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Melanocytes occur not only in the skin and eyes but
in the cochlea, where they exist as intermediate cells
of the stria vascularis. Intermediate cells play an
important role for cochlear function: Na+K+-ATPase
and potassium channels of intermediate cells are
essential for production of endocochlear potential
and for preparation of ionic milieu in the stria.
Consistent with this notion, melanocyte de®ciency
due to some gene disruptions results in hearing
impairment in mice and humans. Mitf/MITF is
essential for development and maturation of melano-
cytes, including strial intermediate cells. Disruption
of MITF causes deafness, heterochromia irides, and

leucodermia in Waardenburg syndrome type 2 indi-
viduals, whereas that of Mitf causes phenotypes of
deafness, microphthalmia, and white coat in mice.
Again, all of these phenotypes may be explained by a
lack of melanocytes. Many signal transduction path-
ways target the Mitf/MITF gene or Mitf/MITF
protein, and disruption of these pathways sometimes
results in the phenotype similar to that caused by
Mitf/MITF disruption. If not all, certainly many
roads lead to MITF in melanocytes. Key words:
GSK3b/hearing/stria vascularis/Waardenburg syndrome.
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M
icrophtahlmia-associated transcription factor
(MITF) is a transcription factor with basic-
helix-loop-helix-leucine zipper (bHLHZip)
structure, and is a melanocyte-inducible tran-
scription factor (Tachibana et al, 1994; for

review see Tachibana, 1997, 1999, 2000). Whereas loss-of-function
mutations of the MITF gene cause Waardenburg syndrome type 2
(Tachibana, 1997), a dominant negative mutation of MITF causes
Tiez syndrome, i.e., albinism±deafness syndrome, whose symptoms
are similar to WS2 but more severe (Amiel et al, 1998; Smith et al,
2000). In both syndromes, MITF mutations often cause hearing
impairment along with skin and iris pigmentation anomaly. The
pigmentation anomaly is caused by the absence of melanocytes in
skin and iris; the hearing impairment is also caused by melanocyte
absence, although it might sound strange to dermatologists. Indeed,
melanocytes exist in the stria vascularis of the cochlea as
intermediate cells and play a crucial role in hearing function. In
this review, I summarize the history and recent progress of MITF
research with emphasis on its function in the cochlea. In addition, I

will discuss the current understanding of the signal transduction
system targeting the MITF gene and MITF protein.

STRIAL INTERMEDIATE CELLS OF THE COCHLEA
ARE MELANOCYTES

Stria vascularis, along with spiral ligament, occupy the lateral wall of
the mammalian cochlear duct; it secretes endolymph producing
+90 mV endocochlear potential (EP). Stria vascularis consists of
marginal, intermediate, and basal cells; the latter two kinds of cells
and spiral ligament cells are connected to each other by gap
junctions, whereas marginal cells are not. Hence, stria is considered
to be composed functionally of two compartments (Fig 1). In this
scheme, Na+K+-ATPase and potassium channels of intermediate
cells play a crucial role in the production of EP and ionic milieu
bathing marginal cells (Takeuchi and Ando, 1998; for review see
Tachibana, 2000), indicating that melanocytes are important for the
hearing function. As proof of this, disorders affecting melanocytes
are often associated with hearing impairment: these disorders
include Waardenburg syndrome (WS) type 1±4, Tietz syndrome,
Yemenite deaf±blind syndrome, and Vogt-Koyanagi-Harada sy-
drome, and they may be classi®ed together as auditory±pigmentary
syndrome.

A TRANSCRIPTION FACTOR GENE Mitf/MITF IS
MUTATED IN SOME HEREDITARY DEAF MICE and

HUMANS

We previously examined microphthalmic and deaf white transgenic
mice with an insertional mutation at the microphthalmia (mi) locus
(Tachibana et al, 1992). We found that these phenotypes are caused
by a lack of melanocyte in eye, skin, and cochlea, and proposed
these mice as a mouse model for WS2. Stria vascularis of these mice
was thin due to a lack of intermediate cells and showed severe
degeneration. Successively, sensory hair cells degenerated and
startle response to sound was lost. Further molecular analysis of
these mutant mice led to the cloning of the Mitf gene, a mouse
homolog of MITF (Hodgkinson et al, 1993). Soon after this
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observation, MITF was found to be mutated in WS2 individuals
(Tassabehji et al, 1994; Tachibana, 1997). Cochleae of WS2
individuals lack melanocytes (Nakashima et al, 1992), and thus all
three symptoms of WS2, i.e., hearing impairment, hetreochromia
irides, and leucodermia, may be accounted for by melanocyte
anomaly as in the case of the mi mutant mice. These observations,
along with the notion that bHLHZip proteins are often transcrip-
tion factors involved in cell differentiation, led us to believe that
MITF/Mitf is a Melanocyte Inducible Transcription Factor, and
we found that ectopic expression of MITF converted ®broblasts
into cells with melanocyte characteristics (Tachibana et al, 1996).
Recently, a mutation of MITF, which encodes dominant-negative
mutant MITF (Takebayashi et al, 1996), was found in Tietz
syndrome (Amiel et al, 1998; Smith et al, 2000), another auditory±
pigmentary syndrome.

MITF IN THE MATURED COCHLEA

Whether MITF is essential for maintenance of the matured cochlea
remains to be examined. The possibility remains that Mitf is
expressed postnatally at a low level, which may not be detected by
in situ hybridization technique, and that it may have some
physiologic or pathophysiologic function. Strial intermediate cells

show continuous basic mitosis at a rate comparable with that of
melanocytes in the skin (Conlee et al, 1994), and noxious stimuli
such as noise increase melanogenesis in these intermediate cells
(Gratton and Wright, 1992). Skin melanocytes also show basic
mitosis (Jimbow et al, 1975), and noxious stimuli, such as UV
stimulation (Jimbow and Uesugi, 1982) and wounding (Hirobe,
1983), enhances the mitosis. Mitf/MITF may be involved in these
mitotic events in skin and in stria.

