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c Umf is an isostatic state that is the transition to fluid-like behaviour.
c The so-called ‘homogeneous expansion’ regime is not in fact homogeneous.
c The idea that bed expansion is due to the ‘elasticity’ of the bed is not tenable.
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Two-dimensional DEM–CFD simulations have been performed in order to examine the effect of surface

energy on the transitional behaviour from fixed bed to bubbling bed for Geldart Type A particles. The

results of the simulations presented in the paper show that any effect of surface energy on the

magnitude of Umf is not due to increasing bed resistance as a result of increasing the interparticle bond

strength. It is demonstrated that Umf corresponds to a deterministic (isostatic) state that is in effect the

initiation of the transition from solid-like to fluid-like behaviour. It is also shown that the so-called

‘homogeneous expansion’ regime is not in fact homogeneous. This is because the system, when U4Umf,

consists of agglomerates. Consequently, the idea that bed expansion is due to the ‘elasticity’ of the bed

is not tenable. In order to break up the agglomerates and create a fully fluidised bed that will allow

bubbling to occur, higher superficial gas velocities are required for higher values of surface energy.

Once the bed is fully fluidised and bubbling occurs the effect of surface energy becomes insignificant.
& 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Many industrial chemical manufacturing processes rely on
obtaining intimate contact between a gas and a solid. Frequently
the most effective way of doing this is by fluidising the solids
with a gas. For optimal reactor performance, and particularly in
the manufacture of some ultrafine high technology materials such
as silicon carbide and titania, it is attractive to use as small as
possible a particle size, giving high surface area per unit volume.
However, there is a limit to such reduction in size, caused by
the increased effects of van der Waals forces at small particle
diameters, which effectively make it impossible to fluidise parti-
cles below a few tens of micrometres in size.

The behaviour of fluidised solids falls into four more-or-less
distinct categories, as first pointed out by Geldart (1973). Leaving
aside large, dense particles whose behaviour is dominated by
ton).
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inertia (Geldart’s Group D) the differences between the remaining
three groups depend on the ratio of the adhesive force to the
single particle weight (Molerus, 1982; Seville et al., 2000). If the
adhesive force is much greater than the particle weight, fluidisa-
tion is impossible (Group C—cohesive) while if the opposite is
true fluidisation is unaffected (Group B—bubbling). Particularly
interesting behaviour occurs for particles for which the inter-
particle forces are comparable with the particle weight (Group
A—aeratable). Such particle beds show a tendency to expand,
apparently homogeneously, when gas is passed through them
above the minimum fluidising velocity, Umf. This distinguishes
them from beds of larger particles that show bubbling behaviour
for gas velocities immediately above Umf. It was shown theoreti-
cally very early in the study of fluidisation (Jackson, 1963) that an
expanded bed of particles in a gas should be unstable to voidage
perturbations. Explanations for the stability of this expanded
non-bubbling bed include internal ‘elasticity’ of the particle phase
(Rietema, 1973; Rietema et al., 1993), stabilisation of internal
voids (Donsi and Massimilla, 1973) and hydrodynamic effects
(Foscolo and Gibilaro, 1984). However, the matter remains
unresolved and expressions for the expansion behaviour and the
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Table 1
Gas phase input parameters.

Average gas molar mass 2.88E�2 kg/mol

Gas viscosity 1.8E�5 kg/m s

Gas density 1.1979 kg/m3

Gas pressure (atmospheric) 101.3 kPa

Gas temperature 293 K

Table 2
Particle phase input parameters.

Particle size 45, 47.5, 50, 52.5, 55 mm

Mean particle size 50 mm

Number of particles 5000

Young’s modulus 700 MPa

Particle density 2500 kg/m3

Poisson’s ratio 0.33

Friction coefficient 0.30

Fig. 1. Particle size distribution in terms of both mass and number fraction.
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maximum expansion beyond which bubbling occurs remain
empirical; for example the most commonly used correlation for
minimum bubbling velocity remains that of Abrahamsen and
Geldart (1980)

There have been many experimental studies that have yielded
much information about fluidised bed behaviour leading to many
empirical correlations, but understanding of the fundamental
mechanisms has been limited by the lack of suitable investigative
techniques. Computer modelling of fluidised beds using two-fluid
models in which both the gas and solid phases are modelled as
continuous and fully interpenetrating has been employed to try
to provide a more scientific understanding of fluidisation. Such
modelling does not take account of the discrete nature of the solid
phase and, although particle size and shape are notionally
factored into the continuum representation of the solid phase,
the degree of empiricism involved leaves a basic scientific inter-
pretation of the results obtained from these models open to
question. Relevant particle properties and interaction parameters
that might be expected to affect the fluidisation characteristics of
powders (elasticity, plasticity, interface properties) cannot be
incorporated into these models in a direct manner.

