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We consider certain real interpolation methods for families of Banach spaces. We
also define some new such methods obtained by passing to the limit in the
constructions of Sparr and Cobos�Peetre. The relations between all these methods
are studied. Characterizations of minimal and maximal spaces are obtained. Some
concrete examples as well as sharp estimates of the corresponding operator norms
are also exhibited. � 1997 Academic Press

0. INTRODUCTION

In the theory of interpolation one usually considers Banach couples,
i.e., pairs (A0 , A1) such that A0 and A1 are Banach spaces embedded in a
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common topological vector space U. The most important among the
various constructions of interpolation spaces with respect to a given couple
is the complex method leading to spaces [A0 , A1]% (where 0<%<1), and
the real method leading to spaces (A0 , A1)%, q (where 0<%<1, 0<q��).
See e.g. the books [1, 2, 17] and the bibliography by Maligranda [19]
(including approximately 2500 references).

Part of the theory of interpolation between two Banach spaces can be
generalized to cover situations where one interpolates between finitely
many Banach spaces and even between general families of (infinitely many)
Banach spaces. In this direction let us mention the following developments:

(1) A theory of complex interpolation between families of Banach
spaces was developed by Coifman et al. (see [8�10]) and, independently,
by Kre@$ n and Nikolova (see [15, 16]). These spaces are often referred to
as the St. Louis and the Voronezh spaces respectively. Another complex
interpolation method between n-tuples of Banach spaces was suggested by
Lions [18] and studied in detail by Favini [12]. The Favini�Lions theory
was extended by Cwikel and Janson [11] to cover also complex interpola-
tion between very general families of spaces.

(2) A theory of real interpolation between n-tuples of Banach spaces
was worked out by Sparr [24]. A parallel theory of interpolation between
2n-tuples of Banach spaces was studied by Ferna� ndez [13]. In this connec-
tion we mention also early work by Foias� and Lions, Kerzman, and
Yoshikawa (cf. the discussion in [24, p. 248]). Lately Cobos and Peetre
[7] have developed a theory which, in particular, covers both the construc-
tions of Sparr and Ferna� ndez with n=3, respectively n=4. On the other
hand, even earlier the construction of Sparr had been extended by Cwikel
and Janson [11] to the case of interpolation between a fairly general
family A=[At]t # 1 , where the At are Banach spaces and 1 is a general
probability space.

In this paper we consider, in particular, certain real interpolation
methods recently studied in [3] and [22] (see also [4, 20, and 23]). We
introduce also new methods obtained by applying a limiting process in the
constructions in Sparr [24] and Cobos�Peetre [7]. In all these cases we
are in the situation when the actual family of Banach spaces is indexed by
the points of the unit circle T=[ |z|=1] in the complex plane C, while the
interpolation spaces are labelled by points of the unit disk D=[ |z|<1] .
Relations between (K- and J-versions of) these methods and the method of
Cwikel and Janson are discussed. Characterizations of minimal and maxi-
mal spaces are obtained (these results are applicable for families of complex
as well as of real spaces). We also include some exact computations of a
certain function Dz 0

(M), which yields sharp estimates of the corresponding
operator norm (and informally referred to as the ``Dicesar function'').

27REAL INTERPOLATION METHODS FOR FAMILIES
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The paper is organized in the following way. All definitions of the
families of interpolation spaces studied and other necessary preliminaries
are collected in Section 1. In Section 2 we prove some general results
including a sharp embedding result and also the characterization of the
natural maximal and minimal interpolation spaces. In Section 3 com-
parison results are established. In Section 4 we present some calculations
of the function DS

z0
(M) for the sets S considered in this paper. Some further

examples are given in Section 5.

Convention. If X is a Banach space, its norm will be written & }&X or
sometimes & } ; X& (if the symbol for the space is very complicated).

1. PRELIMINARIES

As in the Introduction, let D and T be the unit disc respectively the unit
circle. We say that the triple A� =[A(#): # # T; A; U] is an interpolation
family on T with U as the containing space (assumed to be a Banach space)
and with A as the log-intersection space (in the sense of Coifman�Cwikel�
Rochberg�Sagher�Weiss) if the following conditions hold:

(a) each A(#) is a Banach space continuously imbedded in U (we
shall denote the norm in A(#) by & }&# and the one in U by & }&U );

(b) for each a # �# # 1 A(#) the assignment # [ &a&# gives a
measurable function on T ;

(c) A coincides with the set of elements a # U such that a # A(#) a.e.
on T with �T log+ &a&# d#<�; moreover, it is assumed that there exists a
measurable function P on T such that

|
T

log+ P(#) d#<� and &a&U�P(#)&a&# a.e. on T for a # A.

If A� is a bounded family, i.e. P(#)=1 for all # # T, then the following
K-functional was defined [21] (see also [20, 23]):

K1 (:, a)=inf {:
j

:(#j )&aj&A(# j )= ,

where :: T � R+ is a given measurable function and the infimum is taken
over all representations of the element a as an infinite sum a=� j aj in U

with aj # A(#j ), #j # T.
The sum space �# A# of a bounded family of Banach spaces [A#] is

defined as the set of all elements a # U that can be written as a=�# a#

28 CARRO ET AL.
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with a# # A# and �# &a#&A#<�. Clearly �# A# is a Banach space with the
norm a [ &a&=inf �# &a#&A# , where the infimum is taken over all repre-
sentations of a of the form a=�# a# , a# # A# (see [17]); note that only
countably many summands a# are different from zero.

Another K-functional was defined in [3]:

K2(:, a)=inf {|T

:(#)&a(#)&# d#= ,

where the infimum is taken over all representations of the element a as an
integral a=�1 a(#) d# with a( } ) # G� . Here G denotes the set of functions
b=b( } ) of the form b=� j bj /Ej with bj # A, the Ej being pairwise disjoint
measurable sets of T, while G� stands for the set of all Bochner integrable
functions a( } ) with values in U such that a(#) # A(#) a.e. on T which can
be approximated pointwise a.e. in the A( } )-norm by a sequence of functions
an( } ) belonging to G, that is, we have

&an&a(#)&A(#) � 0 a.e.

With no loss of generality one can assume that &an(#)&A(#)�C &a(#)&A(#)

with a constant C>1.
We shall informally refer to these two cases as the ``discrete'' case ( j=1)

and the ``continuous'' case ( j=2) respectively.
Next, let us fix a multiplicative subgroup S of (if j=1) bounded or (if

j=2) essentially bounded functions. For z0 # D and 1�p�� we can then
define the following interpolation spaces:

(A)S, j
z 0 , p; K={a # U : \ :

: # S \
Kj (:, a)

:(z0) +
p

+
1�p

<�= ,

where :(z0)=exp(�T log :(#) Pz 0
(#) d#), while Pz 0

(#) is the Poisson kernel.
For j=2 these spaces were investigated in [3, 4].

