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a b s t r a c t

The paper studies fast and efficient solution algorithms for n× n symmetric ill conditioned
Toeplitz systems Tn(f )x = b where the generating function f is known a priori, real valued,
nonnegative, and has isolated roots of even order. The preconditioner that we propose is
a product of a band Toeplitz matrix and matrices that belong to a certain trigonometric
algebra. The basic idea behind the proposed scheme is to combine the advantages of all
components of the product that are well known when every component is used as a
stand-alone preconditioner. As a result we obtain a flexible preconditioner which can be
applied to the system Tn(f )x = b infusing superlinear convergence to the PCG method.
The important feature of the proposed technique is that it can be extended to cover the
2D case, i.e. ill-conditioned block Toeplitz matrices with Toeplitz blocks. We performmany
numerical experiments, whose results confirm the theoretical analysis and effectiveness of
the proposed strategy.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we introduce and analyze a new approach for the solution, by means of the Preconditioned Conjugate
Gradient (PCG) method, of ill conditioned linear systems Tx = b where T = Tn(f ) is a Toeplitz matrix. A matrix is called
Toeplitz matrix if its (i, j) entry depends only on the difference i − j of the subscripts, i.e. ti,j = ti−j. The function f (x) whose
Fourier coefficients give the diagonals of Tn(f ) i.e.

Tj,k = tj−k =
1
2π

∫ π

−π
f (x)e−i(j−k)xdx, 1 ≤ j, k < n,

is called the generating function of Tn(f ) and in the rest of the paper we will assume that it is a priori known.
Such kind of matrices arise in a wide variety of fields of pure and applied mathematics such as signal theory, image

processing, probability theory, harmonic analysis, control theory etc. Therefore, a fast and effective solver is not only
welcome but in fact necessary.

Several direct methods for solving Toeplitz systems have been proposed; the most efficient algorithms are called
“superfast” and require O(n log2 n) operations to compute the solution. The stability properties of these methods are
discussed in [6]. Their main disadvantage is that in 2D they cannot exploit efficiently the block Toeplitz structure, and as a
consequence they require an order of nm2 log nm arithmetic operations, which is very far from optimum.
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We focus on the case where the generating function f is real-valued continuous 2π-periodic and defined on I = [−π,π],
thus the associated Toeplitz matrix is Hermitian.

In the case where f is a positive function, the matrix becomes well-conditioned Hermitian and positive definite. In
addition, if f is also an even function, thematrix becomeswell-conditioned symmetric andpositive definite (spd). In this case,
preconditioners belonging to some trigonometric matrix algebras have been proposed to achieve superlinear convergence
of the PCG method. Circulant preconditioners have been proposed by Strang [24], by Chan [7] and by Chan and Yeung [11]
for well conditioned spd systems. τ preconditioners have been proposed for the same systems by Bini and Di Benedeto [2]
and by Di Benedeto [13]. To cover the well conditioned Hermitian positive definite case, Hartley prconditioners have been
proposed by Bini and Favati [3] and by Jin [16].

It is well known that preconditioners from any trigonometric matrix algebra cannot support superlinear convergence
[17,18], when f has roots. Moreover, there are cases where the corresponding matrices are singular, as e.g., in the case
where f is a nonnegative function having roots of even order and the preconditioner is a circulant matrix of Strang type. In
this specific case, the system becomes an ill conditioned symmetric positive definite one. Problems with suchmatrices arise
in a variety of applications: signal and image processing, tomography, harmonic analysis and partial differential equations.

Band Toeplitz preconditioners are ideal in this case of ill conditioned systems. They succeed in making the condition
number of the preconditioned system independent of the dimension n. First, Chan [8] proposed a band Toeplitz
preconditioner generated by a trigonometric polynomial g that matches the roots of f . Chan and Tang [10] extended the
preconditioner to the ones based on certain approximation of f . Finally, Serra Capizzano [22] proposed a band Toeplitz
preconditioner based on trigonometric polynomial g that matches the roots and on the best trigonometric Chebyshev
approximation of the remaining positive part f

g
.

Preconditioners based on τ algebra have studied byDi Benedeto, Fiorentino and Serra Capizzano [14], by Di Benedeto [12]
and by Serra Capizzano [23], while ω-circulant preconditioners have been proposed by Potts and Steidl [21] and by Chan
and Ching [9].

Finally, a preconditioner of mixed type, being a product of band Toeplitz matrices and inverses of band Toeplitz matrices,
based on the best rational approximation of the remaining positive part, has been studied and proposed by the authors
in [19].

In this paper, we propose and study a preconditioner defined as a product of the band Toeplitz matrix generated by g
and matrices that belong to any trigonometric algebra and correspond to an approximation of the positive part. The idea
underlining our scheme is to combine the well known advantages that each of the components of the product presents
when it is used as a stand-alone preconditioner. As a result, we obtain a flexible preconditioner that can be applied to the
system Tn(f )x = b infusing superlinear convergence to the PCGmethod. Convergence theory of the proposed preconditioner
is developed and an alternating technique is proposed in cases where convergence is not achieved. Finally, we compare our
method with the known techniques.

The paper is organized as follows. In Section 2 we introduce the basic idea for the construction of our preconditioners
and study their computational cost. In Section 3 we develop the convergence theory in both cases of using band plus τ
preconditioners and band plus circulant ones. For both cases, in Section 4 we propose and study an alternating smoothing
technique,where the convergence properties studied in Section 3 do not hold. Section 5 is devoted to applications, numerical
experiments and concluding remarks.

2. Band plus Algebra preconditioners

Let f ∈ C2π be a 2π-periodic nonnegative function with roots x0, x1, . . . , xl of multiplicities 2k1, 2k2, . . . , 2kl respectively,
with k1 + k2 + · · · + kl = k. Then f can be written as a product g · w where

g(x) =

l∏
i=1

(2 − 2 cos(x − xi))
ki (2.1)

and with w(x) > 0 for every x ∈ [−π,π].
We define as a preconditioner for the system

Tn(f )x = b, (2.2)

the product of matrices

KA
n (f ) = An(

√
w)Tn(g)An(

√
w) = An(h)Tn(g)An(h) (2.3)

with An ∈ {τ,C,H}, where {τ,C,H} is the set of matrices belonging to τ, Circulant and Hartley algebra, respectively. We
have put, for simplicity, h =

√
w.

It is obvious from the construction of K, that it fulfils the fundamental properties that each preconditioner must have, i.e
the positive definiteness and symmetry (Hermitian).

Although the idea of using as preconditioners for the system (2.2) a product of band Toeplitz matrices with τ, circulant or
Hartley ones is not new (see e.g [9] or [23]), what we propose is more general and flexible in the sense that it can use as An

any matrix belonging to {τ,C,H}, can treat both symmetric and Hermitian systems ([23]), and can be efficiently extended
to the 2D case.
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2.1. Construction of the preconditioner-Computation cost

For the band Toeplitz matrix Tn(g) things are straightforward. To construct An(h) we use the relation

An(h) = Qn · Diag (h(un)) · QH
n ,

where the entries of the vector un are un
i =

2π(i−1)
n

, i = 1(1)n and Qn is the Fourier matrix Fn for the circulant case or the
matrix Re(Fn) + Im(Fn) for the Hartley case. For the τ case, we have un

i =
πi

(n+1) , i = 1(1)n and Qn =

√
2

n+1 [sin(jun
i )]

n
i,j=1.

The evaluation of the function h at the points un requires the evaluation of the function w and the computation of real
square roots, which can be done by a fast and simple algorithm based on “Newton’s Method” and is of O(n) ops. In any case,
the above procedure does not incur in the total asymptotic complexity of the method as it is implemented once per every n.
The computation Q ·v is performed via Fast Fourier Transforms (or Fast Sine Transforms in the τ case) and requires O(n log n)
ops. Finally, the ‘inversion’ of Tn(g) can be done inO(n log p+p log2 p log n

p
) ops, where p is its bandwidth, using the algorithm

proposed in [4] or even better in O(n) using the multigrid technique proposed in [15]. So, the total optimal cost of O(n log n)
is preserved per each iteration of PCG.