The increasing power of computer hardware has made a
Lagrangian-Eulerian modelling of gas-solid fluidisation feasible
following the original work of Tsuji et al. (1993) who combined
Discrete Element Method (DEM) modelling of the particle phase
with Computational Fluid Dynamics (CFD) modelling of the fluid
phase to simulate fluidised beds in 2D. This combined DEM–CFD
approach makes it possible to incorporate material properties
directly into the model and obtain a rational understanding of
their effect on the fluidisation characteristics of powders. A
distinct disadvantage of the discrete particle-continuum fluid
model is the limited number of particles that can be handled
and the small time-step dictated by the particle properties. Most
applications to fluidised beds have been restricted to 2D simula-
tions (Tsuji et al., 1993; Hoomans et al., 1996; Xu and Yu, 1997;
Kaneko et al., 1999; Helland et al., 2000; Yuu et al., 2001; Rhodes
et al., 2001b; Kafui et al., 2002; Di Renzo and Di Maio, 2007).
Pseudo-3D simulations in which the discrete particle phase is
modelled in 3D and the continuum fluid phase in 2D were
reported by Kawaguchi et al. (2000). Fully-3D simulations in
which both the particle fluid phases are modelled in 3D have
been reported by Thornton and Kafui (2002), Takeuchi et al.
(2004), Tsuji et al. (2008), Hilton et al. (2010), Kafui et al. (2011).

Three dimensional DEM–CFD simulations are extremely
demanding in terms of computer time, primarily due to the much
larger number of particles required compared to 2D simulations.
The work reported in this paper was part of a PhD project and
consequently, due to time constraints, it was elected to perform
2D simulations. It is expected that such simulations capture the
physical basis of the observed phenomena, without, of course,
matching the quantitative effects. The paper reports results of
gas-solid fluidised bed simulations that illustrate the effect of
surface energy on the behaviour of Geldart Group A type particle
beds. Previous DEM–CFD studies of the effect of interparticle
adhesive forces have been reported by Rhodes et al. (2001a),
Xu et al. (2001), Ye et al. (2004), Pandit et al. (2006) and Moreno-
Atanasio et al. (2007), all of whom used 2D simulations.
2. Simulation details

A series of 2D simulations was carried out using a container
of height¼15.5 mm, width¼2 mm and thickness¼0.055 mm.
The whole container is divided into small computational fluid
cells, the size of which is 5dp�5dp, where dp is the mean particle
diameter. The bed width corresponds to 40 times the mean
particle diameter. Pressure is recorded for each fluid cell and
the pressure difference between the bottom layer of cells and the
layer of cells at the top of the container is taken as the pressure
drop across the bed DP. The input parameters used for the gas
phase and the particle phase are given in Tables 1 and 2
respectively and the particle size distribution is provided in
Fig. 1 in terms of both the mass fraction and the number fraction.

All the particles are initially randomly generated as a granular
gas (no contacts) in a domain slightly smaller than the bed
container. In the 2D simulations reported, all particle centres
are located in the same plane and subsequent out of plane motion
is suppressed. A vertical gravity field is then introduced in order
to create a pluvially deposited bed of particles.

DEM simulations provide both qualitative and quantitative
data. The qualitative information takes the form of computer
visualisations, including video sequences, of particle locations,
particle velocity distributions, fluid velocity distributions and
particle–particle contact distributions. Quantitative information
includes bed height, pressure drop and bed voidage as defined
below.

The bed height used in the 2D simulations is defined in the
following way, as shown in Fig. 2. First, the fluidised bed is
divided into eight vertical columns. For each column, the topmost
particle is identified and the highest computational fluid cell in
which the topmost particle resides is recorded at the same time.
The average height for each column is computed by accumulating
all of the heights of particles in each of the highest computational



Table 3
Pull-off force (in nN) between two different sized spheres when the surface energy

is 13.625 mJ/m2.