In the sequel, in order to simplify the notation, whenever expedient, we
shall write (A)S, j

K in place of (A)S, j
z0 , p; K . Moreover, we shall sometimes sup-

press the index j writing just (A)S
K ; thus in such cases the symbol (A)S

K

refers to any of the spaces (A)S, 1
K and (A)S, 2

K (cf. [21, 3]).
The analogous J-functional is defined as follows

J(:, a)=ess sup
# # T

:(#)&a&#

for a # A(#) a.e. and :(#) # L�(T).

Throughout this paper we shall make the auxiliary assumption that
J(:, a)<� for every a in the intersection A and all : # S.

29REAL INTERPOLATION METHODS FOR FAMILIES
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The corresponding interpolation spaces are defined as follows:

(A)S
z 0 , p; J={a # U: a can be represented in the form a= :

: # S

a: ,

where a: # A and the expression \ :
: # S \

J(:, a:)
:(z0) +

p

+
1�p

+<�= .

The norm is defined as the infimum of all such expressions. Again, when-
ever possible we shall write just (A)S

J for (A)S
z 0 , p; J . These spaces were intro-

duced in [3, 4]. A similar theory can be developed corresponding to j=1.
In this case the J-functional is defined by

J1(:, a)=sup
#

:(#)&a&# ,

where : is a bounded function on T.

Remark 1.1 (change of notation). We have thus changed the notation
compared to [3]. There these K and J-spaces were (for j=2) written
[A]S

z 0 , p respectively (A)S
z 0 , p . We have given preference to the present nota-

tion, because in this way it is easy to remember which one of them is
associated with the K-functional and which one with the J-functional.

Moreover, we let 2A be the vector space A equipped with the norm
J(1, a) and put Kj (A� )=[a # U: Kj (1, a)<�]. Clearly, we have K1(A� )=7A� .
If we say that a statement holds for K(A� ) we mean that it holds for both
K1(A� ) and K2(A� ).

For any positive measurable function M on T we set

DS
z0

(M)= inf
: # S {ess sup

# # T

M(#) :(#)
:(z0) = (Dicesar function).

Here and later on ``ess sup'' shall be interpreted as ``sup'' in the discrete
case. Moreover, in the sequel ``ess inf '' and ``a.e.'' shall be interpreted as
``inf '' and ``everywhere'', respectively, when working with the (��)1 method.

We recall (see [4] and Section 4 of this paper) that for the norm of an
interpolated operator T : F(A� ) � F(B� ) such that &T&A(#) � B(#)�M(#) a.e.
on T we have the upper estimate

&T&F (A� ) � F (B� )�DS
z 0

(M),

provided the functor F=F( } ) is either ( } )S
K or ( } )S

J .

30 CARRO ET AL.
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2. GENERAL RESULTS

2.1. Maximal and Minimal Interpolation Conditions

Definition 2.1. We say that a Banach space A belongs to the class
KS

z 0
(A� ) if A/K(A� ) and

K(:, a)
:(z0)

�C &a&A for all a # A and all : # S. (2.1)

The importance of this notion is seen from the following theorem (see
also Remark 2.1).

Theorem 2.1. The following conditions are equivalent:

(i) A belongs to KS
z 0

(A� );

(ii) A/K(A� ), and for any Banach space B and any bounded linear
operator T : K(A� ) � B such that

&Ta&B�M(#) &a&#

(if j=1) for all # # T and all a # A or (if j=2) for almost all # # T and all
a # A, M( } ) being a bounded (or essentially bounded ) function on T, one has

&T&A � B�CDS
z0

(M), (2.2)

where C is independent of T.

(iii) A/K(A� ), and if T is as in (ii) but with M( } ) in S, then one has

&T&A � B�CM(z0). (2.3)

Proof. We give the proof only for j=2; the case j=1 requires only
obvious modifications.

ad (i) O (ii). Assume that (2.1) holds. Let T : K(A� ) � B be a bounded
linear operator such that &Ta&B�M(#)&a&# a.e. on T for a # A. Let
a # A/K(A� ), choose a number =>0 and consider a representation
a=�T a(#) d# such that a( } ) # G� with

|
T

:(#) &a(#)&# d#�(1+=) K2(:, a).

31REAL INTERPOLATION METHODS FOR FAMILIES
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Let us take an( } ) # G such that &an(#)&a(#)&A(#) � 0 a.e., &an(#)&A(#)�
C &a(#)&A(#) and set an=�T an(#) d# # A. Choose another arbitrary number
'>0. For all sufficiently big numbers n and m we have

&Tan&Tam &B�|
T

&T(an(#)&am(#))&B d#

�|
T

M(#) &an(#)&am(#)&# d#�'.

Thus there exists an element b # B such that Tan � b in B. Since, in addi-
tion, an converges to a in K(A� ) we conclude that Ta=b. Hence, for n big
enough we have

&Ta&B�&Tan&B+'�|
T

M(#) &an(#)&# d#+'

�|
T

M(#) &a(#)&# d#+2'.

Since ' is arbitrary, we conclude that &Ta&B��T M(#) &a(#)&# d# and,
thus, we find

&Ta&B�|
T

M(#) &a(#)& :&1(#) :(#) d#

�ess sup
#

M(#)
:(#) |

T

:(#) &a(#)& d#

�(1+=) ess sup
#

M(#)
:(#)

K2(:, a)

�C(1+=) &a&A } :(z0) ess sup
#

M(#)
:(#)

.

Taking the infimum over all : # S and using that =>0 is arbitrarily small,
this yields

&Ta&B�C &a&A Ds
z0

(M),

which means that (2.2) holds.

32 CARRO ET AL.
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ad (ii) O (iii). We observe that DS
z 0

(M)�M(z0) for every M. On the
other hand, if M # S and so M&1 # S, we have trivially

DS
z 0

(M)�ess sup
#

M(#) M&1(#)
M&1(z0)

=M(z0),

and the implication follows.

ad (iii) O (i). For any a # A we can write a=a �T .(#) d#, where . is
any integrable function such that �T .(#) d#=1 and, thus, we have

K2(:, a)�inf
. |

T

:(#) &a&# .(#) d#=ess inf
# # T

:(#) &a&#�:(#) &a&#

a.e. on T. Take B to be the vector space K2(A� ) with the norm K2(:, } ).
Since S/L�, we find that K2(A� )/B and, hence, we can take for T the
canonical imbedding I : K2(A� ) � B. Then

&Ia&B=&a&B=K2(:, a)�:(#) &a&#

and therefore, by (2.3) applied with M=:, we obtain

K2(:, a)=&a&B=&Ia&B�C:(z0) &a&A ,

and the proof is complete. K

Now we come to the dual notion.

Definition 2.2. We say that a Banach space B belongs to the class
JS

z 0
(B� ) if 2B� /B and if

&a&B�C
J(:, a)
:(z0)

for all : # S. (2.4)

The usefulness of this concept is seen from the following theorem (see
again Remark 2.1).

