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SUMMARY

How the development of antibacterial T helper
17 (Th17) cells is selectively promoted by anti-
gen-presenting dendritic cells (DCs) is unclear.
We showed that bacteria, but not viruses,
primed human DCs to promote IL-17 produc-
tion in memory Th cells through the nucleotide
oligomerization domain 2 (NOD2)-ligand mura-
myldipeptide (MDP), a derivative of bacterial
peptidoglycan. MDP enhanced obligate bacte-
rial Toll-like receptor (TLR) agonist induction of
IL-23 and IL-1, which promoted IL-17 expression
in T cells. The role of NOD2 in this IL-23-IL-1-IL-
17 axis could be confirmed in NOD2-deficient
DCs, such as DCs from selected Crohn’s dis-
ease patients. Thus, antibacterial Th17-mediated
immunity in humans is orchestrated by DCs
upon sensing bacterial NOD2-ligand MDP.

INTRODUCTION

Protection against certain bacteria requires the activity of

the cytokine IL-17 (Kolls and Linden, 2004) produced by

a specialized subset of T helper 17 (Th17) cells (Harrington

et al., 2005; Park et al., 2005; Langrish et al., 2005; Aggar-

wal et al., 2003). Recent studies in mice (Veldhoen et al.,

2006a; Mangan et al., 2006; Bettelli et al., 2006) have indi-

cated that the development of Th17 in naive T cells can be

induced by the combination of the cytokines TGF-b and

IL-6. However, in humans, this finding has not been con-

firmed thus far. In addition, both in mice and man, Th17

cells can be induced in memory Th cells by IL-23 (Harring-

ton et al., 2005; Park et al., 2005; Langrish et al., 2005;

Aggarwal et al., 2003) and IL-1 (Kidoya et al., 2005; Sutton

et al., 2006). The importance of this IL-23-IL-17 axis in an-

timicrobial immunity is underlined by previous studies

showing that protection against Klebsiella pneumoniae
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(Happel et al., 2005) and Streptococcus pneumoniae

(Malley et al., 2006), for example, is impaired in mice defi-

cient in the IL-23-specific subunit p19 or in IL-17. Further-

more, despite the fact that the development of Th17 cells

in Citrobacter rodentium-infected mice is promoted by the

TGF-b-IL-6 pathway, IL-23 is indispensable in these mice

for the Th17 response that protects against C. rodentium-

driven colitis (Mangan et al., 2006). The importance of

IL-23 in the development of functional Th17 cells is further

illustrated in mouse models of Th17-mediated chronic

inflammatory diseases (e.g., experimental allergic

encephalomyelitis [EAE] [Langrish et al., 2005], arthritis

[Murphy et al., 2003], and colitis [Yen et al., 2006]). More

detailed experiments have shown that although TGF-b is

essential for the initiation of EAE, progression of EAE is as-

sociated with enhanced production of IL-23 (Veldhoen

et al., 2006b). Altogether, these data support the concept

that the development of IL-17 in T cells in mice can be

initiated by the TGF-b-IL-6 pathway, but that the induction

of fully functional Th17 cells that are protective against

bacterial infection or progressors of chronic inflammatory

disease depends on IL-23. In addition to IL-23, protection

against bacteria requires IL-1 (Zwijnenburg et al., 2003;

Miller et al., 2006), which may be explained by the finding

that IL-1b and IL-1a synergize with IL-23 in the induction of

protective IL-17 by murine Th cells (Kidoya et al., 2005;

Sutton et al., 2006).

In the present study, we have focused on the mecha-

nisms underlying the triggering of the IL-23-IL-17 pathway

by bacteria in humans. A well-established concept is that

the development of protective Th cell subsets is orches-

trated by cytokines produced by dendritic cells (DCs)

that differentially sense archetypical structures defining

different classes of pathogens (Kapsenberg, 2003; Sousa,

2004). Although DCs have been previously implicated in

promoting Th17 cells (Schnurr et al., 2005; Happel et al.,

2003), the bacterial compounds that program for Th17-

promoting DCs, as well as the type of pattern recognition

receptors and soluble mediators involved, have not yet

been clearly established.
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Figure 1. Gram-Positive and Gram-Negative Bacteria Prime DCs to Enhance IL-17 in CD4+ T Cells

Unfractionated CD4+ T cells were cocultured with DCs that were primed for 16 hr with Gram-positive bacteria S. aureus (Sa), S. pneumoniae (Sp), C.

Xerosi (Cx), Gram-negative bacteria K. pneumoniae (Kp), E. coli (Ec), N. meningitidis (Nm) (107 bacteria/ml), or influenza virus (Flu), Varicella zoster

(VZV), and cytomegalovirus (CMV) (moi 1:5) in the presence of Staphylococcus enterotoxin B (SEB, 10 pg/ml).

(A) After 4 days, IL-17 was determined in supernatant by ELISA. Data are shown as means ± SD of triplicate cultures.

(B and C) After 12 days of culture in the presence of IL-2, resting T cells were restimulated with PMA and ionomycin and the frequency of IL-17- and

IFN-g-producing T cells was determined by intracellular FACS staining.

(B) FACS plot showing percentages of positive cells in each quadrant.