MITF IS REGULATED BY VARIOUS SIGNALING
PATHWAYS IN MELANOCYTES

A plethora of signaling pathways have been implicated in
differentiation, proliferation, and maturation of melanocytes,
including cochlear melanocytes. Disruption of some genes related
to these pathways in mice results in the phenotype resembling that
of mi mutant mice, suggesting a linkage between these pathways
and Mitf. Indeed, recent studies have revealed that some pathways
post-translationally modulate the MITF protein by phoshorylation,
whereas other pathways modulate it at the transcription level by
stimulating the MITF promoter. Among these pathways, the cyclic
AMP (cAMP) pathway plays a key role in the regulation of
melanogenesis by regulating MITF at both the promoter and the
protein levels (Bertolotto et al, 1996, 1998; for review see Busca
and Balloti, 2000) (Fig 2); the increased level of cAMP in
melanocytes activates protein kinase A (PKA) and Raf oncoprotein;
activated PKA phosphorylates and activates cAMP responsive
element (CRE) binding protein (CREB), which then binds to
CRE in the MITF promoter; at the same time, activated
cytoplasmic kinase Raf phosphorylates and activates MAPK/ERK
kinase (MEK); activated MEK then pshosphorylates and activates
MAP kinase (MAPK); activated MAPK phsohorylates and activates
MITF protein on Ser73 (Hemesath et al, 1998) and ribosomal
subunit kinase-1 (Rsk-1); ®nally activated Rsk-1 phoshorylates and
activates MITF protein on Ser409 (Wu et al, 2000).

We recently identi®ed the third endogenous phoshorylation site
of MITF (Takeda et al, 2000). This site, Ser 298, may be
phosphorylated by glycogen synthase kinase 3b (GSK3b), but the
signaling pathway for this phosphorylation remains to be eluci-
dated. Because GSK3b is shown to be inhibited by ribosomal
70 kDa S6 protein kinase (p70S6K.) in vitro (Southerland and
Cohen, 1994), we postulated that p70S6K. might be involved in the
pathway for GSK3b-mediated phosphorylation of MITF. To test
this, rapamycin, a potent inhibitor of p70S6K., was included in
melanocyte culture: consistent with our hypothesis, melanogenesis
was enhanced by rapamycin in a concentration-dependent manner
(unpublished data). As cAMP is shown to inhibit p70S6K. in some
cells (Cass and Meinkoth, 1998), it is conceivable that an increased
level of cAMP results in phosphorylation and activation of MITF
via inhibition of p70S6K. and GSK3b in melanocytes (Fig 2).

It is well established that a-melanocyte stimulating hormone (a-
MSH) activates MSH receptor (MSHR), i.e., melanocortin
receptor 1, which is a G-coupled seven transmembrane domain
receptor; this activation induces melanogenesis. When this receptor
is activated upon ligand binding, G-protein activates adenylate
cyclase, resulting in elevation of cAMP in melanocytes (for review
see Busca and Ballotti, 2000). Histamine is an inducer of
melanogenesis; this cytokine also increases cAMP through inter-
action with H2 receptor, which is also a G-coupled seven
transmembrane domain receptor, and elevates cAMP level in
melanocytes (Yoshida et al, 2000). Thus, MSH and histamine may
regulate MITF protein by phoshorylation on Ser73, Ser298, and
Ser 409.

MITF IN COCHLEAR DEVELOPMENT

In situ hybridization study of mouse embryo revealed that Mitf-
positive cells appeared in cephalic neural crest on E~10, and then
migrated to a location between the otic vesicle and neuroepitheliun
of the hindbrain on E~10.5 (Nakayama et al, 1998). Subsequently,
these cells increased in number and became intimately associated

Figure 1. Extended the ``two cell model'' for generation of
endocochlear potential. In this model, K+ channels in the
intermediate cells and speculative K+ channels in the basal cell are
the major source of endocochlear potential. minK, slowly activating K+

channel; KIR, inward recti®er K+ channel; Kv, deploarization-activated
K+ channel; b, basal cell; e, endothelial cell and pericyte of capillary; f,
®brocyte; i, intermediate cell; m, marginal cell; tj, tight junction.
Adapted from Takeuchi and Ando, 1998 with permission.
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with the otic vesicle. On E16.5, they were concentrated in an area
of future stria vascularis. Later, the Mitf signal in the stria vascularis
was less intense ± and at birth was undetectable ± whereas Mitf in
the hair follicles was expressed after birth.

We previously examine microphthalmic and deaf white trans-
genic mice by insertional mutation and proposed them as a mouse
model for WS2. We found that these phenotypes are caused by a
lack of melanocyte in eye, skin, and cochlea (Tachibana et al, 1992).
Stria vascularis of these mice was thin due to a lack of intermediate
cells and showed severe degeneration with endolymphatic space
collapsed. Sensory hair cells degenerated and response to sound was
lost. Mitf is grossly mutated in these mice (Hodgkinson et al, 1993),
and cochlea of deaf WS2 syndrome individuals shows a similar
pathologic ®nding (Nakashima et al, 1992).

These observations indicate that MITF/Mitf is essential for the
development and maturation of the cochlea, dependent on normal
development of stria vascularis. Thus, the growth factor signaling
pathways targeting MITF/Mitf are also involved in hearing
function.
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