Theorem 2.2. Let B be the log-intersection space of the family B� . The
following conditions are equivalent:

(i) B belongs to JS
z 0

(B� );

(ii) &a&B�CDS
z 0

(&a&#) for all a # B;

33REAL INTERPOLATION METHODS FOR FAMILIES
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(iii) 2B� /B, and for any Banach space A and any bounded linear
operator T : A � B(#) with &Ta&B(#)�M(#) &a&A for a.e. # # T and all a # A,
where M(#) is assumed to be bounded by a positive constant, one has

&T&A � B�CDS
z0

(M), (2.5)

where C is independent of T.

(iv) 2B� /B, and if T is as in (iii) but M is taken to be in S, then one
has

&T&A � B�CM(z0). (2.6)

Proof. ad (i) O (ii). This implication follows at once by taking the
infimum in (2.4) over all : # S.

ad (ii) O (iii). Let a # A with &a&A�1 and write b=Ta. Since

ess sup
#

&b&B(#)�&M&� &a&A ,

we have b # 2B� and, thus, by hypothesis

&Ta&B=&b&B�CDS
z 0

(&b&#)�CDS
z 0

(M(#) &a&A)�CDS
z 0

(M) &a&A

establishing (2.5).

ad (iii) O (iv). This implication is trivial as DS
z 0

(M)=M(z0) when-
ever M # S.

ad (iv) O (i). Let us fix : # S and an element a # 2A� , and let A be the
one-dimensional space spanned by a with the norm

&a&A=J(:, a)=ess sup
#

[:(#) &a&B(#)].

Let I denote the identity operator from A into B. Then we have

&I&A � B(#)=sup
a # A

&a&B(#)

&a&A

�
&a&B(#)

:(#) &a&B(#)

=:&1(#) for a.e. # # T.

34 CARRO ET AL.
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Therefore, using (2.6) with M(#)=:&1(#) we see that

&a&B=&Ia&B�C:&1(z0) &a&A

=C:&1(z0) ess sup
#

[&a&B(#) :(#)]

=C
J(:, a)
:(z0)

,

which means that B # JS
z 0

(B� ). K

We have also the following characterizations.

Theorem 2.3. (a) A # KS
z 0

(A� ) if and only if A/(A)S
z 0 , �; K .

(b) A # JS
z 0

(A� ) if and only if (A)S
z0 , 1; J/A.

Proof. The proof of this theorem requires only obvious modifications of
the proof in the classical case of Banach couples (see [1]) so we omit the
details. K

Remark 2.1. In particular, it follows from Theorem 2.3 that each of the
spaces (A)S

z 0 , �; K and (A)S
z 0 , 1; J belongs both to KS

z 0
(A� ) and to JS

z0
(A� ). It is

likewise easy to check that the complex interpolation space A[z0] enjoys
this property.

2.2. Relations between the spaces (A)S, 1
K and (A)S, 2

K

Theorem 2.4. For any bounded interpolation family A� one has
(A)S, 2

K /(A)S, 1
K .

Proof. It is sufficient to establish that K1(:, a)�K2(:, a) for every : # S
and every a # (A)S, 2

K .
It follows from the definition of K2 that for any =>0 we can find a func-

tion a( } ) # G� such that a=�T a(#) d# and � :(#) &a(#)&# d#�(1+=) K2(:, a).
We also choose a sequence an( } ) # G with an( } ) � a( } ) and write
an=�T an(#) d# # A. Let us further introduce the ad hoc notation
7=�# :(#) A(#). For n and m big enough we have

&an&am&7�|
T

&an(#)&am(#)&7 d#�|
T

&an(#)&am(#)&A(#) :(#) d#�=.

Hence [an]n converges to an element b in 7 and, since this space is
imbedded in U, we have b=a. We conclude that a # 7 and, moreover, that
taking n sufficiently large for any =>0

35REAL INTERPOLATION METHODS FOR FAMILIES
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&a&7=K1(:, a)�&an&#+=�|
T

:(#) &an(#)&# d#+=

�|
T

:(#) &a(#)&# d#+2=�(1+=) K2(:, a)+2=.

Let = � 0 and the proof is complete. K

Next we note that the methods (A)S, 1
K and (A)S, 2

K do not coincide in
general. For example, if S consists of the one function :#1, then we have
(A)S, 1

K =�# A(#) and if B(#)=A(#) a.e. on T, while B(#){A(#) on a set of
measure zero, then in general (B)S, 1

K =�# B(#){(A)S, 1
K but (B)S, 2

K =(A)S, 2
K .

However, the situation changes if we restrict ourselves to countable
families.

Theorem 2.5. If A� is countable (i.e. if A(#)=An for all # # 1n , where
[1n]n # N is a partition into intervals of T) such that A is dense in A(#) for
every # # T and all functions : # S are regular1, then (A)S, 1

K =(A)S, 2
K .

Proof. According to Theorem 2.4 it is obviously sufficient to prove that
K2(:, a)�K1(:, a) for every : # S and a # (A)S, 1

K . By the definition of K1 we
can find, for any given =>0, elements an # An such that a=�n an and

:
n

inf
1n

:(#) &an&A n�(1+=) K1(:, a).

Let us take

a(#)=:
n

an.n(#) /1 n (#)

with

|
1 n

.n(#) d#=1

and

|
1 n

:(#) .n(#) d#�(1+=) ess inf
1 n

:(#)=(1+=) inf
1n

:(#),

36 CARRO ET AL.
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where the last equality holds since : is regular by hypothesis. Using the
density assumption we find that a( } ) # G� and

K2(:, a)�|
T

:(#) &a(#)&# d#=:
n

&an&A n |
1 n

:(#) .n(#) d#

�(1+=) :
n

&an &An inf
1 n

:(#)�(1+=)2 K1(:, a).

Letting = � 0 completes the proof. K

Remark 2.2. Each of the interpolation spaces (A)S, 1
K and (A)S, 2

K con-
stitutes a generalization of the constructions of the Cobos�Peetre [7],
Ferna� ndez [13] and Sparr [24].

3. NEW LIMIT CONSTRUCTIONS

We consider a finite collection of consecutive points 6=[(xj , yj )]j on
the unit circumference and let z0 denote a point in the unit disk D.
Moreover, 1j denotes the arc between (xj , yj ) and (xj+1 , yj+1), while
|1j | z 0

=�1j Pz 0
(t) dt stands for the harmonic measure of 1j with respect to

z0 ; as before Pz 0
(t) is the Poisson kernel.

Now we construct two subsets Sp and Sd of the space L�(T) as follows:2

We first select a sequence 6N (N=1, 2, ...) of finite collections of points
with 6N/6N+1. Letting [1 N

j ]j denote the partition of T by the points of
6N , we assume also that max j |1 N

j | � 0 as N � �. For each index N we
let S N

p be the set of all functions :=:n, m such that

:n, m(#)=2nxj
N+myj

N
for # # 1 N

j

where n and m are arbitrary integers and, similarly, we let S N
d be the set of

all functions :=:n such that

:n(#)=2nj for # # 1 N
j

where n=[nj ]j is an arbitrary collection of integers. Finally, we put

Sp=.
N

S N
p and Sd=.

N

S N
d .