3. Convergence Theory

3.1. Convergence of the method: τ case

We start with the case where An ∈ τ. We will show that the main mass of the eigenvalues of the preconditioned matrix

(τn(h)Tn(g)τn(h))
−1Tn(f ) (3.1)

is clustered around unity. Before we give the main results for this case, we report a useful lemma.

Lemma 3.1. Let w ∈ C2π be a positive and even function. Then, for any positive ε, there exist N and M > 0 such that for every
n > N, at most M eigenvalues of the matrix Tn(w) − τn(w) have absolute value greater than ε.

Proof. See [23], Theorem 2.1. �

Theorem 3.2. Let Tn(f ) be the Toeplitz matrix produced by a nonnegative function f in C2π which can be written as f = g · w,
where g the trigonometric polynomial of order k as it given by (2.1) and w = h2 is a strictly positive even function belonging to
C2π. Then, for every ε > 0 there exist N and M̂ > 0 such that for every n > N, at most M̂ eigenvalues of the preconditioned matrix
(3.1) lie outside the interval (1 − ε, 1 + ε).

Proof. We begin with the observation that thematrix Tn(f ) can be written (see [5]) as Tn(g)Tn(w)+L1, where L1 is a low rank
matrix. Taking into account the specific form of L1, which contains only nonzero columns at the first and last k columns, we
obtain that rank(L1) = rank(LT1) = 2k and rank(L1 + LT1) = 4k. From the close relationship between τ matrices and band
Toeplitz matrices, we have that

Tn(f ) =
1
2
(Tn(g)Tn(w) + L1) +

1
2
(Tn(w)Tn(g) + LT1)

=
1
2
((τn(g) + L2)Tn(w) + L1) +

1
2
(Tn(w)(τn(g) + L2) + LT1)

=
1
2
τn(g)Tn(w) +

1
2
τn(g)Tn(w) + L3,

where L2 and L3 are low rank symmetric matrices. More specifically, as L2 has nonzero elements only at the upper left and
lower right corner, the factor L2Tn(ω)+ Tn(ω)L2 has nonzero entries only in the k− 1 first and last rows and columns, i.e it is
a border matrix. So, the rank of the matrix L3 is at most 4k. To study the spectrum of the preconditioned matrix Kτ

n(f )
−1Tn(f )

with Kτ
n(f )

−1 as in (2.3), we consider the symmetric form of it T̂n = Tn(g)
−

1
2 τn(h)−1Tn(f )τn(h)−1Tn(g)

−
1
2 , which is similar to

the first one. So

T̂n = Tn(g)
−

1
2 τn(h)

−1Tn(f )τn(h)
−1Tn(g)

−
1
2

=
1
2
Tn(g)

−
1
2 τn(h)

−1 (τn(g)Tn(w) + Tn(w)τn(g) + L3) τn(h)
−1Tn(g)

−
1
2

=
1
2
Tn(g)

−
1
2 τn(g)τn(h)

−1Tn(w)τn(h)
−1Tn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 τn(h)

−1Tn(w)τn(h)
−1τn(g)Tn(g)

−
1
2 + L4

=
1
2
Tn(g)

−
1
2 (Tn(g) − L2)τn(h)

−1Tn(w)τn(h)
−1Tn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 τn(h)

−1Tn(w)τn(h)
−1(Tn(g) − L2)Tn(g)

−
1
2 + L4

=
1
2
Tn(g)

1
2 τn(h)

−1Tn(w)τn(h)
−1Tn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 τn(h)

−1Tn(w)τn(h)
−1Tn(g)

1
2 + L5,
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where L3, L4 and L5 are dense symmetric matrices of low rank, with rank(L4) = rank(L3) and therefore the rank of L5 is at
most 8k − 4 (the rank of L4 plus twice the rank of L2).

From Lemma 3.1 we obtain that for the choice of εh > 0, there exist a low rank (of constant rank) matrix L6 and a matrix
E of small norm (‖E‖2 ≤ εh), such that

τn(h)
−1Tn(w)τn(h)

−1
= I + E + L6, (3.2)

where I is the n-dimensional identity matrix. Hence

T̂n =
1
2
Tn(g)

1
2 (I + E + L6)Tn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 (I + E + L6)Tn(g)

1
2 + L5

= I +
1
2
Tn(g)

1
2 ETn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 ETn(g)

1
2 + L,

where L is a symmetric low rank matrix with its rank being no greater than the sum of the rank of L5 and the double of the
one L6.

The proof of themain issue that T̂n has a clustering at one, is reduced to the proof that for every ε > 0, there exists εh > 0,
with ‖E‖2 ≤ εh, such that all the eigenvalues of the matrix

Ân =
1
2
Tn(g)

1
2 ETn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 ETn(g)

1
2

belong in the interval (−ε, ε). Equivalently, since Ân is symmetric, we have to prove that both matrices εI + Ân and εI − Ân

are positive definite matrices.
First, we prove that εI + Ân is positive definite. This is equivalent to proving that

Tn(g)
1
2 (εI + Ân)Tn(g)

1
2 = εTn(g) +

1
2
Tn(g)E +

1
2
ETn(g)

is a positive definite matrix. For this, we consider a normalized vector x ∈ Rn, (‖x‖2 = 1) and take the Rayleigh quotient

r = εxTTn(g)x +
1
2
xTTn(g)Ex +

1
2
xTETn(g)x = εxTTn(g)x + xTTn(g)Ex.

The norm of the vector y = Ex is given by

ε̂ = ‖y‖2 = ‖Ex‖2 ≤ ‖E‖2‖x‖2 ≤ εh.

Let z be the normalized vector of y, so y = ε̂z; then the Rayleigh quotient takes the form

r = εxTTn(g)x + ε̂xTTn(g)z. (3.3)

The second term of (3.3) takes the minimum value for z being the normalized vector of −Tn(g)x. So,

r ≥ εxTTn(g)x − ε̂
xTTn(g)2x

‖Tn(g)x‖2
≥ ε‖Tn(g)

1
2 x‖2 − εh

‖Tn(g)x‖
2
2

‖Tn(g)x‖2

= ε‖Tn(g)
1
2 x‖2 − εh‖Tn(g)x‖2 ≥ ε‖Tn(g)

1
2 x‖2 − εh‖Tn(g)

1
2 ‖2‖Tn(g)

1
2 x‖2

=

(
ε − εh‖Tn(g)

1
2 ‖2

)
‖Tn(g)

1
2 x‖2.

Since the operator T(g) is bounded, we can choose the value of εh to be such that

ε > εh‖Tn(g)
1
2 ‖2, (3.4)

so that the Rayleigh quotient r will be positive since ‖x‖2 = 1. This holds true for every choice of x, so the matrix εI + Ân is a
positive definite matrix.

To prove that the second matrix εI − Ân is positive definite we follow exactly the same argumentation and we end up
with

r = εxTTn(g)x − ε̂xTTn(g)z.

in the place of (3.3). Then, the second term takes its maximum value for z being the normalized vector of Tn(g)x. After that,
the proof follows the same step and the same conclusion is deduced. �

Wewill prove now the important feature that our preconditioner fulfils and leads to superlinear convergence of PCG. The
clustering of the eigenvalues around 1 has been proven in Theorem 3.2. So, we have to prove that the outliers are uniformly
far away from zero and from infinity. For this we will study Rayleigh quotients of the preconditioned matrix:

λmin(K
τ
n
−1Tn(f )) = inf

x∈Rn

xTKτ
n(f )

−
1
2 Tn(f )Kτ

n(f )
−

1
2 x

xTx
= inf

x∈Rn

xTTn(f )x

xTKτ
n(f )x

(3.5)
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and

λmax(K
τ
n
−1Tn(f )) = sup

x∈Rn

xTKτ
n(f )

−
1
2 Tn(f )Kτ

n(f )
−

1
2 x

xTx
= sup

x∈Rn

xTTn(f )x

xTKτ
n(f )x

.