(C) Histogram of percentage of IL-17-producing cells (upper left and right quadrants in [B]). Data are representative of five independent experiments.
We report that, in contrast to the murine system, bacte-

ria-primed DCs do not induce IL-17 in human naive Th cells

via the TGF-b-IL-6 pathway. However, upon their ac-

tivation by bacteria, but not viruses, DCs promote the

development of human Th17 cells from memory Th cells.

Further experiments support the concept that antibacterial

Th17-mediated immunity in humans is orchestrated by

DCs upon sensing bacterial nucleotide oligomerization do-

main 2 (NOD2)-ligand muramyldipetide (MDP), which pro-

grams these DCs for elevated IL-23 and IL-1 production.

RESULTS

Bacterial Peptidoglycan Programs DCs
to Enhance IL-17 Secretion in Th Cells
To evaluate the concept that bacteria prime DCs for the

selective induction of Th17 cells, we tested to what extent

randomly selected species of Gram-positive (Staphylo-

coccus aureus, Streptococcus pneumoniae, and Corine-

bacterium xerosis) and Gram-negative (Escherichia coli,

Klebsiella pneumoniae, and Neisseria menigitidis) bacteria

program DCs to promote Th cells to produce IL-17. For

comparison, we tested influenza virus, Varicella zoster,

and cytomegalovirus, which cannot be eradicated by neu-

trophils and are not expected to induce Th17 cells. In

these assays, human monocyte-derived DCs were cul-

tured for 16 hr in the presence of whole microorganisms,

washed, and subsequently analyzed for their Th17-polar-

izing activity upon coculture with peripheral blood CD4+

Th cells comprising both naive and memory Th cells.

Clearly, both Gram-negative and Gram-positive bacteria,
but none of the tested viruses, programmed the DCs to

markedly enhance IL-17 production in these T cells after

4 days of coculture (Figure 1A). DCs primed with Gram-

negative bacteria induced higher amounts of IL-17 in the

T cells than did Gram-positive bacteria, and one (S. pneu-

moniae) of the three Gram-positive bacteria tested consis-

tently failed to enhance IL-17 secretion. Despite the vari-

ability in IL-17 levels produced in these short-term T cell

cocultures with DCs primed by different pathogens

(Figure 1A), all bacterial species (including S. pneumoniae)

primed DCs for the ability to promote in long-term cultures

a Th cell subset with intracellular IL-17 expression upon

nonspecific restimulation (Figures 1B and 1C). None of

the viruses induced this effect, which was not due to inac-

tivity of the virus, as confirmed by virus-induced IL-6

production by DCs (Figure S1 in the Supplemental Data

available online).

To assess which bacterial components are capable of

programming Th17-inducing DCs, we tested the effects

of various bacterial molecules known to interact with

host Toll-like receptors (TLRs), as well as some virus-as-

sociated TLR-agonists. These experiments revealed that

the capacity of DCs to support IL-17-production

(Figure 2A) and Th17 cells (Figures 2B and 2C) resulted

from DC activation by the TLR2-ligand peptidoglycan

(PGN), a cell-wall component of both Gram-negative and

Gram-positive bacteria, and not by the TLR2-TLR1 heter-

odimer-ligand Pam3CSK4 (a synthetic cell-wall lipopep-

tide of both Gram-negative and Gram-positive bacteria),

the TLR4 ligand lipopolysacchride (LPS, a major cell-wall

component of Gram-negative bacteria), the TLR5 ligand
Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc. 661
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Figure 2. TLR2 Ligand PGN Programs DCs to Promote IL-17 in CD4+ T Cells

CD4+ T cells were cocultured with DCs primed for 16 hr with PGN (10 mg/ml), Pam3CSK4 (5 mg/ml), dsRNA (poly I:C, 20 mg/ml), LPS (100 ng/ml),

flagellin (1 mg/ml), and R848 (2 mg/ml) in the presence of SEB.

(A) After 4 days, IL-17 was determined in supernatant by ELISA. Data are shown as means ± SD of triplicate cultures.

(B and C) After 12 days, resting T cells were restimulated with PMA and ionomycin, and the frequency of IL-17- and IFN-g-producing T cells was

determined by intracellular FACS staining.

(B) FACS plot showing percentages of positive cells in each quadrant.

(C) Histogram of percentage of IL-17-producing cells (upper left and right quadrants in [B]). **p < 0.01. Data are representative of five independent

experiments.
flagellin (a component of flagellated bacteria), or ligands

that activate intracellular TLR3 (dsRNA) and TLR7 and

TLR8 (R848), which are associated with viruses. In all

experimental conditions, Th17 cells consisted of variable

frequencies of cells that produce only IL-17 and cells

that coproduced IL-17 and IFN-g (Figures 1 and 2), but

not IL-4 (Figure S2), underscoring the relationship be-

tween Th17 and Th1 cells (Aggarwal et al., 2003; Mathur

et al., 2006).

PGN-Primed DCs Promote Th17 Cells in Memory
but Not in Naive Th Cells
Subsequently, we addressed the question of how PGN-

primed human DCs promote Th17 production. Recent

mouse model studies have demonstrated that IL-17 pro-

duction and Th17 cell development can be induced in

naive Th cell precursors under the influence of the combi-

nation of TGF-b and IL-6 (Veldhoen et al., 2006a; Mangan

et al., 2006; Bettelli et al., 2006). Indeed, in our control

experiments, Th17 cells did develop from mouse naive T

cells in the presence of these cytokines (Figure 3A, left).

