986 patients were included in each group (diseased and comparator cohorts), and care costs and utilizations were compared between the disease and comparator data in the 6 months prior to the index date, and have continuous medical and drug price lists and data from previous economic studies of interventions for PD.

DATA SET (MDS) linked to 5% Medicare data from 01JAN2009 through 31DEC 2010. This data was created for patients without a PD diagnosis, using 1:1 propensity score matching. The primary end point of this study was to evaluate the 5-year cost profiles of two therapies for advanced PD, DBS against CSAI. The objective of this study was to determine the 5-year total direct medical and nonmedical costs per patient treated with DBS vs. CSAI.

The primary end point of this study was to determine the 5-year total direct medical and nonmedical costs per patient treated with DBS vs. CSAI. The objective of this study was to determine the 5-year total direct medical and nonmedical costs per patient treated with DBS vs. CSAI.
association of Khorasan prevalence (the widest province in Iran). Quality of life was measured with MSQOL-54 instrument. Data was collected by employing a 32-item self-administered questionnaire in a face to face interview. Parametric, nonparametric tests and descriptive statistics analysis were applied (p value <0.05). Patients were grouped into three disability stages according to their Expanded Disability Scale Score (EDSS). RESULTS: The Patients mean age was 31.78 (SD: 6.73) years and 73.8% were female and 26.2% were male, and their mean EDSS was 2.4 (SD: 1.26) whereas EDSS increases, the costs also increases, which is a positive correlation. The mean EDSS was 0.54 that as EDSS increased, whereas decreases, which is a negative correlation. The MS medications [Interferon] have a cost around $46265 per year for each patient that are subsidized about $24452 by governmental sector. Up to $17047 are paid by insurance and $5263 directly by patients. The costs per patient year were calculated as $11560 - 27970.5591 (EDSS=1-2.9), $25969.9034 (30015.645 (EDSS=3-4.5) and $34678.776 - 34799.22 (EDSS=5-7.5). CONCLUSIONS: We conclude that the results are relevant, especially when disability increases. The catastrophic cost has a high burden to patients, society and health care system.

PND52
WHOLE EXOME SEQUENCING AS A DIAGNOSTIC TOOL FOR COMPLEX NEUROLOGICAL DISORDERS
Frederic CW1, Monroe G2, Høvels AM1, van Haften G2
1Utrecht University, Utrecht, The Netherlands, 2Utrecht University Medical Center, Utrecht, The Netherlands
OBJECTIVES: The primary objective of this study is to elucidate the effect of whole exome sequencing (WES) in diagnosing children with a developmental delay due to unexplained conditions presumed to be genetic. A secondary objective is to collect relevant data on the children to guide clinical decision making for the traditional diagnostic pathway and the additional costs to diagnose a patient using WES.

METHODS: We included twenty children at the Sylvia Toth Centre (STC) in Utrecht, the Netherlands, who have undergone a previously extensive clinical diagnostic workups and for whom no diagnosis was found after the last extensive workup. On all twenty children and parents WES will be performed, thereby obtaining a list of exonic candidate mutations for each patient. In parallel all resources used were collected by assessing the clinical records of patients. These resources were linked to unit costs to obtain the total cost per patient. Total cost per patient was then compared to the cost of care using WES, assessed for each individual patient.

RESULTS: The diagnostic yield from the 13 patients sequenced thus far is 23% indicating a 23% clinical and economic feasibility of putting WES into standard diagnostic practice at STC.

CONCLUSIONS: The estimated financial impact of introducing Nuedexta in Scotland is modest. Even if more patients are identified, the relatively small incremental cost per-patient of Nuedexta is unlikely to have a major impact on the Scottish NHS.

PND53
FINANCIAL AND CLINICAL IMPLICATIONS OF INTRAMUSCULAR VERSUS SUBCUTANEOUS INTERFERON BETA-1A IN PORTUGAL, BASED ON THE FINDINGS FROM THE COCHRANE COLLABORATION REVIEW OF FIRST-LINE TREATMENTS FOR RELAPSING-REMITTING MULTIPLE SCLEROSIS
Silverio N1, Sequeira L1, Mateteche D2
1Amed SA, Alges, Portugal, 2EMQ Serono, Rockland, ME, USA
OBJECTIVES: To estimate the clinical and financial impact of Interferon beta-1a intramuscular (IM) and subcutaneous (SC) formulations in Portugal, based on the findings from Cochrane review regarding first-line treatments for relapsing-remitting multiple sclerosis.