Thus, we have to study the range of the Rayleigh quotient

xTTn(f )x

xTKτ
n(f )x

=
xTTn(f )x

xTτn(h)Tn(g)τn(h)x
=

xTTn(f )x

xTTn(g)x
·

xTTn(g)x

xTτn(h)Tn(g)τn(h)x
.

It is well known that the range of the first Rayleigh quotient is contained in the range of the functionw =
f
g
which is positive

and far from zero and infinity. Therefore, we have to prove that

lim inf
n→∞

inf
x∈Rn

xTTn(g)x

xTτn(h)Tn(g)τn(h)x
> 0,

lim sup
n→∞

sup
x∈Rn

xTTn(g)x

xTτn(h)Tn(g)τn(h)x
< ∞.

(3.6)

We will prove only the first inequality of (3.6). The proof of the second one is similar. This is obtained from the observations
that

lim sup
n→∞

sup
x∈Rn

xTTn(g)x

xTτn(h)Tn(g)τn(h)x
= ∞ ⇔ lim inf

n→∞
inf
x∈Rn

xTτn(h)Tn(g)τn(h)x

xTTn(g)x
= 0

and

lim inf
n→∞

inf
x∈Rn

xTτn(h)Tn(g)τn(h)x

xTTn(g)x
= lim inf

n→∞
inf
x∈Rn

xTTn(g)x

xTτn(h−1)Tn(g)τn(h−1)x
.

So, the proof of the second inequality of (3.6) is equivalent to the proof of the first one with the function h−1 in the place of
h.

By inverting the ratio of the first inequality of (3.6) it is equivalent to proving that

lim sup
n→∞

sup
x∈Rn

xTτn(h)Tn(g)τn(h)x

xTTn(g)x
< ∞, (3.7)

so, we have to study the ratio

rx =
xTτn(h)Tn(g)τn(h)x

xTTn(g)x
. (3.8)

It is well known that the band Toeplitz matrix Tn(g) is written as a τ plus a Hankel matrix

Tn(g) = τn(g) + Hn(g), (3.9)

where Hn(g) is the Hankel matrix of rank 2(k − 1) of the form

Hn(g) = En(g) + En(g)
R, (3.10)

with

En(g) = Hankel(g2, g3, . . . , gk, 0, . . . , 0) (3.11)

and En(g)R is obtained from thematrix En(g) by taking all its rows and columns in reverse order. The entries gi are the Fourier
coefficients of the trigonometric polynomial g (g(x) = g0 + 2g1 cos(x) + 2g2 cos(2x) + · · · + 2gk cos(kx)). In the special case
where the root is 0 of multiplicity 2k, we have that gi =

(
2k

k − i

)
. It is obvious that for k = 1, Hn(g) = 0, which means that Tn(g)

(the Laplace matrix) is a τ matrix and the problem is solved. In the case where k = 2, we have that Hn(g) is a semi-positive
definite matrix of rank 2 with just ones in the positions (1, 1) and (n, n) and zeros elsewhere. In the case k > 2, the matrix
Hn(g) becomes indefinite. We denote by ∆ the (k− 1) × (k− 1) matrix formed by the first k− 1 rows and columns of En(g):

∆ =


g2 g3 · · · gk

g3 . .
.

0
... . .

. ...
gk 0 · · · 0

 (3.12)

and by ∆R, the matrix obtained from ∆ by taking all its rows and columns in reverse order. For an n-dimensional vector x
we denote by x(m) and by x(m) the m-dimensional vectors formed from the first and last m entries of x, respectively.
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Recalling ratio (3.8), we get

rx =
xTτn(h)Tn(g)τn(h)x

xTTn(g)x
=

xTτn(h)τn(g)τn(h)x + xTτn(h)Hn(g)τn(h)x

xTτn(g)x + xTHn(g)x

=
xTτn(h2g)x + xTτn(h)Hn(g)τn(h)x

xTτn(g)x + x(k−1)T∆x(k−1)
+ x(k−1)T∆Rx(k−1)

. (3.13)

Lemma 3.3. Let x be a normalized n-dimensional vector (‖x‖2 = 1) and the sequence of the vectors x(k−1) be bounded,
i.e. 0 < c ≤ ‖x(k−1)

‖2 ≤ 1 for all n or the sequence of the vectors x(k−1) is bounded i.e. 0 < c ≤ ‖x(k−1)
‖2 ≤ 1 for all n,

with c being constant independent of n; then the ratio rx is bounded.

Proof. The assumption 0 < c ≤ ‖x(k−1)
‖2 ≤ 1 or 0 < c ≤ ‖x(k−1)

‖2 ≤ 1 means that ‖x(k−1)
‖2 = O(1)

⋂
Ω(1) or

‖x(k−1)
‖2 = O(1)

⋂
Ω(1), respectively. Without loss of generality, we suppose that ‖x(k−1)

‖2 = O(1)
⋂

Ω(1). The proof for
the casewhere ‖x(k−1)

‖2 = O(1)
⋂

Ω(1) being the same. It is easily proved that there is a constant integerm independent of n
such that ‖x(m)

‖2 = O(1)
⋂

Ω(1) and ‖y(k)
‖2 = o(1), where y(k) is the k-dimensional vector of the entries of x followed by the

vector x(m). This is true since otherwise, there would be an infinitely large integer m, depending on n, such that every block
of size k of the vector x(m) would have constant norm independent of n. The latter is a contradiction, since then ‖x(m)

‖2 → ∞.
Since both the numerator and the denominator of the ratio in (3.8) are bounded from above, to prove that this ratio is
bounded is equivalent to proving that the denominator xTTn(g)x is bounded from below far from zero for x of unit Euclidean
norm. For this, we write the matrix Tn(g) and the vector x in the following block form:

Tn(g) =

 Tm(g) G 0
GT

0
Tn−m(g)

 , x =

 x(m)

y(k)

z

 ,

where G is anm× k Toeplitz matrix with nonzero entries only in the k diagonals in the left bottom corner. We take now the
denominator:

xTTn(g)x = (x(m)T
|y(k)T

|zT)

 Tm(g) G 0
GT

0
Tn−m(g)


 x(m)

y(k)

z


= x(m)TTm(g)x(m)

+ 2x(m)TGy(k)
+ (y(k)T

|zT)Tn−m(g)

(
y(k)

z

)
. (3.14)

Since Tm(g) and Tn−m(g) are positive definite matrices, the first and the third terms in the sum of (3.14) are both positive
numbers. The minimum value of the first term depends only onm, which is constant, and is of order 1

m2k independently of n,
and far from zero. The third term depends on n and may take small values near zero. The second term is the only one which
may take negative values, but

|2x(m)TGy(k)
| = 2‖x(m)TGy(k)

‖2 ≤ 2‖x(m)
‖2‖G‖2‖y

(k)
‖2 = o(1),

since ‖y(k)
‖2 = o(1), and the other norms are constants. As a consequence, the first term is absolutely greater in order of

magnitude than the second one,which characterizes the bounded behavior of all the sum, and our assertion has been proven.
�

It remains to study the quantity rx for vector sequences x such that

‖x(m)
‖2 = o(1) and ‖x(m)

‖2 = o(1) (3.15)

for each constantm independent of n. First, wewrite the vector x as a convex combination of the eigenvectors vis of τ algebra,
with entries (vi)j =

√
2

n+1 sin( πij
n+1 ):

x =

n∑
i=1

civi,
n∑

i=1
|ci|

2
= 1. (3.16)

We denote by D the denominator and by N the numerator of the ratio rx of (3.13). So the denominator is given by