37REAL INTERPOLATION METHODS FOR FAMILIES
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We also introduce the set ST
3 obtained as the pointwise limit of the

functions :n, m=:N
n, m as N � �, that is, ST consists of all functions :n, m of

the form

:n, m(#)=2n cos #+m sin # for # # T.

The corresponding interpolation spaces were introduced in [20, 23] and
further studied in [22].

We remark that, as is readily seen, both (A)S T
J and (A)ST

K are Banach
spaces continuously imbedded in U with (A)ST

J /(A)ST
K . These statements

follow from the existence of a compact set K such that (see [3])

:
: # S T

infK :(z)
:(z0)

<�.

In fact, taking K to be a circle with center at the origin (0, 0) and radius
r>(:2+;2)1�2 we find that

inf
K

:(z)= inf
# # [0, 2?)

2nr cos #+mr sin #=2&r - n2+m2

and, hence,

:
n, m

2&r - n2+m 2

2n:+m; � :
n, m

2&- n2+m2 (r&- : 2+;2)<�. K

In this context we also require the following notation: Let [1j ]j be any
partition of T. Then we set

2j (A� )={a # ,
# # 1 j

A(#): ess sup
1 j

&a&#<�= ;

Kj (A� )=[a # U: Kj (1, a)<�],

where either (discrete case)

K1, j (1, a)=inf {:
i

&ai &#i : a=:
i

ai , [#i ]/1j=
or (continuous case)

K2, j (1, a)=inf {|1 j

&a(#)&# d#: a=|
1 j

a(#) d#= .

38 CARRO ET AL.
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Moreover, the Cobos�Peetre J- and K-spaces corresponding to 6N=
[(xN

j , yN
j )] will be denoted (A1, A2 , ..., AN)(:, ;), p; J and (A1 , A2 , ..., AN)(:, ;), p; K

respectively (see [24]), while the analogous Sparr J- and K-spaces will
be denoted (A1 , A2 , ..., AN)%, p; J and (A1 , A2 , ..., AN )%, p; K with %=
(%1 , %2 , ..., %N ) respectively (see [24]).

The following relations hold:

Theorem 3.1. Let A� be an interpolation family and let

(:, ;)=:
j

|1j | z0
(xj , yj )

be a point in D, and set 1j=1 N
j and let %=%� =(|12 | z 0

, |13 | z 0
, ..., |1N | z 0

).
Then

(i) (A)S p
N

z 0 , p; J=(21(A� ), 22(A� ), ..., 2N (A� ))(:, ;), p; J ;

(ii) (A)S d
N

z 0 , p; J=(21(A� ), 22(A� ), ..., 2N (A� ))%, p; J ;

(iii) (A)S p
N

z 0 , p; K=(K1(A� ), K2(A� ), .., KN (A� ))(:, ;), p; K ;

(iv) (A)S d
N

z 0 , p; K=(K1(A� ), K2(A� ), ..., KN (A� ))%, p; K .

Proof. We only prove (i) and (iv) because the proofs of (ii) and (iii) are
quite similar.

ad (i). Consider a # A=2(A� )=� j 2j (A� ), fix n, m # Z+ and let
:n, m(#)=2nxj+my j for # # 1j . Then

J(:n, m , a)=sup
j

2nx j+myj ess sup
1 j

&a&#=max
j

2nxj+myj &a&2 j (A)=J(2n, 2m ; a),

where J(2n, 2m ; } ) is the Cobos�Peetre J-functional for the N-tuple
(21(A� ), 22(A� ), ..., 2N (A� )) (see [7]). The proof of (i) follows from this
relation and the observation that � j (nxj+myj )|1j | z0

=n:+m; so that

:n, m(z0)=2n:+m;.

ad (iv). Consider the function :=:n in S N
d , where

:(#)=:n(#)=2n j for # # 1j .

Then

K(:, a)=inf {|T

:(#) &a(#)&# d#: a=|
T

a(#) d#=
=inf {:

j

2n j |
1j

&a(#)&# d# : a=|
T

a(#) d#= . (3.1)
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Now we write aj=�1 j
a(#) d# and observe that aj # Kj (A). Therefore using

(3.1) we easily find that

K(:, a)= inf
a=a 1+ } } } +aN

:
j

2nj &aj&Kj (A)=K(2n, a),

where K(2n, } ) is the Sparr K-functional (see [24]), and the proof of (iv)
follows. K

Remark 3.1. According to [6, Theorem 3.1] we have (for every N) the
inclusions

(A)Sp
N

J /(A)Sd
N

J /(A)S d
N

K /(A)S p
N

K .

3.1. The ``dyadic'' or Sparr Limit Case

Theorem 3.2. The space (A)S d
K consists of all elements a # �N (A)Sd

N

K such
that

&a; (A)Sd
K &=sup

N
&a; (A)S d

N

K &<�.

Proof. Since S N
d /S N+1

d / } } } /Sd , we have (A)S d
K /(A)S d

N

K for all N.
Therefore we obtain

&a; (A)S
d

K &=\ :
: # S d

\K(:, a)
:(z0) +

p

+
1�p

= lim
N � � \ :

: # S d
N \

K(:, a)
:(z0) +

p

+
1�p

=sup
N

&a; (A)Sd
N

K &. K

Remark 3.2. The ``upper'' space UM (A, Z) of Cwikel�Janson [11], with
M equal to the Sparr K-method with parameter p, is obviously imbedded
in the space (A)Sd , 1

z0 , p; K , because in the definition of [11] the authors take
the intersection over all partitions of T, while in our case the intersection
is taken over a certain fixed collection of partitions. We do not know if
there exists a similar imbedding with the space (A)Sd , 2

z0 , p; K , that is, when we
use the continuous K2-functional instead of the discrete K1-functional.

Next we state a result for the J-functional which is closely related to
(2.18) in [11].

Theorem 3.3. For every a # (A)S d
z 0 , 1; J there exists a sequence (aN ), where

aN in (A)S d
N

z 0 , 1; J , such that &a&aN ; (A)S d
z 0 , 1; J & � 0 as N � � and, moreover,

&a; (A)S d
z 0 , 1; J&= lim

N � �
&aN ; (A)S d

N

z 0 , 1; J&.
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Proof. If a # (A) sd
z 0 , 1; J , then we can write a=�S a: where the con-

vergence is uniform in U, since

:
: # S

&a:&U� :
: # S

inf
#

&a:&#� :
: # S

J(:, a:)
:(z0)

<�.

Therefore we can choose aN=�: # S d
N a: # (A)Sd

N

z0 , 1; J , in which case we find

&a&aN ; (A)Sd
z 0 , 1; J&� :

a # S d"S d
N

J(:, a:)
:(z0)

� 0 as N � �.

We also have, for any =>0 and with a suitable choice of the a: ,

(1+=) &a; (A)S d
z 0 , 1; J&� :

a # Sd

J(:, a:)
:(z0)

= lim
N � �

:
a # S d

N

J(:, a:)
:(z0)

� lim
N � �

&aN ; (A)S d
N

z 0 , 1; J&.