45.0 mm 47.5 mm 50.0 mm 52.5 mm 55.0 mm

45.0 mm 1.445 1.484 1.520 1.556 1.589

47.5 mm 1.484 1.524 1.564 1.601 1.637

50.0 mm 1.520 1.564 1.605 1.644 1.682

52.5 mm 1.556 1.601 1.644 1.685 1.725

55.0 mm 1.589 1.637 1.682 1.725 1.766

Table 4
K values between two different sized spheres when the surface energy is

13.625 mJ/m2.

45.0 mm 47.5 mm 50.0 mm 52.5 mm 55.0 mm

45.0 mm 1.235 1.078 0.935 0.837 0.744

47.5 mm 1.078 1.108 0.974 0.862 0.766

50.0 mm 0.935 0.974 1.000 0.885 0.787

52.5 mm 0.837 0.862 0.885 0.907 0.808

55.0 mm 0.744 0.766 0.787 0.808 0.827

Fig. 2. Definition of bed height.
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fluid cells and then calculating the average value. Finally, with the
mass of the particles in each highest cell as the weighting
parameter, the whole bed height is then calculated by taking
the average of all the average column heights.

The fractional change in bed height DHn and the normalised
bed pressure drop DPn are defined as

DHn
¼

H�H0

H0
ð1Þ

and

DPn
¼

DP

gM=A
ð2Þ

where

M¼
p
6

X
N

rpd3
p ð3Þ

and H0 is the height of the initial packed bed, M is the total mass
of the N particles, rp and dp are the solid density and average
particle diameter, g is the acceleration due to gravity and A is the
cross sectional area of the bed. In the 2D simulations, the depth of
the bed is simply considered as one mean particle diameter.
Based on this simplification, for the 2 mm wide shallow 2D bed,
A¼1.10–7 m2 and the bed weight per unit area is 81.15 Pa.
The overall voidage of the bed is defined as

e¼ 1�

PN
i ¼ 1

Vi

AH
ð4Þ

where A is the cross sectional area of the bed, H is the bed height,
as defined above, and Vi is the volume of particle i.

The DEM–CFD modelling technique used has been fully
described by Kafui et al. (2002) in which it was referred to as
the PGF model. The model is essentially the same as that used by
Tsuji’s group except that the drag force is calculated using the Di
Felice (1994) correlation since this provides a smooth continuous
variation in drag force with voidage. A significant difference is
that the detailed solid–solid interaction rules used to calculate the
interparticle forces are based on theoretically and experimentally
established contact mechanics. In order to model autoadhesive
particle–particle interactions due to surface energy the normal
contact interaction algorithms are based on the JKR model of
adhesion (Johnson et al., 1971). Details of the theoretical basis for
both the normal and tangential contact interaction rules can be
found in Thornton and Yin (1991). In the JKR model of adhesive,
elastic particle interactions, the maximum tensile force required
to break a contact (the pull-off force) is given as

Pc ¼ 3gpRn with
1

Rn
¼

1

R1
þ

1

R2
ð5Þ

where g is the surface energy (assuming like spheres), and R1 and
R2 are the radii of the two contacting particles. Consequently, in
order to examine the effect of surface energy, values of g were
selected to make the average bond strength a multiple of the
average particle weight

oPc 4 ¼ Komg4 ð6Þ

As indicated by Eq. (5), for a given value of surface energy g
there will be, for a polydisperse system, a range of pull-off forces
Pc depending on the radii of the two particles in contact. If a value
of surface energy is specified that will give a value of K¼1
for contact between two average sized spheres then the ranges
of pull-off forces and K values for the range of contacts
between different-sized spheres are shown in Tables 3 and 4.
Note that, when K¼1, the surface energy between two average
sized spheresis 13.625 mJ/m2 and accordingly the pull-off force
Pc¼1.605 nN.
3. Results

The initial pluvially deposited bed has a height of 6.539 mm
with an initial voidage of 0.459 and 8465 interparticle contacts.
An initial superficial gas velocity of 0.3 mm/s (more than an order
of magnitude less than the minimum required for fluidisation)
was introduced at the bottom of the bed and then increased
incrementally. Throughout the simulations the pressure drop
across the bed, the bed height, average bed voidage and the
number of interparticle contacts were continuously monitored
and, for each gas velocity increment, the time-averaged values
were calculated. Fig. 3 shows the normalised pressure drop DPn,
the fractional change in bed height DHn and the number of
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Fig. 3. Evolution of the normalised pressure drop, normalised number of contacts and fractional change in bed height with increase in superficial gas velocity.