D =

n∑
i=1

civ
T
i τn(g)

n∑
i=1

civi +
n∑

i=1
civ

T
i Hn(g)

n∑
i=1

civi

=

n∑
i=1

c2i gi +
n∑

i=1
civ

T
i Hn(g)

n∑
i=1

civi

=

n∑
i=1

c2i gi +
n∑

i=1
civ

T
i ∆

n∑
i=1

civi +
n∑

i=1
civ

T
i ∆

R
n∑

i=1
civi, (3.17)
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while the numerator is given by

N =

n∑
i=1

civ
T
i τn(h

2g)
n∑

i=1
civi +

n∑
i=1

civ
T
i τn(h)Hn(g)τn(h)

n∑
i=1

civi

=

n∑
i=1

c2i h
2
i gi +

n∑
i=1

cihiv
T
i Hn(g)

n∑
i=1

cihivi

=

n∑
i=1

c2i h
2
i gi +

n∑
i=1

cihiv
T
i ∆

n∑
i=1

cihivi +
n∑

i=1
cihiv

T
i ∆

R
n∑

i=1
cihivi, (3.18)

where hi = h( πi
n+1 ) > hmin > 0 and gi = g( πi

n+1 ) = (2 − 2 cos( πi
n+1 ))

k
= (2 sin( πi

2(n+1) ))
2k. For simplicity, we have put vi and

vi instead of v(k−1)
i and v(k−1)

i , respectively. The first sum in both numerator and denominator is positive and we call it the
τ-term, since it corresponds to the Rayleigh quotient of a τ matrix. We call the other two terms, corresponding to the low
rank correction matrices ∆ and ∆R, correction terms. The correction terms may take negative values. It is obvious that the
τ-terms of the numerator and the denominator coincide with each other in order of magnitude for all the choices of the
vector x, since

n∑
i=1

c2i h
2
i gi = ĥ2

n∑
i=1

c2i gi, 0 < hmin ≤ ĥ ≤ hmax < ∞.

So, if the τ-terms are greater, in order of magnitude, than the associated correction terms, then rx is bounded. The only
case where rx tends to infinity is that where the correction terms in the numerator exceed, in order of magnitude, either
the associated τ-term and/or that of the denominator. We will try to find such cases by comparing the τ-terms with the
correction terms. Since the correction termcorresponding to∆R behaves exactly as the one corresponding to∆, for simplicity
we will compare only the τ-terms with the correction terms corresponding to ∆. In other words, we consider that |xT∆x| is
greater than or equal to |xT∆Rx|, in order of magnitude. Given {Nn}with Nn = {1, 2, . . . , n}, we define the sequence of subsets
{Sn} such that

(1) Sn ⊂ Nn∀n

(2) ∀in sequence to which ik ∈ Sk we have lim
n→∞

in
n

= 0 (in = o(n)).
(3.19)

Accordingly the complementary sequence of subsets, {Qn} is defined as

Qn = Nn \ Sn. (3.20)

It is obvious that the border of the above subsets Sn and Qn is not clear, but this does not present any problem in the analysis
that follows. However, we have to be careful to take only sequences belonging to o(n) when dealing with {Sn}. We write the
vector x as the sum x = xS + xQ where

xS =
∑
i∈Sn

civi, xQ =
∑
i∈Qn

civi. (3.21)

We denote also by xS =
∑

i∈Sn civi, xS =
∑

i∈Sn civi, xQ =
∑

i∈Qn
civi and xQ =

∑
i∈Qn

civi. In other words we separate
the eigenvectors into those that correspond to “small” eigenvalues (o(1)) and those that correspond to “large” ones
(O(1)

⋂
Ω(1)).

We consider the sequences

{qn}n =

{∑
i∈Qn

c2i

}
n

and {sn}n =

{∑
i∈Sn

c2i

}
n

. (3.22)

Lemma 3.4. Let x be such that ‖x(k−1)
‖2 = o(1) and ‖x(k−1)

‖2 = o(1) and the sequence {qn}n of (3.22) is bounded, i.e. 0 < c ≤

qn ≤ 1; then the ratio rx is bounded.

Proof. In this case, we have

xTτn(g)x = xTSτn(g)xS + xTQτn(g)xQ =
∑
i∈Sn

c2i gi +
∑
i∈Qn

c2i gi ∼ c > 0,

since the eigenvalues of the second sum are bounded from below. On the other hand, we have

|x(k−1)T∆x(k−1)
| ≤ ‖∆‖2‖x

(k−1)
‖
2
2 = o(1),

since ‖x(k−1)
‖2 = o(1). We get the same conclusion for the term |x(k−1)T∆x(k−1)

|. So, the τ-term is the dominant term which
is bounded from below. Since the numerator is bounded from above, rx is bounded. �
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Lemma 3.5. Let x be such that ‖x(k−1)
‖2 = o(1) and ‖x(k−1)

‖2 = o(1) and for the sequences {sn}n and {qn}n of (3.22) it holds that
limn→∞ sn = 1, limn→∞ qn = 0 with ‖xS‖2 = o

(
(qn)

1
2
)
; then the ratio rx is bounded.

Proof. We suppose that the sequence {qn}n tends to zero monotonically, since otherwise it can be split into monotonic
subsequences.

The τ-term gives:

xTτn(g)x =
∑
i∈Sn

c2i gi +
∑
i∈Qn

c2i gi, (3.23)

while the correction term gives:

xT∆x = (xS + xQ)
T∆(xS + xQ) = xTS∆xS + 2xTS∆xQ + xTQ∆xQ . (3.24)

For the vector xQ we have

‖xQ‖2 =

∥∥∥∥∥∑
i∈Qn

civi

∥∥∥∥∥
2

≤
∑
i∈Qn

|ci|‖vi‖2 ≤

(∑
i∈Qn

c2i

) 1
2
(∑

i∈Qn

‖vi‖
2
2

) 1
2

∼ (qn)
1
2 ,

since ‖vi‖
2
2 ∼

1
n
, for all i ∈ Nn and the cardinality of Qn is n − o(n) ∼ n. So, ‖xQ‖2 = O

(
(qn)

1
2
)
. Let ‖xQ‖2 = o

(
(qn)

1
2
)
, then

|xTQ∆xQ | ≤ ‖∆‖2‖xQ‖
2
2 = o(qn), which means that the second sum of (3.23) exceeds the last one of (3.24), so,

xTQTn(g)xQ =
∑
i∈Qn

c2i gi + xTQ∆xQ + xTQ∆RxQ ∼ qn. (3.25)

In the case where ‖xQ‖2 ∼ (qn)
1
2 , we consider the quantity xTQTn(g)xQ and normalize the vector xQ to the vector x̂Q by

multiplying by a number of order (qn)
−

1
2 , such that ‖x̂Q‖2 = 1. If we consider the vector x̂Q in the place of x, whichmeans that

there are no vectors of indices belonging to Sn in the convex combination, we get that
∑

i∈Qn
c2i = 1 for the new coefficients

cis. Since ‖xQ‖2 ∼ (qn)
1
2 , we obtain that ‖x̂Q‖2 ∼ c > 0. From Lemma 3.3, by replacing x̂Q in the place of x, we obtain that

x̂TQTn(g)x̂Q is bounded from below. If we come back to the quantity xTQTn(g)xQ by dividing the vector x̂Q by the same number,
we obtain the validity of (3.25). For the estimation of the associated term xTQτn(h)TTn(g)τ(h)xQ of the numerator, we follow
exactly the same steps in the proof by considering the vector τn(h)x in the place of x. So, we obtain

xTQτn(h)
TTn(g)τn(h)xQ ∼ xTQTn(g)xQ ∼ qn. (3.26)

Under the last assumption,‖xS‖2 = o
(
(qn)

1
2
)
, the remaining terms of (3.24) xTS∆xS and 2xTS∆xQ are both absolutely smaller

than qn in order of magnitude. Exactly the same happens with the corresponding terms of the numerator. So, the order of
the denominator of rx is just the order of

∑
i∈Sn c

2
i gi if it exceeds qn or qn otherwise, while the one of the numerator is just

the order of
∑

i∈Sn c
2
i h

2
i gi if it exceeds qn or qn otherwise. In any case, the numerator and the denominator coincide with each

other, meaning that rx is bounded. �

A useful definition is given here.