In these experiments, a low frequency of Th17 cells also

arose in response to PGN-primed DCs (Figure 3B, left),

which was amplified by the additional presence of either

TGF-b or IL-6 (data not shown), and, to a greater extent,

by the combination of these cytokines (Figure 3B). In con-

trast, Th17 cells never arose from human naive T cells

stimulated by PGN-primed DCs, in the additional pres-

ence of either SEB (Figure 3B, right) or anti-CD3

(Figure S3A) or by anti-CD3 and anti-CD28 with or without

TGF-b and IL-6 (Figure 3A, right). SMAD3 and STAT3

phosphorylation confirmed the bioactivity of TGF-b and

IL-6, respectively, in the human T cells (Figure S4). More-

over, the addition of neutralizing antibodies against IL-12,
662 Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc.
IL-4, and IFN-g, cytokines that inhibit Th17 development

(Harrington et al., 2005; Park et al., 2005; Hoeve et al.,

2006), did not alter the outcome of the results (Figures

S3B and S3C).

It was shown previously that the expression of IL-17 in T

cells is promoted by IL-23 in previously activated (mem-

ory) Th cells (Aggarwal et al., 2003), which is amplified

by the additional presence of IL-1 (Kidoya et al., 2005; Sut-

ton et al., 2006). The critical role of the IL-23 pathway in

human cells was suggested by the finding that PGN-

primed DCs promoted IL-17 production in human (and

mouse) memory T cells (Figure 3D). Control experiments

confirmed that the combination of IL-23 and IL-1 readily

promoted high percentages of Th17 cells in human (and

mouse) memory Th cells (Figure 3F) but not naive Th cells

(Figure 3E).

Enhancement of Th17 Cells Requires
IL-23 and IL-1 Production by DCs
In order to determine to what extent IL-23 is the major

Th17-promoting factor of PGN-primed DCs, we first

compared the expression of mRNA encoding the IL-23-

specific p19 subunit and mRNA encoding the IL-12-spe-

cific p35 subunit in differentially activated DCs. Strikingly,

PGN-activated DCs expressed high and sustained

amounts of p19 mRNA in the virtual absence of IL-12-spe-

cific p35 mRNA (Figure 4A), which is a negative regulator

of IL-17 (Hoeve et al., 2006). To confirm the role of PGN-

primed DC-derived IL-23 protein in promoting Th17 cells,

we made use of a neutralizing polyclonal antibody that

binds to the p40 subunit shared by IL-23 and IL-12 and

thereby neutralizes both IL-23 and IL-12, and also a mono-

clonal antibody (20C2) that specifically binds IL-12 p35

and thereby selectively neutralizes IL-12. No antibodies
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Figure 3. Both PGN-Primed moDCs and

the Combination of TGF-b and IL-6 Are

Not Capable of Inducing IL-17 in Human

Naive CD4+ T Cells

Human naive CD4+CD45RA+ T cells or murine

naive CD4+CD62L+CD44� T cells (A, E) and

human memory CD4+CD45RO+ and murine

memory CD4+CD62L�CD44+ T cells (C, F)

were stimulated with anti-CD3 and anti-CD28

in the absence or presence of TGF-b (10 ng/ml)

and IL-6 (50 ng/ml) (A, C) or IL-23 (10 ng/ml)

and IL-1b (10 ng/ml) (E, F). Human or murine

naive CD4+ T cells (B) and human and murine

memory CD4+ T cells (D) were stimulated with

PGN-DCs in the presence of SEB (human

culture) or PGN-BMDCs in the presence of

anti-CD3 (murine culture) in the absence or

presence of TGF-b (10 ng/ml) and IL-6

(50 ng/ml). After 12 days (human) or 7 days

(mouse), restimulated with PMA and ionomycin

and the frequency of IL-17- and IFN-g-produc-

ing T cells was determined by intracellular

FACS staining. Data are representative of five

independent experiments.
selectively neutralizing IL-23 p19-p40 heterodimer are

currently available. In cultures of memory T cells driven

by PGN-primed DCs, both antibodies, as expected,

inhibited IFN-g production (Figure 4B, right), which was

driven by DC-derived IL-12 and to a lesser extent by

DC-derived IL-23. In contrast, IL-17 production (Figure 4B,

left) was inhibited only by the polyclonal antiserum that

blocks both IL-12 and IL-23, and not by 20C2 that selec-

tively blocks IL-12, indicating that PGN-primed DCs pro-

mote IL-17 production via the production of IL-23.

IL-1b and IL-1a have been implicated to synergize with

IL-23 in the induction of IL-17 by murine Th cells (Kidoya

et al., 2005; Sutton et al., 2006). We found that human

DCs primed by TLR agonists produced enhanced

amounts of both IL-1a and IL-1b, and PGN-induced

amounts were significantly enhanced over the other TLR

ligands (Figure 4C). Blocking experiments with neutraliz-

ing antibodies revealed that the IL-17 production in mem-

ory T cells by PGN-primed DCs was dependent on IL-1, in

particular IL-1a, produced by these DCs (Figure 4D).