On the other hand, we find

&a; (A)S d
z 0 , 1; J&= lim

N � �
&aN ; (A)S d

z 0 , 1; J&� �
N � �

&aN ; (A)Sd
N

z 0 , 1; J&

We conclude that

&a; (A)S d
z 0 , 1; J&= lim

N � �
&aN ; (A)S d

N

z 0 , 1; J&. K

Remark 3.3. We observe that the interpolation space (A)S d
z 0 , 1; J is con-

tinuously imbedded in the Cwikel�Janson ``lower'' space LM(A, Z) where
M is the Sparr J-method with parameter 1.

3.2. The ``Polygonal '' or Cobos�Peetre Case

In this case we do not have any monotonicity property similar to the one
in Sparr's case. The situation is more complicated and, as our next theorem
shows, we have even (A)S p

K =0 except when p=�.

Theorem 3.4. Let S� 1
p=S 1

p and S� N
p =S N

p "[1] (N=2, 3, ...). Then the
space (A)S p

z 0 , p; K consists of all elements a # �N (A)S� N

z 0 , p; K such that

\:
N

&a; AS� p
N

z 0 , p; K & p+
1�p

<�.
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Proof. Let : # S� N
p & S� N$

p with N<N$. Consider the collection of con-
secutive points [(xN$

k , yN$
k )] at step N$ on the arc 1 N

j . Then we have

nxN$
k +myN$

k =nxN$
k+1+myN$

k+1 implying that
yN$

k &yN$
k+1

xN$
k &xN$

k+1

=&
n
m

.

This means that the sign of the last ratio is constant, and this is of course
not possible as soon as we have at least three points in each quadrant.
Therefore we must have S� N

p & S� N$
p =< if N<N$ and N is big enough.

Hence4

&a; (A)Sp
z 0 , p; K&=\ :

: # S p
\K(:, a)

:(z0) +
p

+
1�p

r\:
N

:
: # S� p

N \
K(:, a)
:(z0) +

p

+
1�p

=\:
N

&a; (A)S� p
N

z 0 , p; K & p+
1�p

. K

Since A(#)/U with norm 1 we have (A)S p
N

K /U, likewise with norm 1.
It follows from Theorem 3.4 that (A)S p

z 0 , p; K=0 except for p=�. This
suggests that we replace Sp by a certain subset S� p so that we can guarantee
that at least (A)S p

z 0 , p; K{0. We must avoid the situation that the set S� p con-
tains two functions which are equivalent in the sense of the following
definition.

Definition 3.1. Two positive functions : and ; defined on T are said
to be C-equivalent, where C is a positive number, if

C&1;(#)�:(#)�C;(#) for # # T,

which we agree to write as :r
C ;. More generally, if for every : # S there

exists :$ # S$ such that :r
C :$ we shall use the notation S/C S$. In this

situation the correspondence : w�8 :$ is almost injective in the sense that
there exists an integer K>0 such that, for every :$, card[:: 8(:)=:$]�K.

Let [:1 , :2 , ...] be the set Sp enumerated in some way. We construct the
subset S� p in the following way: We keep :1 ; if :2r

2 :1 we discard it but
if :2r3 2 :1 we keep it; quite generally, proceeding inductively for N�2, if
:Nr

2 :j for some j<N we discard it but if not we keep it.

Now we are ready to formulate our main result for the K-method.

Theorem 3.5. We have AS d
K /AS� p

K /AS T
K .

42 CARRO ET AL.
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Proof. In order to prove the second inclusion we assume for a moment
that

ST/4 S� p (3.2)

Let a # (A)S� p
K and ; # ST . Then there exists : # S� p such that ;r

4 : and,
hence,

K(;, a)
;(z0)

�C
K(:, a)
:(z0)

for some constant C independent of ; and :. Moreover, since : # S� p there
are only a finite number, say, K functions ; # ST such that :r

4 ;. It follows
that

&a; (A)ST
K &=\ :

; # S T
\K(;, a)

;(z0) +
p

+
1�p

�CK \ :
: # S� p

\K(:, a)
:(z0) +

p

+
1�p

=C0 &a; (A)S� p
K &.

Thus the second inclusion holds in the hypothesis (3.2).
Now we prove (3.2). Let : # ST . Then there exist integers n and m such

that :(#)=:n, m(#)=2n cos #+m sin #. Now since cn, m=inf 2n cos #+m sin #{0
there exists an integer N=N(n, m) such that

|2n cos #+m sin #&2nx j
N+my j

N
|<cm, n

for every # # 1 N
j and every j. It follows that

1
2 } 2nxj

N+myj
N
�2n cos #+m sin #�2 } 2nxj

N+myj
N

for every # # 1 N
j . Therefore, if we define a function :N

n, m such that :N
n, m (#)=

2nx j
N+myj

N
for # # 1 N

j it follows that :N
n, mr

2 :n, m .
If :N

n, m # S� p we are done so let us assume that :N
n, m � S� p . Then there exists

; # S� p such that ;r
2 :N

n, m and, hence, :n, mr
4 ;. We conclude that for all

: # ST there exists ; # S� p such that :r
4 ;. Next we note that if :n, mr

4 ;
and :n$, m$r

4 ;, then :n, mr
16 :n$, m$ and, hence,

1
16

<
2n cos #+m sin #

2n$ cos #+m$ sin #<16.
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Thus &4�(n&n$) cos #+(m&m$) sin #�4 and it follows that there exists
an integer K>0 such that, for all n, m,

card[(n$, m$): :n$, m$r
4 ;]�K,

i.e. we have also almost injectivity. This proves (3.2) and so the second
inclusion in the theorem.

In order to prove the first inclusion we consider the functions

:N
n, m=:

j

2nxj+my j /1j
N and :~ N

n, m=:
j

2n(xj&x 1)+m( yj&y1) /1 j
N

and the set S� p=[:~ : : # S� p]. We note that

K(:N
n, m , a)

2n:+m; =
K(:~ N

n, m , a)
2n(:&x 1)+m( ;&y1) .

It follows that (A)S� p
z 0 , p; K=(A)S� p

z 0 , p; K . Moreover, one has

for every : # S� p there exists a unique element
; # Sp such that :r

2 ; and :(z0)r;(z0).
(3.3)

Using (3.3) one finds

(A)Sp
z 0 , p; K/(A)S� p

z 0 , p; K/(A)S� p
z 0 , p; K .

In order to prove (3.3) let : # S� p . Then there exist n, m such that

:(#)=:
j

2n(x j
N&x 1)+m( yj

N&y 1 ) /1 j
Nr

2 :
j

2n j /1j
N=;(#) # Sd ,

where nj=[n(xN
j &x1)+m( yN

j &y1)] (integer part). Moreover, we have

:(z0)=2n(:&x 1)+m( ;&y1)=2� j (n(xj
N&x 1 )+m( yj

N&y1 ))
r2� j nj |1 j

N | z 0=;(z0).