Definition 3.6. A positive and even function h ∈ C2π is said to be an (m,ρ)-smooth function if it is anm times differentiable
function in an open region of the point ρ ∈ (−π,π) with h(j)(ρ) = 0, j = 1(1)m − 1 and h(m)(ρ) being bounded.

Lemma 3.7. Let x be such that ‖x(k−1)
‖2 = o(1) and ‖x(k−1)

‖2 = o(1) and for the sequences {sn}n and {qn}n of (3.22) it holds
that limn→∞ sn = 1, limn→∞ qn = 0 with ‖xS‖2 = Ω

(
(qn)

1
2
)
. Let also that h is a (k − 1, 0)-smooth function. Then, the ratio rx is

bounded.

Proof. The proof follows exactly the same steps of Lemma 3.5 to obtain the same results until (3.26). In the sequel, we use
the assumption that the function h is a (k − 1, 0)-smooth function. By taking the Taylor expansion of his about the point
zero, we find

hi = h
(

iπ

n + 1

)
= h0 +

(
iπ

n+1

)k−1

(k − 1)!
h(k−1)(ξi), ξi ∈

(
0,

iπ

n + 1

)
. (3.27)

Thus, the vector corresponding to xS in the numerator is given by

∑
i∈Sn

hicivi =
∑
i∈Sn

h0 +

(
iπ

n+1

)k−1

(k − 1)!
h(k−1)(ξi)

 civi = h0xS +
∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi,
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where ηi =
h(k−1)(ξi)
(k−1)! , i ∈ Sn, bounded. The correction termof the numerator corresponding to∆, is Z =

∑n
i=1 hiciv

T
i ∆

∑n
i=1 hicivi

which takes the form

Z =
∑
i∈Sn

hiciv
T
i ∆

∑
i∈Sn

hicivi + 2
∑
i∈Sn

hiciv
T
i ∆

∑
i∈Qn

hicivi +
∑
i∈Qn

hiciv
T
i ∆

∑
i∈Qn

hicivi = Z1 + 2Z2 + Z3. (3.28)

We have proven that the third term Z3 coincides with qn. The first term gives

Z1 =

(
h0x

T
S +

∑
i∈Sn

(
iπ

n + 1

)k−1
ηiciv

T
i

)
∆

(
h0x

T
S +

∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi

)

= h20x
T
S∆xS + 2h0xTS∆

∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi +

∑
i∈Sn

(
iπ

n + 1

)k−1
ηiciv

T
i ∆

∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi, (3.29)

while the second one gives

Z2 =

(
h0x

T
S +

∑
i∈Sn

(
iπ

n + 1

)k−1
ηiciv

T
i

)
∆
∑
i∈Qn

hicivi

= h0x
T
S∆

∑
i∈Qn

hicivi +
∑
i∈Sn

(
iπ

n + 1

)k−1
ηiciv

T
i ∆

∑
i∈Qn

hicivi. (3.30)

First we will estimate the quantity q = ‖
∑

i∈Sn

(
iπ

n+1

)k−1
ηicivi‖2. From i ∈ Sn and the fact that vi =

(√
2

n+1 sin
(

ijπ
n+1

))k−1

j=1
, we

get that ‖vi‖2 ∼
i

n
3
2
. So,

q ≤
∑
i∈Sn

|ηi||ci|
(

iπ

n + 1

)k−1
‖vi‖2 ∼

η
√
n

∑
i∈Sn

|ci|
(

i

n

)k

≤
η

√
n

(∑
i∈Sn

1
) 1

2
(∑

i∈Sn

c2i

(
i

n

)2k
) 1

2

∼

√
#Sn
n

(∑
i∈Sn

c2i gi

) 1
2

, (3.31)

where η ∈ (mini |ηi|,maxi |ηi|) and #Sn means the cardinality of the set Sn. Since #Sn
n

= o(1), we get that the quantity(∑
i∈Sn c

2
i gi
) 1
2 , which is just the square root of the τ-term, exceeds ‖

∑
i∈Sn

(
iπ

n+1

)k−1
ηicivi‖2 in order of magnitude. Coming

back to the terms Z1 and Z2 of the numerator, we deduce that the order of the first term of Z1 in (3.29) is

|h20x
T
S∆xS| ≤ h20‖xS‖

2
2‖∆‖2 = Ω(qn),

which coincides with xTS∆xS of the denominator in (3.24). On the other hand, we can prove that |xTS∆xS| ∼ ‖xS‖
2
2 by taking

into account the proof of Lemma 2.6 of [18]. In that work, it was proved that

vTi ∆vj =
2 sin2(θ)

n + 1
zij(θ), θ =

π

n + 1
, i, j ∈ Sn

where

lim
θ→0

zij(θ) = ij
(
2k − 4
k − 2

)
.

Finally, we obtain that

xTS∆xS =
2 sin2(θ)

n + 1
∑
i∈Sn

∑
j∈Sn

cicjzij(θ) =
2 sin2(θ)

n + 1
z(θ),

where

lim
θ→0

z(θ) =

(
2k − 4
k − 2

)∑
i∈Sn

∑
j∈Sn

icijcj =

(
2k − 4
k − 2

)(∑
i∈Sn

ici

)2

≥ 0.

By applying the same considerations to the quantity ‖xS‖
2
2, after a simple analysis, we have

‖xS‖
2
2 =

2 sin2(θ)

n + 1
y(θ),

where

lim
θ→0

y(θ) =
(k − 1)k(2k − 1)

6

(∑
i∈Sn

ici

)2

≥ 0.
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From the relations above, we conclude that the quantities xTS∆xS and ‖xS‖
2
2 have the same order of magnitude.

The order of the second term of Z1 in (3.29) is∣∣∣∣∣2h0xTS∆∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi

∣∣∣∣∣ ≤ 2h0‖xS‖2‖∆‖2

∥∥∥∥∥∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi

∥∥∥∥∥
2

= ‖xS‖2 × o

(∑
i∈Sn

c2i gi

) 1
2
 .

This term is less than the first one, in order of magnitude, if
∑

i∈Sn c
2
i gi = O

(
‖xS‖

2
2
)
, while it is less than the corresponding

τ-term, in order of magnitude if
∑

i∈Sn c
2
i gi = Ω

(
‖xS‖

2
2
)
. In any case, it does not play a role in the order of magnitude of the

numerator. We arrive at the same conclusion regarding the order of the third term of Z1 in (3.29) which is o
(∑

i∈Sn c
2
i gi
)
.

For the terms of Z2 in (3.30) we first estimate the term
∥∥∑

i∈Qn
hicivi

∥∥
2:∥∥∥∥∥∑

i∈Qn

hicivi

∥∥∥∥∥
2

≤
∑
i∈Qn

hi|ci|‖vi‖2 ≤

(∑
i∈Qn

c2i

) 1
2
(∑

i∈Qn

h2i ‖vi‖
2
2

) 1
2

∼ (qn)
1
2 .