Neutralization of both isoforms always almost completely

abolished IL-17 production (Figure 4D), stressing the over-

lapping function of IL-1a and IL-1b in promoting IL-17 by

PGN-primed DCs. The synergy between IL-1 and IL-23

in promoting IL-17 production in memory T cells was

confirmed in experiments with exogenous recombinant
cytokines (Figure S5). Thus, PGN-primed DCs promote

IL-17 production in memory CD4 T cells via an IL-23-

and IL-1-dependent pathway.

DCs Are Programmed to Promote Th17 Cells upon
Sensing of Bacterial Muramypdipetide by NOD2
As is evident from the experiments described in Figures

2A–2C, of all TLR2 ligands tested, only PGN could prime

DCs for the capacity to promote Th17 cells. This may be

explained by the fact that PGN, after internalization, is

metabolized into MDP, which is a ligand for the intracellu-

lar NOD2 (Girardin et al., 2003). Recent studies have

shown that NOD2 activation by MDP modulates the

effects of TLR agonists in various cell types, including

DCs (Tada et al., 2005). To analyze the effect of MDP liga-

tion on the IL-17- and Th17-inducing capacity of DCs,

these cells were activated with various TLR ligands in

the absence or presence of MDP and subsequently tested

for their capacity to induce IL-17 production. These exper-

iments revealed that, although MDP by itself was inactive

in this respect and did not add to the effect of PGN, MDP

together with other TLR agonists enhanced the capacity of

DCs to specifically promote IL-17, but not IFN-g, produc-

tion in memory Th cells (Figure 5A). Cell proliferation data

indicated that these effects were not attributable to

changes in cell proliferation (data not shown). To dissect
Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc. 663
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Figure 4. Selective Induction of IL-23p19 mRNA and IL-1 Production by PGN

DCs were stimulated with PGN, Pam3CSK4, dsRNA (poly I:C), LPS, and R848.

(A) After 0–24 hr (indicated in figure), cells were collected and processed for mRNA quantification by RT-PCR. Data are normalized to GAPDH and

expressed in arbitrary units (AU), representing mRNA induction compared to unstimulated cells. Left: IL-23p19; right: IL-12p35.

(B) PGN-primed DCs were cocultured with memory CD4+CD45RO+ T cells and SEB as described in the legend of Figure 1, in the additional presence

of an isotype control to both antibodies (cIg), a monoclonal aIL-12 antibody (20C2), or a polyclonal antibody that blocks the action of both IL-12 and

IL-23. After 4 days, supernatants were harvested and analyzed for IL-17 and IFN-g production by ELISA. Data are shown as means ± SD of triplicate

cultures.

(C) Amounts of IL-1a and IL-1b were measured by ELISA in 24 hr supernatants. Data are shown as means ± SD of triplicate cultures.

(D) PGN-primed DCs were cocultured with memory CD4+CD45RO+ T cells and SEB as described in the legend of Figure 1, in the additional presence

of neutralizing antibodies against IL-1a, IL-1b, IL-12 (20C2), IL-12 and IL-23, or an isotype control to all antibodies (cIg). After 4 days, supernatants

were harvested and analyzed for IL-17 and IFN-g production by ELISA. Data are shown as means ± SD of triplicate cultures.

*p < 0.05, **p < 0.01. Data are representative of three independent experiments.
this mechanism, we used synthetic TLR2 ligand

Pam3CSK4 with or without MDP to stimulate DCs. MDP

by itself was unable to induce expression of IL-23p19

mRNA, but it upregulated suboptimal Pam3CSK4-

induced IL-23p19 expression (Figure 5B). Furthermore,

activation of DCs by MDP enhances the production of

both IL-1a and IL-1b, which was described previously to

occur for IL-1b (Figure 5C; Strober et al., 2006). The critical

role of enhanced expression of both IL-23 and IL-1a and

IL-1b by DCs in MDP-induced IL-17 production could be

confirmed with blocking antibodies against IL-12 and IL-

23, IL-1a and IL-1b (Figure 5D). Thus, MDP enhances

TLR agonist-induced IL-23 and IL-1, hereby promoting

IL-17 expression in T cells.

To substantiate the role of NOD2 activation in MDP-

mediated induction of IL-17 production, we tested the

function of monocyte-derived DCs from patients with

Crohn’s disease (CD) carrying double-dose NOD2 muta-

tion in the leucine-rich repeat domain, responsible for

ligand binding (double-dose heterozygote or homozygote)

(Hugot et al., 2001; Ogura et al., 2001), leading to impaired

signaling (Strober et al., 2006). As expected, in contrast to

Pam3CSK4-primed DCs from individuals with wild-type

NOD2, MDP was unable to enhance the IL-17-inducing

capacity of Pam3CSK4-primed DCs from NOD2 mutant

CD patients (Figure 6A). At the same time, the capacity

to enhance IFN-g production was not affected by the

mutation, underscoring the fact that these cells are not

altered in their ability to produce cytokines that are unaf-
664 Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc.
fected by NOD2 signaling. In addition, and in agreement

with the expectation, MDP-dependent upregulation of

IL-23p19 mRNA (Figure 6B), IL-1a, and IL-1b (Figure 6C)