It remains to prove that the correspondence : [ ; is injective.
Assume that, on the contrary, we have two different functions :N

n, m and
:N$

n$, m$ , with N�N$, such that

[n(xN
j &x1)+m( yN

j &y1)]=[n$(xN$
j &x1)+m$( yN$

j &y1)]

whenever the two points [(xN
j , yN

j )] and [(xN$
j , yN$

j )] are on the same arc
1 N

j . Then we have

&1<(n(xN
j &x1)+m( yN

j &y1))&(n$(xN$
j &x1)+m$( yN$

j &y1))<1,
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that is,

1
2

<
2n(x j

N&x1)+m( yj
N&y1)

2n$(x j
N$&x 1)+m$( yj

N $&y1)
<2.

Therefore :N
n, mr

2 :N$
n$, m$ , and thus, by the construction of the set S� p , we

have :N
n, m=:N$

n$, m$ . This contradiction completes the proof. K

Let now S� T be a subset of ST such that the relation :N
n, mr

16 :N$
n$, m$ does

not hold for any (n$, m$){(n, m). Now we can formulate the corresponding
result for the J-method.

Theorem 3.6. We have (A)S� T
J /(A)S� p

J /(A)Sd
J .

Proof. For the proof of the first inclusion we begin by noting that it is
easily seen that S� T/4 S� p . Therefore if :n, mr

4 ; and :n$, m$r
4 ;, then

:n$, m$r
16 :n, m and we conclude that only one of these two functions can be

in S� T . In other words, the correspondence : [ :$ is injective. Now, assume
that a # (A)S� T

J , which means that we can write

a= :
: # S� T

a: with \:
: \

J(:, a:)
:(z0) +

p

+
1�p

�(1+=) &a; (A)S� T
J &.

Moreover, if : # S� T , then there exists ; # S� p such that :r
4 ; and, hence, if

we write b;=a: , then a=� b; with ; running through S� p and

\:
; \J(;, b;)

;(z0) +
p

+
1�p

�C \:
: \

J(:, a:)
:(z0) +

p

+
1�p

�(1+=) &a; (A)S� T
J &.

The proof of the second inclusion follows by using (3.3) and similar
arguments as those used in the proof of the first embedding in Theorem 3.5
so we omit the details. K

Remark 3.4. The reason why we have to use S� T (instead of ST ) is that
we do not have uniform convergence U in the sum a=� a: and therefore
we cannot reorder its elements. However, if p=1 this can be done.
Moreover, considering finite sums, we can prove, assuming that (A)S� p

J is a
Banach space, that the first imbedding in Theorem 3.6 holds also with S� T

replaced by ST .

Remark 3.5. The spaces (A)S� T
K and (A)ST

K coincide up to equivalence of
norm.

45REAL INTERPOLATION METHODS FOR FAMILIES



File: 640J 302521 . By:DS . Date:20:03:97 . Time:12:59 LOP8M. V8.0. Page 01:01
Codes: 2544 Signs: 1297 . Length: 45 pic 0 pts, 190 mm

We close this section with the following summary of the imbeddings
obtained:

ASd
K /AS� p

K /AST
K ; (A)S� T

J /(A)S� p
J /(A)S d

J ;

UM (A, Z)/(A)S d , 1
K where M is the Sparr K-method

with parameter p;

(A)S d
z 0 , 1, J/LM (A, Z) where M is the Sparr J-method

with parameter 1.

4. CALCULATION OF THE FUNCTION DS
z 0

4.1. The Dyadic Case S=Sd

According to [3] we have the exact result

DS d
z 0

(M)=M(z0).

4.2. The Polynomial Case S=S� p

Since S� p is not a group, it is not known, in general, how to get a good
estimate of the norm of the interpolated operator. However, in some cases
(for example, if p=�) it is known that

DS� p
z 0

(M)�sup
N

DS p
N

z 0
(M),

and in this case DS p
N

z0
(M) represents the norm of the interpolated operator.

We will now calculate DSp
N

z0
(M). To this end we first introduce some

notation.
Let (x1 , y1), (x2 , y2), ..., (xn , yn) be points on the unit circumference T

and let (:, ;) be a point of the unit disk D. By 1j we denote the arc
between (xj , yj ) and (xj+1 , yj+1) ( j=1, 2, ..., n&1). Furthermore, if (:, ;)
lies inside the triangle with vertices at the points (!1 , '1), (!2 , '2) and
(!3 , '3) we say that the numbers *1 , *2 and *3 are the barycentric coor-
dinates of (:, ;) with respect to this triangle if they constitute the (unique)
solution of the linear system

*1!1+*2 !2+*3!3=:,

{*1'1+*2 '2+*3 '3=;,

*1+*2+*3=1.

It is well-known that all *j are >0.
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The following result is contained in [6] but the present proof is different.

Theorem 4.1. Let Mj=sup1 j M(#) and let c1=c1(i, j, k), c2=c2(i, j, k)
and c3=c3(i, j, k) be the barycentric coordinates of z0 with respect to the
triangle with vertices [(xi , yi ), (xj , yj ), (xk , yk)] (i< j <k). Then

DS N
z 0

(M)rmax[Mc 1 (i, j, k)
i , Mc 2(i, j, k)

j , Mc 3 (i, j, k)
k ],

where the maximum is taken over all triangles containing z0 .

Remark 4.1. Let z0 be inside the polygon 6 with vertices (x1 , y1),
(x2 , y2), ..., (xn , yn). It is easy to see that DSp

N

z 0
(M) coincides with the

quantity

D:, ;=D:, ;(M1 , M2 , ..., Mn)r inf
t, s�0

[ max
1� j �n

Mjtx j&:s y j&;],

where (:, ;)=� j |1j | z0
(xj , yj ). Therefore Theorem 4.1 is more or less

identical with Theorem 1.8 in [6], but the present proof, based on the
Legendre transform is different.

Proof. Writing Mj=eL j, t=e! and s=e' we have to compute the
expression

L>(:, ;)= inf
!, ' # R

[ max
1� j �n

[!(xj&:)+'( yj&;)+Lj ]].

Let 16 denote the boundary of the polygon 6 and define a function
L: 16 � R+ as follows: L(x, y)=*Lj++Lj+1 if (x, y )=*(xj , yj )+
+(xj+1 , yj+1). (In other words, L(x, y ) is obtained by linear extension of
the values Lj .) Then it is clear that

L>(:, ;)= inf
!, ' # R

[ sup
(x, y ) # 1 6

[!(x&:)+'( y&;)+L(x, y )]]

and that L> is a concave function such that L>�L on the set 16 .
Moreover, L> is the least function enjoying this property. Hence, if (:, ;)=
� *j (xj , yj ), � *j=1, *j�0, then

L>(:, ;)�: *jL>(xj , yj )�: *jL(xj , yj )

and, thus,

L>(:, ;)�sup : *jL(xj , yj ).
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The function in the right hand side is concave. We conclude that

L>(:, ;)=sup : *jL(xj , yj )=sup : *jLj .