Therefore, the order of the first term of Z2 in (3.30) is given by∣∣∣∣∣h0xTS∆∑
i∈Qn

hicivi

∣∣∣∣∣ ≤ h0‖xS‖2‖∆‖2

∥∥∥∥∥∑
i∈Qn

hicivi

∥∥∥∥∥
2

= ‖xS‖2 × O
(
(qn)

1
2
)
,

which is less, in order of magnitude, than xTS∆xS in the denominator of (3.24). The order of the second term of Z2 in (3.30) is
given by∣∣∣∣∣∑

i∈Sn

(
iπ

n + 1

)k−1
ηicivi∆

∑
i∈Qn

hicivi

∣∣∣∣∣ ≤
∥∥∥∥∥∑
i∈Sn

(
iπ

n + 1

)k−1
ηicivi

∥∥∥∥∥
2

‖∆‖2

∥∥∥∥∥∑
i∈Qn

hicivi

∥∥∥∥∥
2

= o

(∑
i∈Sn

c2i gi

) 1
2
× O

(
(qn)

1
2
)
,

which is less, in order ofmagnitude, than the same term xTS∆xS, if
∑

i∈Sn c
2
i gi = O

(
‖xS‖

2
2
)
, while it is less than the corresponding

τ-term, in order of magnitude, if
∑

i∈Sn c
2
i gi = Ω

(
‖xS‖

2
2
)
, since ‖xS‖2 = Ω

(
(qn)

1
2
)
. �

Theorem 3.8. Let f ∈ C2π be an even function with roots x1, x2, . . . , xl with multiplicities 2k1, 2k2, . . . , 2kl, respectively, g be
the trigonometric polynomial of order k =

∑l
j=1 kj given by (2.1), that rises the roots and w be the remaining positive part of f

(f = g · w). If the function h =
√
w is a (kj − 1, xj)-smooth function for all j = 1(1)l, then the spectrum of the preconditioned

matrix Kτ
n(f )

−1Tn(f ) is bounded from above as well as from below:

c < λmin(K
τ
n(f )

−1Tn(f )) < λmax(K
τ
n(f )

−1Tn(f )) < C,

where c and C are constants independent of the size n.

Proof. For the case of one zero at 0, Lemmata 3.3–3.5 and 3.7 cover all possible choices of the vector x ∈ Rn to obtain that the
Rayleigh quotient rx is bounded. The case of one zero at a point different from 0 is simple, since it can be transformed to zero
by a shift transformation. The generalization to more roots is straightforward. The main difference concerns the definition
of the sets Sn and Qn of (3.19). Under the assumption of l roots x1, x2, . . . , xl, we give the new definition of the above sets as

(1) Sn ⊂ Nn∀n

(2) ∀in sequence to which ik ∈ Sk we have lim
n→∞

in
n

− xj = 0

(in − nxj = o(n)), j = 1, 2, . . . , l.

(3.32)

and

Qn = Nn \ Sn. (3.33)

After that definition, Lemmata 3.3–3.5 and 3.7 work well to yield our result that rx is bounded, which completes the proof
of the Theorem. �

As a subsequent result we have that theminimum eigenvalue of Kτ
n(f )

−1Tn(f ) is bounded far away from zero. Hence, from
the theorem of Axelsson and Lindskog [1], it follows immediately that the PCG method will have superlinear convergence.

We have to remark here that if the smoothing condition of the function h does not hold, the Rayleigh quotient rx may
not be bounded and consequently the PCG method may not have superlinear convergence. The worst case, where we get
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the maximum value of rx, occurs when choosing x = xS. In that case the denominator coincides with 1
n2k

, and so for the
numerator to be of the same order the (k − 1, 0)-smoothness of the function h is necessary. Otherwise, if h is a (k − 2, 0)-
smooth function, which is the best possible choice, we deduce that the numerator coincides with 1

n2k−1 . As a consequence,
rx tends to infinity with a rate coinciding with n.

3.2. Convergence of the method: Circulant case

For circulant matrices, in order to show the clustering of the eigenvalues of the preconditioned matrix sequence

(Cn(h)Tn(g)Cn(h))
−1Tn(f ) (3.34)

around unity, we first remark that although a band Toeplitz matrix and a circulant one do not commute, they very nearly
have the commutativity property, since

rank(Tn(g) · C − C · Tn(g)) ≤ 2k,

where k is the bandwidth of the band matrix and which is obviously independent of the dimension n of the problem. We
will show that themainmass of the eigenvalues of the preconditionedmatrix (3.34) is clustered around unity. Before giving
the main results for this case, we report a useful lemma.

Lemma 3.9. Let w ∈ C2π be a positive and even function. Then, for any positive ε, there exist N and M > 0 such that for every
n > N, at most M eigenvalues of the matrix C−1

n Tn(w) have absolute value greater than ε.

Proof. See [23], Theorem 2.1 (The proof for the circulant case is just the same as the one for τ case). �

Theorem 3.10. Let Tn(f ) be the Toeplitz matrix produced by a nonnegative function f in C2π, which can be written as f = g · w,
where g is the even trigonometric polynomial as is defined in (2.1) and w = h2 is a strictly positive even function belonging to
C2π. Then for every ε > 0, there exist N and M̂ > 0 such that for every n > N, at most M̂ eigenvalues of the preconditioned matrix
(3.34) lie outside the interval (1 − ε, 1 + ε).

Proof. We follow exactly the same steps and the same considerations as in the proof of Theorem 3.2 for the τ case, with the
only difference being that the matrices Cn(g) and Cn(h) replace τn(g) and τn(h), respectively. First, we obtain that

T̂n =
1
2
Tn(g)

1
2 Cn(h)

−1Tn(w)Cn(h)
−1Tn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 Cn(h)

−1Tn(w)Cn(h)
−1Tn(g)

1
2 + L5, (3.35)

with L5 being symmetric and a low rank matrix (of constant rank). It is noted that we have used the same notation T̂n for the
associated symmetric form of the preconditioned matrix.

From Lemma 3.9, we obtain that for the choice of εh > 0 there exist a low rank (of constant rank) matrix L6 and a matrix
E of small norm (‖E‖2 ≤ εh), such that

Cn(h)
−1Tn(w)Cn(h)

−1
= I + E + L6. (3.36)

Consequently, we obtain the relation

T̂n = I +
1
2
Tn(g)

1
2 ETn(g)

−
1
2 +

1
2
Tn(g)

−
1
2 ETn(g)

1
2 + L,

which is nothing but relation (3.3) for the τ case.
After the latter manipulations, the proof follows step by step the one given in Theorem 3.2; the same result is obtained.
�

As in the case of τ matrices, wewill prove the important feature that our preconditioner satisfies and leads to superlinear
convergence of the PCG.

The clustering of the eigenvalues around 1 has been proven in Theorem 3.10. We have to prove now that there does not
exist any eigenvalue, belonging to the outliers, that tends to zero or to infinity. For this, we will study the Rayleigh quotients
of the preconditioned matrix, as in the τ case. It is easily proved that the previous analysis, from relation (3.5) to relation
(3.7), for the τ case, holds also for the circulant case by simply replacing τn(h) by Cn(h).

Therefore, we have to prove that

lim sup
n→∞

sup
x∈Rn

xTCn(h)Tn(g)Cn(h)x

xTTn(g)x
< ∞. (3.37)

For this, we have to study the ratio

rx =
xTCn(h)Tn(g)Cn(h)x

xTTn(g)x
. (3.38)
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It is well known that the band Toeplitz matrix Tn(g) is written as a circulant minus a low rank Toeplitz matrix

Tn(g) = Cn(g) − T̃n(g), (3.39)

where T̃n(g) is a Toeplitz matrix of rank 2k of the form

T̃n(g) = J̃n(g) + J̃n(g)
T

= Toep(0, . . . , 0, gk, gk−1, . . . , g1), (3.40)

where the entries gi are the Fourier coefficients of the trigonometric polynomial g (g(x) = g0 + 2g1 cos(x) + 2g2 cos(2x) +

· · · + 2gk cos(kx)). It is obvious that T̃n(g) is an indefinite matrix, while Cn is a semi positive definite one. We define by ∆ the
k × k matrix formed by the first k rows and the last k columns of J̃n(g):

∆ =


gk · · · g2 g1

0
. . . g2

...
. . .