was abrogated in DCs from NOD2 mutant CD patients in

this experimental set-up. In addition, PGN induced signif-

icantly lower amounts of IL-23p19 mRNA in NOD2 mutant

DCs, as expressed as the ratio between PGN and LPS

(which is a NOD2-unrelated reference TLR agonist) per

individual (Figure 6D). Concomitantly, PGN induced signif-

icantly lower amounts of IL-1a and IL-1b in DCs from

NOD2 mutant CD patients compared to WT controls

(Figure 6E). To further confirm the role of NOD2 in IL-17

induction, we used siRNA transfection with a transfection

efficiency greater than 90% (Figure S6A), which specifi-

cally suppressed NOD2 expression both in resting as

well as MDP- or LPS-stimulated wild-type DCs (Fig-

ure S6B). The dysfunction of NOD2 was evident in control

experiments showing suppression of MDP-induced TNF-

a and IL-8 expression by transfection with NOD2-specific

siRNA and not with control siRNA (Figure S6C). Further

control experiments showed that MDP failed to enhance

the PAM3CSK4-induced expression of IL-23p19 mRNA

(Figure S7A) in these NOD2 knockdown DCs and the

ability of these cells to promote IL-17 production in

memory T cells (Figure S7B). The final experiments indi-

cated that PGN-primed NOD2-knockdown DCs, com-

pared to control-knockdown DCs, indeed have reduced

capacity to induce IL-17 production in memory T cells

(Figure 6F). In addition, these cells show a significantly
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Figure 5. DCs Activated by NOD2 Ligand MDP Induce the Production of IL-17 and Promote Th17 Cells

DCs were primed for 16 hr with PGN, Pam3CSK4, dsRNA, and LPS, with or without MDP (10 mg/ml), and cocultured with CD4+CD45RO+ Th cells and

SEB.

(A) After 4 days, IL-17 and IFN-g were determined in supernatant by ELISA. Data are shown as means ± SD of triplicate cultures.

(B and C) DCs were activated by MDP, Pam3CSK4, or the combination.

(B) IL-23p19 mRNA expression (0–16 hr) was determined by RT-PCR and normalized to GAPDH.

(C) IL-1a and IL-1b concentrations were measured (24 hr) by ELISA. Data are shown as means ± SD of triplicate cultures.

(D) DCs primed with Pam3CSK4 ± MDP were cocultured with CD4+CD45RO+ T cells in the presence of neutralizing Ab against IL-1a and IL-1b, IL-12

(20C2), IL-12 and IL-23, or an isotype control to all antibodies (cIg). After 4 days, IL-17 and IFN-g production were determined in supernatant by ELISA.

Data are shown as means ± SD of triplicate cultures.

*p < 0.05, **p < 0.01. Data are representative of five (A) or three (B–D) independent experiments.
lower expression of IL-23p19 mRNA ratio (Figure 6G), as

well as reduced production of IL-1a and IL-1b

(Figure 6H). Thus, PGN and MDP promote IL-17 in T cells

upon ligation of NOD2.

DISCUSSION

This study is focused on the mechanism underlying Th17-

mediated immunity against bacteria in humans. Our data

indicated that bacteria prime human DCs to promote IL-

17 expression in memory Th cells through NOD2 ligand

MDP via enhanced expression of IL-23 and IL-1. Ligation

of NOD2 by MDP selectively enhanced IL-17, where IFN-g

was not affected. In contrast to what has been reported for

mice (Harrington et al., 2005; Park et al., 2005), a substan-

tial frequency of the human IL-17-producing cells coex-

press IFN-g, but not IL-4, underscoring the relationship

between Th17 and Th1 responses (Aggarwal et al.,

2003; Mathur et al., 2006). Also, in contrast to the murine

system, we found that the combination of TGF-b and

IL-6 could not induce development of Th17 cells from

human naive T cells. Our current studies focused on the

alternative transcriptional control of induction of Th17

cells in human naive T cells. The finding that DCs pro-

moted IL-17 production exclusively in memory T cells,

through IL-23 and IL-1, is in agreement with several stud-
ies that have shown that IL-23 is predominantly involved in

Th17 development from previously activated cells (Aggar-

wal et al., 2003; Langrish et al., 2005; Sutton et al., 2006).

Our data are in line with the finding that IL-23 and IL-1 are

crucial in Th17-mediated protection against various

bacteria in mice (Mangan et al., 2006; Happel et al.,

2005; Malley et al., 2006; Zwijnenburg et al., 2003; Miller

et al., 2006). In addition, to our knowledge, this is the first

demonstration thatantibacterialTh17cells canbepromoted

by human DCs upon sensing of NOD2 ligand MDP, a PGN

derivative expressed by many bacterial species.

