaling). The following secondary

antibodies (Molecular Probes) were used: goat anti-mouse IgG coupled to

Alexa Fluor 555; goat anti-mouse IgG1 coupled to Alexa Fluor 568; goat

anti-mouse IgG2 coupled to Alexa Fluor 488; and goat anti-rabbit IgG coupled

to Alexa Fluor 488 or 555. To label nuclei, sections were incubated for 15 min

with Hoechst 33342 (Molecular Probes). For adult mouse muscle analysis,

muscles were freshly frozen and cut in to 12 mm cryostat sections. Immediately

after sectioning, slides were fixed in 4% PFA. Serial transverse sections of

each TA muscle were simultaneously incubated with the monoclonal Pax7

(1/100) and polyclonal PSmad (1/100) antibodies, and then incubated for

15 min with Hoechst 33342 (Molecular Probes) to label nuclei. Stained sections

were examined with a Leica SP5 confocal microscope or a Nikon Eclipse

80 microscope.

Muscle Measurements

At least three treated limbs and three associated control limbs were used for

muscle area analysis and cell counting. A total of 8–10 sections from each

limb were analyzed. All measurements and counting were performed with

Image-Pro plus 6.0 software. For muscle area analysis, AOI (area of interest)

function was used to draw a contour surrounding the muscles of dorsal areas

on transverse sections in control and experimental limbs. After converting

AOI to Object, pixel values were obtained. For cell counting (Pax7+ cells,

Myosin+ fibers, Hoechst+ nuclei, double PSmad+Pax7+ cells, and double

Pax7+PH3+ cells), counts were performed manually and normalized with

muscle area. Fiber size in E18 muscles was analyzed by laminin immunostain-

ing, which delineated the fiber outline on transverse sections. The sizes of

approximately 300 fibers were quantified in total (for each experimental

case) and normalized to fiber numbers. Fiber numbers in E18 muscles were

manually counted using laminin immunostaing and normalized to muscle

area. Standard deviations were calculated with GraphPad Prism version

4.02 software. Quantitative data shown as histograms are expressed as

means and SEM. Results were assessed for statistical significance by

Student’s t test (integrated in GraphPad Prism software), and differences

were considered statistically significant at p < 0.05. Asterisks in the histograms

indicate the different p values: *p < 0.05; **p < 0.01; ***p < 0.001.

Isolated Fibers

Single myofibers were isolated from the EDL muscles of 2-month-old C57BL6

mice as previously described (Kuang et al., 2007). Myofibers were cultured

in suspension in six well plates coated with horse serum to prevent fiber

attachment. Fibers were incubated in plating medium consisting of 15%

FBS and 1% chick embryo extract (CEE; Accurate Chemicals) in DMEM.

At 0, 40, and 72 hr of culture, individual fibers were picked and fixed in 1%

PFA, permeabilized with 0.2% Triton X-100 in PBS, and then processed for

immunostaining. For quantification of satellite cell numbers, myofibers were

prepared from 3 different animals, and at least 10 fibers were scored per

sample.
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Cardiotoxin Injury in Adult Mice

Regeneration studies were carried out on adult wild-type C57BL/6J mice.

Animals were anesthetized with a mixture of Ketamine/Xylazine, and received

a single injection of cardiotoxin (50 ml of 12 mM Latoxan) into the left TA

muscles. TA of the right legs was used as control. TA muscles from the left

(injected) and right (control) hindlimbs were collected 4 days after injury, and

subsequently processed for immunohistochemistry analyses.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and is available with this

article online at doi:10.1016/j.devcel.2010.02.008.

ACKNOWLEDGMENTS

We thank Gabrielle Kardon and members of the UMR7622 laboratory for

comments on the manuscript. We thank Alice Pannérec for the Pax7
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