...
0 · · · 0 gk

 . (3.41)

We use the same notations x(m) and x(m) for the first and the last m-dimensional blocks of the vector x, respectively.
Recalling ratio (3.38), we find

rx =
xTCn(h)Tn(g)Cn(h)x

xTTn(g)x
=

xTCn(h)Cn(g)Cn(h)x − xTCn(h)T̃n(g)Cn(h)x

xTCn(g)x − xT T̃n(g)x

=
xTCn(h2g)x − xTCn(h)T̃n(g)Cn(h)x

xTCn(g)x − x(k)T∆x(k) − x(k)T∆Tx(k)
=

xTCn(h2g)x − xTCn(h)T̃n(g)Cn(h)x

xTCn(g)x − 2x(k)T∆x(k)
. (3.42)

We state here, without proof, a sequence of lemmata analogous to Lemmata 3.3–3.5 and 3.7 and finally, a theorem analogous
to Theorem 3.8. The proofs are given in an similar way as the proofs in the τ case, although specific difficulties appear in
some points. These proofs can be found in the Technical Report [20].

Lemma 3.11. Let x be a normalized n-dimensional vector (‖x‖2 = 1) and suppose the sequence of the vectors x(k) is bounded,
i.e. 0 < c ≤ ‖x(k)

‖2 ≤ 1 for all n or the sequence of the vectors x(k) is bounded i.e. 0 < c ≤ ‖x(k)
‖2 ≤ 1 for all n, with c being

constant independent of n; then the ratio rx in (3.42) is bounded.

Lemma 3.12. Let x be such that ‖x(k)
‖2 = o(1) and ‖x(k)

‖2 = o(1) and the sequence {qn}n is bounded, i.e. 0 < c ≤ qn ≤ 1; then
the ratio rx is bounded.

Lemma 3.13. Let x be such that ‖x(k)
‖2 = o(1) and ‖x(k)

‖2 = o(1) and for the sequences {sn}n and {qn}n it holds that
limn→∞ sn = 1, limn→∞ qn = 0 with ‖xS‖2 = o

(
(qn)

1
2
)
and ‖xS‖2 = o

(
(qn)

1
2
)
; then the ratio rx is bounded.

Lemma 3.14. Let x be such that ‖x(k)
‖2 = o(1) and ‖x(k)

‖2 = o(1) and for the sequences {sn}n and {qn}n it holds that
limn→∞ sn = 1, limn→∞ qn = 0 with ‖xS‖2 = Ω

(
(qn)

1
2
)
or ‖xS‖2 = Ω

(
(qn)

1
2
)
. Suppose also that h is a (k, 0)-smooth function.

Then, the ratio rx is bounded.

Theorem 3.15. Let f ∈ C2π be an even function with roots x0, x1, . . . , xl with multiplicities 2k1, 2k2, . . . , 2kl, respectively, and
let g be the trigonometric polynomial of order k =

∑l
j=1 kj given by (2.1), that rises the roots and w the remaining positive part

of f (f = g · w). If the function h =
√
w is a (kj, xj)-smooth function for all xjs, j = 1(1)l, then the spectrum of the preconditioned

matrix KC
n (f )

−1Tn(f ) is bounded from above as well as from below:

c < λmin(K
C
n (f )

−1Tn(f )) < λmax(K
C
n (f )

−1Tn(f )) < C, (3.43)

where c and C are constants independent of the size n.

As a subsequent result, we have that theminimumeigenvalue of KC
n (f )

−1Tn(f ) is bounded far away from zero. Hence, from
the theorem of Axelsson and Lindskog [1], it follows immediate that the PCG method will have superlinear convergence.

We have to remark here that one order of smoothness more is required for the circulant case than the one required for
the τ case. If the smoothing condition of the function h does not hold, the Rayleigh quotient rx may not be bounded, and
consequently the PCG method may not have superlinear convergence.

Remark 3.1. Following a theory closely related to that just developed, band plus Hartley preconditioners could be applied
for the solution of ill-conditioned Hermitian Toeplitz systems. In this paper, we do not study this case. We simply remark
that a similar analysis could be applied to obtain analogous results for the superlinearity of the convergence. Since Hartley
matrices are closely related to circulant matrices, we believe that (k, 0)-smoothing, for the function h, is needed.
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4. Smoothing technique

Our analysis brings up the following question: Is the condition of smoothing valid for most of the applications? The
answer to this question is not positive. There are problems where the positive part h is smooth enough, but in most of
them we are not guaranteed the required smoothness. In some of the problems the function h is not differentiable at
0, nor continuous. In the following two subsections, we propose a smoothing technique which approximates h with a
(k − 1, 0)-smooth function for the τ case and with a (k, 0)-smooth function for the Circulant case, respectively, in order
to get superlinear convergence.

4.1. Smoothing technique: τ case

Let us assume that the factor h of the generating function f is not a (k − 1, 0)-smooth function. We define the function ĥ
as follows

ĥ(x) =

{
Pk[h](x) if x ∈ (−ε, ε)
h(x) if x ∈ [−π,−ε] ∪ [ε,π],

(4.1)

where ε is a small positive constant and Pk[h] is an even and (k − 1, 0)-smooth function which interpolates h at the points
−ε, 0, ε. It is obvious that we can choose as Pk[h] the function

Pk[h](x) =
h(ε) − h0

εk
|x|k + h0, (4.2)

which is a k degree interpolation polynomial on the interval (0, ε), or the function

Pk[h](x) =
h(ε) − h0

(2 − 2 cos(ε))
k
2
(2 − 2 cos(x))

k
2 + h0, (4.3)

which, for even k, is a k degree interpolation trigonometric polynomial on the interval (−ε, ε). For small ε, the function Pk[h]
is a very good approximation of h on the interval (−ε, ε). For this reason we propose as preconditioner the matrix

Kτ
n(f̂ ) = τn(ĥ)Tn(g)τn(ĥ). (4.4)

The smoothing identity of the function f̂ = g · ĥ2 is valid and Theorem 3.8 guarantees superlinear convergence of the PCG
method with preconditioned matrix sequence Kτ

n(f̂ )
−1Tn(f ). We state here the generalization of Theorem 3.8.

Theorem 4.1. Let f ∈ C2π be an even function with roots x0, x1, . . . , xl with multiplicities 2k1, 2k2, . . . , 2kl, respectively, g be the
trigonometric polynomial of order k =

∑l
j=1 kj given by (2.1), that raises the roots, w the remaining positive part of f (f = g · w)

and h =
√
w. We define the function ĥ as follows:

ĥ(x) =


Pkj [h](x) if x ∈ (xj − εj, xj + εj), j = 1, 2, . . . , l and

h is not a (kj − 1, xj)-smooth function
h(x) elsewhere,

(4.5)

where εj, j = 1, 2, . . . , l are small positive constants and

Pkj [h](x) =
(x − xj + εj)h(xj + εj) − (x − xj − εj)h(xj − εj) − 2εjh(xj)

2εk+1
j

|x − xj|
k
+ h(xj) or

Pkj [h](x) =
(2 − 2 cos(x − xj + εj))h(xj + εj) + (2 − 2 cos(x − xj − εj))h(xj − εj) − (2 − 2 cos(2εj))h(xj)

(2 − 2 cos(2εj))(2 − 2 cos(εj))
k
2

× (2 − 2 cos(x − xj))
k
2 + h(xj).

Then, the spectrum of the preconditioned matrix Kτ
n(f̂ )

−1Tn(f ) (f̂ = g · ĥ2) is bounded from above as well as from below:

c < λmin(K
τ
n(f̂ )

−1Tn(f )) < λmax(K
τ
n(f̂ )

−1Tn(f )) < C,

where c and C are constants independent of the size n.

Pkj [h] have been taken to be interpolation functions of h at the points xj − εj, xj, xj + εj.