Here the supremum is taken over all decompositions (:, ;)=� *j (xj , yj ).
It remains to study the supremum

sup[*1 L1+*2L2+ } } } +*n Ln] (4.1)

under the constraints

*1 x1+*2x2+ } } } +*nxn=:,

*1 x1+*2x2+ } } } +*nxn=;, (4.2)

*1+*2+ } } } +*n=1,

*j�0,

However, it is well-known (theorem of Carathe� odory) that maximum is
attained in (4.1) at the vertices of the convex set in Rn defined by the points
(*1 , *2 , ..., *n) satisfying (4.2) and that these points have at most three com-
ponents different from 0. This means that when the maximum is attained
the system (4.2) reduces to a 3_3 system, say, with the solution *i=ci ,
*j=cj and *k=ck . This gives

sup(*1L1+*2L2+ } } } +*1Ln)= max
i< j <k

(ciLi+cj Lj+ck Lk),

where ci , cj , ck�0. Hence

D:;=max[Mc 1(i, j, k)
i , Mc 2 (i, j, k)

j , Mc 3(i, j, k)
k ],

completing the proof. K

4.3. The Trigonometric Case S=ST

Let the circle T be divided into two parts 10 and 11 by the line l=
[ y=b] and let D0 and D1 be the corresponding parts of the unit disc (see
Fig. 4.1).

We consider the case when M(#)=M0 on 10 and M(#)=M1 on 11 with
M0�M1 .
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Figure 4.1

Theorem 4.2. Let P=[:, ;] belong to the unit disc. Then the value of
DS T

(:, ;) (M) is given by

{
M1 , ;<b,

M1&'
1 M'

0 , '=
;&b
1&b

, ;>b,
1&;
1&b

>
|:|
a

,

M1&+
1 M+

0 , +=
(a&|:| )2+(;&b)2

2 [1&a |:|&b;]
, ;>b,

1&;
1&b

<
|:|
a

.

For the definition of a see Remark 4.1 and Fig. 4.2.

Remark 4.1. The four different cases in Theorem 4.2 corresponds to the
four different subsets of the unit disc (see Fig. 4.2).

Figure 4.2
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Here A=(a, b) and B=(&a, b), where a>0, are the two points where
the line l intersects T and C=(0, 1). The first case corresponds to the area
D1 below the line l, the second case to the area inside the triangle ABC,
the third case to the segment ACD (the case :>0) and the fourth to the
segment BCE (the case :<0).

Proof. Let L> be defined as in the proof of Theorem 4.1. For the sake
of simplicity we first consider the case when M0=1 and M1=e (so that
L0=0 and L1=1). This means that L> is the smallest concave function
equals 1 on 11 and 0 on 10 . We note that as before it is sufficient to prove
that

L>(P)={
1, ;<b,

(4.3)
1&

;&b
1&b

, ;>b,
1&;
1&b

>
|:|
a

,

1&
(a&|:| )2+( ;&b)2

2[1&a |:|&b;]
, ;>b,

1&;
1&b

<
|:|
a

.

Consider the line segment P0 P1 containing the point P=(:, ;) such that
P0 # D0 and P1 # D1 . Then we can write P=(1&%) P0+%P1 , where
0�%�1. It is clear that if we choose P0P1 in such a way that % is a maxi-
mum, then % is the value of L>(P). Moreover, when solving the maximum
problem, we can assume that P0 # 10 and P1 # D & l. We have to dis-
tinguish several cases.

Case 1. P # D1 . Then we can take P1=P so that %=1 and L>(P)=1.

Case 0. P # D0 . Let

{x=:1+{(:&:1),
y=;1+{(;&;1),

be the equation of the straight line through P0=(:0 , ;0) and P1=(:1 , ;1).
We note that P0 , P and P1 correspond to the parametervalues (;0&b)�(;&b),
1 and 0, respectively. This means that %=( ;0&;)�( ;0&b). From here
it is seen that we must determine P0 in such a way that ;0 becomes a
maximum. Obviously, we have to divide up this case into further cases:

Case 01 . P lies inside the triangle ABC. Then we can take P0=C so
that ;0=1 and we conclude that L>(P)=(1&;)�(1&b).
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Case 02 . P lies inside the segment ACD. Then we can take P1=A, that
is, :1=a. The equation of the line through P0 and P1 can also be written
as

{x=a+{(:&a),
y=b+{(;&b).

Moreover, we have to cut this line with T: We find

1=x2+y2=1+2{[a(:&a)+b(;&b)]+{2[(:&a)2+(;&b)2]

yielding

{={0=
2(1&a:&b;)

(:&a)2+(;&b)2 and {={1=0.

Therefore, as before, we find

%=1&
1
{0

=L>(P)=
1&:2&;2

2(1&a:&b;)
.

Case 03 . P lies inside the segment BCE. This case follows from Case 02

by reflection in the y-axis which means that only the sign of : will be
changed, i.e.,

F
>(P)=

1&:2&;2

2(1+a:&b;)
.

Summing up the results in the cases 1, 01 , 02 and 03 we obtain (4.3). The
proof of the general case M0�M1 can step by step be carried out in the
same way. The only difference is that we must all the time work with the
correspondingly modified and somewhat longer expression for L>(P). K

Remark 4.2. The method of proof of Theorem 4.2 can obviously be
applied in similar situations in higher dimensions. For instance, the result
of Theorem 4.2 extends with only verbal changes to the case of the ball
in R3.

5. EXAMPLES

5.1. The Case when A is a Banach couple (A0 , A1)

Let us take A(#)=A0 on 10=[&(?�2), (?�2)) and A(#)=A1 on 11=
[(?�2), (3?�2)).
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Figure 5.1

Example 5.1. We set 61=[(0, &1), (0, 1)], 62=[(0, &1), (1, 0),
(&1, 0), (0, 1)], ...; quite generally, 6N is obtained by adding to 6N&1 the
midpoints of all arcs at step N&1. In the Sparr limit case we obtain

(A)Sd
1

0, p; J=(A)Sd
1

0, p; K=(A0 , A1)%, p with %=|11 | 0= 1
2 .

Moreover, as S 1
d/S N

d for every N>1, we have

(A0 , A1)(1�2), p/(A)S d
N

0, p; J/(A)S N

0, p; K/(A0 , A1)(1�2), p .

Therefore, by Theorem 3.2,

(A)Sd
0, p; K=(A0 , A1)(1�2), p for all p�1.

Example 5.2. Now we choose a different family of collections of points
[6N ]N obtained as follows:

We let 61=[P1 , P2 , P3 , P4] such that (0, 1) is the midpoint of the arc
P2P3
�

and (0, &1) is the midpoint of the arc P4 P1
�

(see Fig. 5.1).
Moreover, we assume that A0/A1 and write

%=%� =(%2 , %3 , %4)=( |P2P3
�

| 0 , |P3P4
�

| 0 , |P4 P1
�

| 0).

Then, according to Theorem 3.1,

(A)S1
d

0, p; K=(A0 , A0+A1 , A1 , A0+A1)%, p; K

=(A0 , A1 , A1 , A1)%, p; K/(A0 , A1)%1 , p ,
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where %1=%2+%3+%4 . On the other hand, we have

(A0 , A1)%1 , p/(A0 , A1 , A1 , A1)%, p; J ,

and, hence,

(A)S1
d

0, p; K=(A0 , A1)%1 , p .