This crucial role of NOD2 in adaptive antibacterial

immunity may not be surprising when taking into consider-

ation that NOD2 has also a role in the natural defense

against bacteria by mediating the induction of the antimi-

crobial peptide cryptdins in the intestine (Kobayashi et al.,

2005). Napolitani et al. (2005) previously reported that

certain TLR-agonist combinations synergistically trigger

a Th1-polarizing program in DCs, introducing the concept

that the type of immune response is boosted by the com-

binational activation of DCs via selected pattern recogni-

tion receptors. We extend the significance of this concept

by showing that bacteria selectively trigger a protective

type of Th17-polarizing program by activating DCs

through MDP in combination with obligate bacterial-

derived TLR agonists, resulting in enhanced TLR
Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc. 665
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Figure 6. DCs Defective in Their NOD2 Have Reduced Capacity to Induce Enhanced Levels of IL-17 when Primed with Pam3CSK4

and MDP or with PGN

(A) DCs from NOD2-deficient CD patients (n = 5) (double-dose heterozygotes [n = 3] or homozygotes [n = 2]) and healthy WT controls (n = 11) were

primed with Pam3CSK with or without MDP and cocultured with memory T cells as described in the legend of Figure 1. Supernatants were harvested

(day 4) and analyzed for IL-17 and IFN-g production. Data are shown as induction of cytokine production induced by MDP + Pam3CSK4 over

Pam3CSK4 alone.

(B and C) DCs from NOD2-deficient CD patients (homozygotes [n = 4] and healthy controls [n = 4]) were stimulated with Pam3CSK with or without MDP.

(B) IL-23p19 mRNA expression (6 hr) was determined by RT-PCR and normalized to GAPDH.

(C) The concentration of IL-1a and IL-1b was determined by ELISA in 24 hr supernatants.

(D and E) Alternatively, cells were stimulated with PGN.

(D) The expression of IL-23p19 mRNA (normalized to GAPDH) was established as a ratio with LPS as control value.

(E) IL-1a and IL-1b were measured in supernatant (24 hr).

(A–E) Results are shown as individual donor data (each value measured in triplicate). Significant differences were determined by a paired t test

comparing values of experiments conducted the same day of NOD2-deficient donors with healthy WT control donors.

(F–H) DCs were transfected with siRNA specific for NOD2 or scrambled control siRNA and after 48 hr were activated by PGN. Data are shown as means

± SD of triplicate cultures. Data are representative of three independent experiments.

(F) Transfected cells were stimulated with PGN and cocultured with CD4+CD45RO+ T cells. IL-17 concentration in supernatant (day 4) was determined

by ELISA.

(G) Prepared for RT-PCR (6 hr) for PGN-induced IL-23p19. Data are expressed similar as in [D].

(H) Supernatants (24 hr) were measured for PGN-induced IL-1a and IL-1b production.

*p < 0.05, **p < 0.01.
agonist-mediated expression of the IL-17-inducing cyto-

kines IL-23 and IL-1. This modulatory effect of MDP on

the activation of DCs by TLR agonists may also explain

why TLR4 was implicated in the priming of DCs promoting

Th17 (Happel et al., 2003; Higgins et al., 2006). TLR4

ligand LPS is dominantly expressed by Gram-negative

bacteria and could very well be crucial in the combina-

tional MDP-TLR-mediated activation of DCs by Gram-

negative bacteria.

Our data revealed that DCs derived from NOD2-defi-

cient CD patients have an impaired capacity to induce

IL-17 expression upon MDP triggering, whereas their
666 Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc.
capacity to induce IFN-g expression was intact. This can

be attributed to the loss of the synergistic effects of

MDP on TLR-mediated triggering of IL-1a and IL-1b, and

IL-23. Indeed, IL-23p19 expression was not enhanced

by MDP or reduced by PGN in NOD2-deficient DCs from

patients, as well as production of IL-1a and IL-1b. The

latter finding is in line with reports on reduced MDP-medi-

ated production of IL-1b in monocytes (Netea et al., 2005)

and PBMC (van Heel et al., 2005) from NOD2-deficient CD

patients compared to healthy controls. Our findings are

further supported by experiments in DCs that do not

express NOD2 upon siRNA treatment that show reduced
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capacity to promote IL-17 in T cells and reduced expres-

sion of IL-23p19 and IL-1a and Il-1b.

It is currently not entirely clear how NOD2 deficiency

contributes to the pathogenesis of CD. A strongly advo-

cated concept is that the abnormal adaptive immune

responses as observed in CD results from initially ineffec-

tive bacterial clearance (Strober et al., 2006; Kelsall,

2005), which in NOD2 mutant patients may result from

reduced expression of antibacterial peptides (Kobayashi

et al., 2005) and other antibacterial responses, including

IL-8 (van Heel et al., 2005) and induction of Th17 cells

(this study). Paradoxically, both in mice and in humans,

it is suggested that the IL-23-IL-17 axis is instrumental in

the effector phase of active inflammatory bowel disease

(Fujino et al., 2003; Zhang et al., 2006; Yen et al., 2006;

Elson et al., 2007). It may be hypothesized that these

Th17 cells result from a secondary phase of IL-23 produc-

tion driven by factors that are generated during the uncon-

trolled inflammation after deficient bacterial clearance in

NOD2 mutant patients. The association for CD with the

IL-23-Th17 axis is further supported by a recent study

identifying IL-23R as an inflammatory bowel disease

gene (Duerr et al., 2006). We did not reveal a clear-cut

reduction of the frequency of Th17 cells in lesions of

NOD2-deficient CD patients compared to NOD2-efficient

CD patients (data not shown). This finding, however, is in

line with the concept that CD, irrespective of the presence

of a mutation in the NOD2 gene, is mainly caused by

dysfunctional Th17 cell responsiveness, regardless of

whether this is due to a failure of NOD2, IL-23R, or any

of the many other gene(s) initiating and regulating in the

NOD2-IL-23-IL-1-IL-17 pathway. Thus, the link between

NOD2 and IL-23 in antibacterial immunity may help to

understand why polymorphisms in either NOD2 (Hugot

et al., 2001; Ogura et al., 2001) or IL-23R (Duerr et al.,

2006) genes may contribute to the development of

Crohn’s disease.