4.2. Smoothing technique: Circulant case

The same smoothing technique could be applied if h is not a (k, 0)-smooth function. We state here the generalization of
Theorem 3.15.
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Table 5.1
Number of iterations for f1(x) = x4

n R S∗3 M1,2 W τ C

32 15 11 6 7 5 6
64 20 11 8 8 5 6
128 24 12 10 8 6 6
256 27 12 11 9 7 7
512 29 13 11 9 7 7
1024 30 13 12 9 7 7

Theorem 4.2. Let f ∈ C2π be an even function with roots x0, x1, . . . , xl with multiplicities 2k1, 2k2, . . . , 2kl, respectively, g the
trigonometric polynomial of order k =

∑l
j=1 kj given by (2.1), that raises the roots, w the remaining positive part of f (f = g · w)

and h =
√
w. We define the function ĥ as follows:

ĥ(x) =


Pkj [h](x) if x ∈ (xj − εj, xj + εj), j = 1, 2, . . . , l and

h is not a (kj, xj)-smooth function
h(x) elsewhere,

(4.6)

where εj, j = 1, 2, . . . , l are small positive constants and

Pkj [h](x) =
(x − xj + εj)h(xj + εj) − (x − xj − εj)h(xj − εj) − 2εjh(xj)

2εk+2
j

|x − xj|
k+1

+ h(xj) or

Pkj [h](x) =
(2 − 2 cos(x − xj + εj))h(xj + εj) + (2 − 2 cos(x − xj + εj))h(xj − εj) − (2 − 2 cos(2εj))h(xj)

(2 − 2 cos(2εj))(2 − 2 cos(εj))
k+1
2

× (2 − 2 cos(x − xj))
k+1
2 + h(xj).

Then, the spectrum of the preconditioned matrix KC
n (f̂ )

−1Tn(f ) (f̂ = g · ĥ2) is bounded from above as well as from below:

c < λmin(K
C
n (f̂ )

−1Tn(f )) < λmax(K
C
n (f̂ )

−1Tn(f )) < C, (4.7)

where c and C are constants independent of the size n.

Remark 4.1. The same smoothing technique could be applied for the band plus Hartley preconditioners, when the function
h is not a (k, 0)-smooth function.

5. Numerical experiments

In this section,we report somenumerical examples to show the efficiency of the proposed preconditioners and to confirm
the validity of the presented theory. The experiments were carried out usingMatlab. In all the examples, the right-hand side
of the system was (11 · · · 1)T in order to compare our method with methods proposed by other researchers. We have run
also our examples with the right-hand side being random vectors andwe have obtained results with the same behavior. The
zero vector was as our initial guess for the PCG method and as stopping criterion was taken the validity of the inequality
‖r(k)‖2
‖r(0)‖2

≤ 10−7, where r(k) is the residual vector in the kth iteration.

Example 5.1. We consider the function f1(x) = x4 as generating function. The associated function h =
x2

2−2 cos(x) is
a (2, 0)-smooth function and so, a smoothing technique is not needed for both band plus τ and band plus circulant
preconditioners. In Table 5.1 the number of iterations needed to achieve the predefined accuracy are illustrated.We compare
the performance of our preconditioners with a variety of other well known and optimal preconditioners: R is the pioneering
one proposed by Chan [8]. S∗3 is the proposal of Serra Capizzano in [22] using best Chebyshev approximation (3 is the
degree of the polynomial). M(1,2) is the preconditioner proposed by Noutsos and Vassalos in [19], which is based on best
rational approximation with 1, 2 being the degrees of the numerator and denominator, respectively. W is the ω circulant
preconditioner proposed by Potts and Steidl in [21]. Finally, by τ and C, we denote the band plus τ and band plus circulant
preconditioners, respectively. The efficiency of our preconditioners is clearly shown.

Example 5.2. Let

f2(x) =


x2(|x| + 1) |x| ≤

π

2(
π

2
+ 2

)
x2 x ∈ [−π,π] \

[
−

π

2
,
π

2

]
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Table 5.2
f2(x)

n λmaxτ λminτ τ λmaxC λminC C B

32 1.7612 0.9003 6 4.2123 0.7960 9 8
64 1.7694 0.8925 7 4.2465 0.8027 10 24
128 1.7736 0.8869 7 4.2648 0.8070 10 27
256 1.7758 0.8825 7 4.2742 0.8098 11 29
512 1.7771 0.8791 7 4.2791 0.8116 12 30
1024 1.7778 0.8764 7 4.2815 0.8127 12 31

Table 5.3
f3(x)τ without smoothing

n λmaxτ λminτ τ B

32 5.5929 0.843 8 17
64 6.049 0.835 10 34
128 6.3624 0.8291 11 45
256 6.5669 0.8249 11 54
512 6.6955 0.8221 11 61
1024 6.7744 0.8205 12 67

Table 5.4
f3(x) circulant and smoothing circulant in [−.5, .5]

n λmaxC λminC C λmaxĈ λminĈ Ĉ B

32 49.417 0.2286 13 32.369 0.34827 13 17
64 83.835 0.1386 15 34.260 0.34001 14 34
128 146.42 0.0789 18 35.552 0.3328 15 45
256 263.63 0.0428 23 36.218 0.3292 17 54
512 488.33 0.0224 26 36.556 0.3273 18 61
1024 926.19 0.0115 29 36.725 0.3265 18 67

be the generating function. Even though the corresponding function h =

√
f2(x)

2−2 cos(x) is not differentiable at the point π
2 , it is

an (1, 0)-smooth function. Hence, our preconditioners ensure superlinear convergence without any smoothing technique.
In Table 5.2, we give the minimum and the maximum eigenvalues of the preconditioned matrix and the iterations of the
PCG method needed for both τ and circulant cases. In the last column, denoted by B, we give for comparison the iterations
needed if we use the band Toeplitz preconditioner generated by the trigonometric polynomial which raises the roots.

Example 5.3. For the generated function

f3(x) =


x4(|x| + 1) |x| ≤

π

2(
π

2
+ 2

)
x4 x ∈ [−π,π] \

[
−

π

2
,
π

2

]

we have that k = 2. It is easily checked that the corresponding function h(x) =

√
f3(x)

2−2 cos(x) , is a (1, 0)-smooth function.
Consequently, the τ plus band preconditioner works well without any smoothing technique, while the circulant plus band
one needs a further smoothing step. In Table 5.3 we give the corresponding results, as in Table 5.2 for the τ case without
smoothing, while in Table 5.4 we give the results for the circulant case without andwith the smoothing technique. The band
plus circulant preconditioner is denoted by Ĉ. It is easily seen that the smoothing technique is required for the circulant case
to achieve superlinearity.

Example 5.4. Finally, we consider the function

f4(x) =


x6(|x| + 1) |x| ≤

π

2(
π

2
+ 2

)
x6 x ∈ [−π,π] \

[
−

π

2
,
π

2

]
as our generating function. In this example, we have k = 3 and moreover the corresponding function h(x) =

√
f4(x)

(2−2 cos(x))3

is also a (1, 0)-smooth function. Thus, the smoothing technique is necessary for both cases to achieve superlinearity. In
Table 5.5 we give the iterations of the PCG method needed for both τ and circulant cases with and without using our
smoothing technique. The meaning of the asterisks is that the iterations required are over 100. The presented numerical
results fully confirm the theory developed in the previous sections.
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Table 5.5
f4(x)τ and τ with smoothing in [−.5, .5]

n τ τ̂ C Ĉ B

32 14 10 17 13 20
64 20 11 25 16 48
128 33 13 43 19 *
256 53 14 79 21 *
512 * 15 * 22 *
1024 * 15 * 23 *

Fig. 5.1. Smoothing of h(x) =
x2(1+|x|)
2−2 cos(x) , by interpolation.

In Fig. 5.1, the smoothing technique is shown graphically for the function h(x) =
x2(1+|x|)
2−2 cos(x) . We have to remark that h is

not a differentiable function at zero.
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