Next, 6N is defined recursively by adding a new point in every arc in the
(N&1)st step with the only restriction that the points (0, 1) and (0, &1)
do not belong to any 6N . Arguing as above we find

(A)Sd
N

0, p; K=(A0 , A1)%N , p where %N>%N&1 and %N � 1
2 as N � �.

Therefore in view of Theorem 3.2 we obtain

(A)Sd
0, p; K=,

N

(A0 , A1)%N , p .

Remark 5.1. Comparing the results in Examples 5.1 and 5.2 we see that
(A)S d depends in an essential way on the choice of the family [6N]N ,
because in general

(A0 , A1)(1�2), p{,
N

(A0 , A1)%N , p

no matter how the sequence [%N] with %N< 1
2 , %N � 1

2 is chosen. (A counter-
example is obtained by choosing p=2, A0=l1 , A1=l� .)

Example 5.3. For the set ST it is known that (see [3])

K1(:n, m , a)= inf
a=a0+a1

[inf
1 0

:n, m(#) &a0 &A0
+inf

1 1

:n, m(#) &a1&A 1
].

Thus, in each case we have an explicit description of the space (A)ST
K . For

example for the couple (A0 , A1)=(L1 , L�) we can use the usual formula
K(t, f )=�t

0 f*(u) du to obtain that

(A)ST
0, p; K={ f # L1+L� : c1

n, m f** \c1
n, m

c0
n, m+ # l p= ,

where f**(t)=(1�t) �t
0 f*(u) du and c0

n, m=inf10
:n, m and c1

n, m=inf1 1
:n, m .
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5.2. Interpolation of Families of Weighted Spaces

The following example is fundamental in [5] where an extension of it is
also proved.

Example 5.4. Let (F:): # S be a collection of Banach spaces and let F #
:

be the space F: endowed with the norm & }&F #
:
=:&1(#) & }&F: and set

lp(F #
:)={(x:): # S ; \ :

: # S

&x: & p
F#

:+
1�p

<�= .

Then, for all 1�p(#), p��,

(lp(#)(F #
:))S

z 0 , p; K=(lp(#)(F #
:))S

z 0 , p; J=lp(F :(z 0)
: ),

where F :(z 0)
: is the space F: endowed with the norm :&1(z0)& }&F : .

Proof. It is enough to show that

lp(F :(z0)
: )/(lp(#)(F #

:))S
z0 , p; J/(lp(#)(F #

:))S
z 0 , p; K/lp(F :(z 0)

: ),

where the middle embedding follows from the general theory (see [3, 4]).
In order to establish the first embedding, let b=(b:): # S # lp(F :(z 0)

: )
and write u:=b:$: where $:=(0, ..., 0, 1

(:)
, 0, ...). Then b=�: u: with

u: # �# # T l1(F #
:) and

J(:, u:)=|
T

:(#) &u:&F #
:

d#=&b:&F: ,

and, therefore,

&b& (l1 (F#
: ))S

z 0 , p; J
�\:

: \
J(:, u:)

:(z0) +
p

+
1�p

=\:
:

(:&1(z0) &b: &F : ) p+
1�p

=&b&lp (F:
:(z0 )) .

For the last embedding, let b=(b:): # S # (l�(F #
:))S

z 0 , p; K . Then, there
exists b(#)=(b:(#)): # S such that b=�T b(#) d# and, hence,

&b:&F :�|
T

&b:(#)&F: d#=|
T

:(#) &b:(#)&F#
:
d#

�|
T

:(#) &(b:(#)):&l� (F #
: ) d#.
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Taking the infimum over all possible representations of b: we obtain

&b:&F :�K(:, b; [l� (F #
:)])=K(:, b)

and, thus,

&b&l p (F :
:(z

0
))=\:

:

(:&1(z0) &b:&F : ) p+
1�p

�\:
: \

K(:, b)
:(z0) +

p

+
1�p

=&b&(l�(F #
: )) S

z 0 , p; K . K

Taking F:=C for every : # S one obtains the following result: For all
1�p, p(#)�� and S=[:]: , we have

(lp(#)(:&1(#)))S
z 0 , p; K=(lp(#)(:&1(#)))S

z0 , p; J=lp(:&1(z0)).

Remark 5.2. In particular, the statement above implies that

lp(#)(2
&n cos #&m sin #))S T

z 0 , p; J=lp(#)(2
&n cos #&m sin #)))ST

z 0 , p; K

=lp(2&n:&m;).

Moreover, if p(#)=1 Cwikel and Janson [11] have proved that UM (A, Z),
where M is the Sparr K-method with parameter p, equals l1(2

&n:&m;).
Hence, Theorem 3.5 implies that

l1(2&n:&m;)=UM (A, Z)/(A)S d
z 0 , 1; K/(A)S� p

z 0 , 1; K/(A)S T
z 0 , 1; K

=l1(2&n:&m; ).

Furthermore, according to Remark 3.5 (cf. Theorem 3.6) we also have

l1(2&n:&m;)/(A)ST
z 0 , 1; J/(A)S� p

z 0 , 1; J/(A)S d
z0 , 1; J/A[z0]=l1(2&n:&m;).

We conclude that all the spaces UM (A, Z), (A)S d
z 0 , 1; K , (A)S� p

z 0 , 1; K , (A)ST
z0 , 1; K ,

(A)ST
z 0 , 1; J , (A)S� p

z 0 , 1; J , (A)S d
z 0 , 1; J , A[z0] and l1(2&n:&m;) coincide.

Example 5.5. Consider A(#)=L�(W(#, } )), where

0<u(x)�inf
#

W(#, x)�sup
#

W(#, x)�v(x)<�.

Then A(#) is a bounded family when �# # T A(#){0 and, moreover, we
have

(L�(W(#, } )))S
z 0 , �; K/L�(D&1

S (W &1(#, } ))), (5.1)
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where

D&1
S (W&1(#, } ))=sup

:
inf
# # T

:(z0) W(#, x)
:(#)

.

Proof of (5.1). We note that by Theorem 2.4 it suffices to prove (5.1)
in the case of the K1-functional. Let f # (L�(W(#, } )))S, 1

z0 , �; K . Writing
f (x)=�# f (#, x) we have for every : # S

| f (x)| inf
# # T

W(#, x)
:(#)

�:
#

W(#, x)| f (#, x)|
:(#)

�:
#

& f (#, } ); L�(W(#, } ))&
:(#)

,

whence by the definition of the K1-functional

| f (x)| inf
# # T

W(#, x)
:(#)

�K(:&1, f ).

It follows that

& f ; L�(D&1
S (W&1(#, } )))&=sup

x \ | f (x)| sup
:

inf
# # T

:(z0) W(#, x)
:(#) +

�sup
:

K(:&1, f )
:&1(z0)

�& f ; (L�(W(#, } )))S
z0 , �; K&. K
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