EXPERIMENTAL PROCEDURES

Reagents

Neutralizing polyclonal rabbit IgG to human IL-12 and IL-23 and neu-

tralizing monoclonal Ab to human IL-12 (20C2) were purchased from

U-cytech (Utrecht, The Netherlands). Neutralizing Ab against IL-1a

was purchased from R&D and neutralizing Ab against IL-1b were

a kind gift from L. Aarden (Sanquin research Amsterdam, The Nether-

lands). Recombinant human IL-1a was purchased from R&D, rhIL-1b

from Bioscource, rhIL-23 from R&D, rmIL-23 from R&D, IL-6 from San-

quin, and TGF-b from R&D. All human cultures were done in IMDM (Life

Technologies) containing 10% FCS (HyClone) supplemented with

gentamycin (86 mg/ml, Duchefa), all mouse cultured were performed

in RPMI (GIBCO) 10% FCS (HyClone) supplemented with L-glutamin

(200 mM, Life), 2-mercaptoethanol (50 mM, Sigma) and gentamycin

(86 mg/ml, Duchefa). TLR ligands (PGN, LTA, Pam3CSK4, dsRNA

[Poly I:C], flagellin [S. thyphimurium], FSL-1, and R848) were pur-

chased at Invivogen; LPS (E. coli) and MDP at Sigma.

Bacteria and Viruses

Bacteria were cultured to the logarithmic phase in trypticase soy broth

(TSB; Difco) at 37�C. S. pneumoniae was grown in the presence of 5%

CO2. Bacteria were washed in PBS, resuspended in PBS to a concen-

tration of 109 CFU per ml, killed by a 30–240 min exposure to UV light,
and stored at�80�C. Killing of the bacteria was confirmed by negative

plate cultures of the UV-exposed bacteria. The following bacteria were

used: Gram-negative: K. pneumoniae, clinical isolate, E. coli ML35, N.

meningitidis H44/76 (Vanderende et al., 1995); Gram-positive: S. au-

reus 42D (Smits et al., 2005), S. pneumoniae D39 (NCTC 7466), C.

Xerosis, clinical isolate. Clinical isolates of VZV and CMV were kindly

provided by H.W.M. van Eijk (Amsterdam Medical Center, Department

of Clinical Virology, Amsterdam, The Netherlands); and influenza A/PR/

8/34 was a kind gift of G. Rimmelzwaan (Erasmus Medical Center,

Department of Virology, Rotterdam, The Netherlands). All viruses

were inactivated at 56�C for 30 min prior to use.

Isolation of Human and Murine Memory and Naive Th Cells

Human PBMC were isolated from heparinized human peripheral blood

by density gradient centrifugation on Lymphoprep (Nycomed), and

PBMC were subsequently seperated in monocytes and PBL by density

gradient centrifugation on Percoll (Pharmacia). Untouched CD4+ cells

were isolated from the PBL fraction to high purity (>98% as assessed

by flow cytometry) with a MACS Isolation kit for CD4+ cells (Miltenyi).

Naive CD4+ T cells were FACS sorted by gating on CD4+

CCR7+CD45RA+CD45RO� at >99% purity. Memory CD4+ T cells

were isolated with CD45RO+-PE (Dakopatts) and anti-PE-beads

(MACS). Untouched mouse CD4+ T cells were isolated from a

C57BL/6 spleen cell suspension with a MACS Isolation kit for CD4+

cells (Miltenyi). Effector memory (CD4+CD62L�), central memory

(CD4+CD62L+CD44+), and naive (CD4+CD62L+CD44�) cells (CD62L

APC and CD44-PE from Becton) were isolated by sort. C57BL/6

mice were bred under SPF conditions and kept in conventional but

pathogen-free animal facilities in accordance with local guidelines.