METHODS: An Excel-based model estimated the number of relapses that could be prevented per cohort of 1000 patients treated with two types of interferon beta-1a. The model evaluated the consequences of treatment with SC versus IM interferon beta-1a, as this was the only comparison whose data was assessed as high by the Cochrane Review (Filipponi 2013). Risk of relapse was based on the 2-year data from the Cochrane meta-analysis. The analysis was performed from a Portuguese National Health Service (NHS) perspective including only direct costs. Although efficacy was kept constant as Cochrane did not report findings from Cochrane review regarding first-line treatments for relapsing-remitting multiple sclerosis.

RESULTS: The estimated cost of standard care in Scotland for PBA is circa £32.4 million annually (circa 22,500 patients). In year 1 following introduction, 67 patients are expected to receive Nuedexta, resulting in a cost increase by £0.1 million (circa 14 patients). By year 5, 368 patients are expected to receive Nuedexta, resulting in a projected total annual cost of £34.6 million. Therefore the estimated annual budget impact of Nuedexta ranges from £0.15 million (year 1) to £0.88 million (year 5). The incremental cost per patient is £2,246. The model was sensitive to changes in uptake rates, cost of background therapy and PBA symptom severity. When patients with moderate to severe PBA symptoms receive treatment, the projected cumulative year 5 budget impact estimate is £7.56 million.

CONCLUSIONS: As the data on the incremental budget impact of Nuedexta in Scotland is not available, if Nuedexta in Scotland is modeled, even if more patients are identified, the relatively small incremental cost per-patient of Nuedexta is unlikely to have a major impact on the Scottish NHS. Todd WA, Rona PR, Fenn R, et al. J Neurol Neurosurg Psychiatry 2014; 85:545–51.

PND54
CLINICAL OUTCOMES AND HEALTH CARE RESOURCE UTILIZATION IN A 1-YEAR OBSERVATIONAL STUDY OF PATIENTS WITH NON-FOCAL DISABLING SLEEPINESS WHO ARE CONSTANT OR INTRINSICALLY ORAL TREATED WITH INTRATHecal BACLOFEN THERAPY AT THE INSTITUT GUTTMANN (SPAIN), EPICE STUDY
Sofí J1, Serrano D2, Álvarez López-Díaz M1, Alvarez M1, Marques M1, Benito J1, Vidal J1
1Universitat Autònoma de Barcelona, Bellaterra, Spain, 2Barcelona Institute for Health Research, Fundació de Recerca en Salut, Bellaterra, Spain, 3Valles, Spain, 4Medtronic Ibérica, S. A., Madrid, Spain, 5Institut Guttmann, Barcelona, Spain
OBJECTIVES: To assess clinical outcomes, health care resource utilization and associated costs of oral baclofen therapy (ITB) for the treatment of non-focal disabling sleepiness (N-FDS) in patients who are resistant or intolerant to oral ther-

apy.

METHODS: Observational, non-interventional, prospective, single-center study was performed. Patients were recruited from ITB implantation. RESULTS: 20 consecutive patients with ITB indication were recruited; 13 received an ITB implant during the study period, 1 implant was resisted and thus explanted. 12 patients, of whom 10 had spasticity due to spinal-cord injury, 1 to multiple sclerosis and 1 to adrenoleukodistrophy, provided signed consent. After the study all patients received oral baclofen injections, while none did at the end of follow-up. Cather-related adverse events occurred in 2 out of 12 patients, with a total mean cost per event of £2.387. While waiting to receive ITB, spasticity was controlled through oral baclofen. Cost of ITB implantation for 10 patients, with a mean cost of £9.04 per event; no such events were observed after ITB implant.

CONCLUSIONS: Clinical outcomes of patients with N-FDS improved after ITB. Initial therapy costs were considerable, but were partially offset by savings in costs of oral baclofen. The model should be interpreted cautiously because of the small number of observations.