In Vitro Generation and Activation of Human DCs

and T Cell Stimulation

Immature DCs were generated by culture of peripheral blood mono-

cytes as described previously (de Jong et al., 2002). Bone-marrow-

derived DCs were generated from C57BL/6 mice by culturing

bone-marrow cells for 7 days in the presence of GM-CSF (5% culture

supernatant of X63 hybridoma, kind gift of K. Mahnke, Heidelberg) as

described initially by Inaba et al. (1992). To stimulate T cells, DCs were

activated by bacteria, viruses, or TLR ligands for 16 hr and subse-

quently cocultured with CD4+ T cells (human DCs, 20,000 T cells/

well with 2,000 DCs in the presence of Staphylococcus aureus entero-

toxin B [SEB, 100 pg/ml; Sigma-Aldrich]; murine DCs, 50,000 T cells/

well with 5,000 BMDCs in the presence of anti-CD3). In the DC-

independent system (used in Figure 3), human T cells were stimulated

with plate-bound anti-human-CD3 (16A9; Sanquin, 1 mg/ml) and anti-

human-CD28 (5E8, Sanquin, 1 mg/ml), murine T cells were stimulated

with anti-mouse-CD3 (10 mg/ml, BD PharMingen) and anti-mouse-

CD28 (1 mg/ml, BD PharMingen). From human cultures, after 4 days

supernatants were harvested and analyzed for IL-17 (Biosource) and

IFN-g (Ucytech) production. Cells were further cultured in the presence

of 10 U/ml IL-2 (Chiron) and resting cells were restimulated at day

12 with PMA (100 ng/ml) and ionomycin (1 mg/ml) for 6 hr, the last

4 hr in the additional presence of brefeldin A (10 mg/ml) as described

previously (de Jong et al., 2002) and analyzed for the intracellular

production of IFN-g (PharMingen), IL-4 (PharMingen), and IL-17

(R&D), second Ab a-mouse-PE (Jackson). Murine T cells were cultured

in the presence of 10 U/ml IL-2 (R&D) and restimulated at day 7 and

analyzed for intracellular IFN-g (BD) and IL-17 (BD). In several experi-

ments, DCs (40,000 cells/well) were also stimulated for product analy-

sis by PCR (IL-12p35, IL-23p19) or ELISA (IL-1b from Endogen, Rock-

ford, IL, and IL-1a from R&D).

Real-Time Quantitative RT-PCR Analyses

Quantitative RT-PCR (iCycler iQ Multi-Color Real Time PCR Detection

System; Bio-Rad) was performed with specific primers general SYBR

green (iQ SYBR Green supermix, 23, Bio-Rad) fluorescence detec-

tion. RNA extraction was done by NucleoSpin RNA Isolation Kit, Ma-

cherey-Nagel, and for cDNA synthesis the kit of MBI Fermentas was
Immunity 27, 660–669, October 2007 ª2007 Elsevier Inc. 667
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used. Expression was normalized to GAPDH expression. Primers

used: IL-23p19: 50-GTGGGACACATGGATCTAAGAGAAG, 30-TTT

GCAAGCAGAACTGACTGTTG; IL-12p35: 50-AGATGTACCAGGTGG

AGTTCAAGAC, 30-AAATTCAGGGCCTGCATCAG; GAPDH (Magner

et al., 2000): 50-GAAGGTGAAGGTCGGAGTC, 30-GAAGATGGTG

ATGGGATTTC. Product size: IL-23p19, 124 bp; IL-12p35, 121 bp;

and GAPDH, 225 bp. The reaction protocol was identical for all PCR

products: first a 3 min incubation at 94�C, followed by 45 cycles of

sequential incubations at 94�C (30 s), 61�C (30 s), and finally 72�C

(1 min) for data collection. A bulk cDNA sample of CD40L-stimulated

human moDCs was used as a standard, and normalization to GAPDH

was performed for each sample.

siRNA

siRNAs specific for NOD2 and random controls (100 nM, Dharmacon)

were transfected with a 1:250 dilution of lipofectamin 2000 (Invitrogen)

for 4 hr. Subsequently, after 48 hr, DCs were stimulated as indicated in

Figure 6. Transfection efficiency was tested after 48 hr with FAM-

labeled siRNA (Figure S5).

NOD2 Mutant Patients

Patients with Crohn’s disease carrying double-dose NOD2 mutation,

in the leucine-rich reapeat domain that is responsible for ligand bind-

ing, double-dose heterozygotes (n = 3), or homozygotes (n = 4) (Braat

et al., 2005), were selected from the IBD database at the Department of

Gastroenterology and Hepatology, Academic Medical Center, Amster-

dam, The Netherlands. Patients were confirmed to be negative for

mutations TLR4 299 (Child et al., 2003). At the moment of the inclusion

in the study, all patients were in remission for at least 1 year. Patient

characteristics are detailed in Table S1. All patients and healthy volun-

teers were included according to the Helsinki convention after

informed consent had been obtained.

Genotyping of NOD2

Variants Crohn’s disease patients and healthy controls were geno-

typed for three with CD-associated variants of NOD2 gene (R702W,

G908R, and 3020Cins) as described previously (Braat et al., 2005). In

brief, genomic DNA was amplified in polymerase chain reaction with

specific primers creating different restriction sites in the wild-type

and mutant alleles, respectively. The amplified products were digested

overnight with the restriction enzymes, and the digestion products

were separated by electrophoresis on 3% agarose (Eurogentec s.a.)

gels containing 0.5 ml/ml ethidium bromide and viewed with the Gene-

Genius (Syngene, Cambridge, UK).

Intracellular Staining of Phosphorylated Protein

Cells were fixed and permeabilized with cytofix/cytoperm reagent (BD

Biosciences) for 10 min at 37�C, then incubated with cold methanol

(90%) for 30 min. Staining of the cells was done with anti-phospho-

STAT3-APC (BD PharMingen) or anti-phospho-SMAD3 (Calbiochem)

for 1 hr, the latter followed by goat-anti-rat-ALEXA 488 (Molecular

Probes).

Statistical Analyses

Data were analyzed for statistical significance (GraphPad InStat) by

Student’s t test. A p value < 0.05 was considered to be significant.

Unless stated otherwise, data show a representative out of at least

three experiments.

Supplemental Data

Seven figures and one table are available at http://www.immunity.

com/cgi/content/full/27/4/660/DC1/.
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