Fig. 4. Sequential snapshots of bed expansion with increasing gas velocity (K¼0).
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contacts normalised by dividing by the initial number of contacts,
all plotted against the superficial gas velocity U. In the fixed bed
regime, the average bed voidage is constant since there is no
change in the bed height, as indicating in Fig. 3.

For a fixed bed, the pressure gradient can be related to the gas
velocity by the following correlation due to Ergun (1952)

DP

H
¼ 150

1�eð Þ
2

e3

mU

d2
p

þ1:75
1�eð Þ

e3

rgU2

dp
ð7Þ

In Fig. 3 it can be seen that the relationship between the
pressure drop and the gas velocity is linear. This indicates that the
second term on the RHS of Eq. (7) is insignificant due to the
negligible inertia associated with such small-sized particles.
When the pressure drop becomes equal to the bed weight divided
by the cross-sectional area of the bed fluctuations in the pressure
drop occur but the average pressure drop remains constant.
Conventionally (see, for example, Geldart, 1986), the point where
the average pressure drop first becomes equal to the bed weight
divided by the cross sectional area of the bed is defined as
‘minimum fluidisation’ and the gas velocity at which this occurs
is denoted by Umf. This corresponds to a transition to what is
conventionally referred to as ‘homogeneous fluidisation’ during
which the bed expands, as can be seen in Fig. 3. At Umf, the
pressure gradient may be written as

DP

H
¼ 1�emf

� �
rp�rg

� �
g ð8Þ

Ignoring the inertia term in Eq. (7) and equating Eqs. (7) and
(8) the minimum fluidisation velocity can be calculated from

Umf ¼
gd2

p rp�rg

� �
e3

mf

150m 1�emf

� � ð9Þ

The figure indicates that Umf¼0.0048 m/s which is 17% greater
than the value of 0.0041 m/s predicted by Eq. (9). This difference
may be due to the fact that these are 2D simulations, in contrast
to the 3D experiments on which Eq. (7) was based. If Umf¼

0.0048 m/s is substituted into Eq. (9) then the corresponding
coefficient is 127 rather than 150. The data in Fig. 3 were
replotted as a graph of the pressure gradient DP/H against U

(not shown). From the initial linear relationship the slope was
found to be 2.52 MPa s/m2. Substituting this value into Eq. (7)
gives a coefficient of 116, corresponding to Umf¼0.0053 m/s. It is
noted that the value of 0.0048 m/s, as indicated by Fig. 3, is
approximately the average of the two predictions of 0.0041 m/s
and 0.0053 m/s.

In Fig. 3 we also plot, for each gas velocity, the average number
of interparticle contacts, normalised by the initial number of
contacts. It can be seen that, at Umf, about 10% of the original
contacts have been lost. As the gas velocity is further increased
the number of contacts decreases rapidly (70% of contacts have
been broken at U¼0.006 m/s) but then tends towards an asymp-
totic value of the order of 5% of the original number of contacts
at U¼0.01 m/s. This trend was also reported for 2D simulations
of Geldart Group D particle beds by Kafui et al. (2002). The figure
suggests that, during ‘homogeneous fluidisation’, there is a range
of gas velocities over which the bed evolves from incipient
fluidisation to a fully fluidised state.
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The ‘homogeneous’ expansion behaviour can be visualised
from the sequential snapshots of bed expansion shown in
Figs. 4 and 5, for K¼0 and K¼1 respectively. For zero surface
energy, K¼0, no bubbles are observed before U¼0.0095 m/s but
bubbles start to appear around U¼0.01 m/s. Although the bubble
shown in Fig. 4 may not be fully developed it nevertheless
indicates the onset of bubbling in the bed. This was confirmed
when the gas velocity was incrementally increased to U¼0.02 m/s
and more obvious and larger bubbles were observed.

On this basis, Umb is estimated to be 0.01 m/s for the case of
zero surface energy. Fig. 5 shows that when K¼1 and U¼0.01 m/s
Fig. 5. Sequential snapshots of bed expansion with increasing gas velocity (K¼1).

Fig. 6. Typical snapshots of the bed for gas velocitie
there are no bubbles but that the increase in voidage resulting
from the bed expansion takes the form of elongated narrow voids
aligned in the vertical and horizontal directions, which occasion-
ally are combined to form a cruciform shape. Similar observations
were made by Donsi and Massimilla (1973) by direct observation
of Group A particles through the transparent walls of their fluidised
bed apparatus.

Fig. 6 provides comparisons between typical snapshots of the
particle configurations for different surface energies when the
superficial gas velocity is 0.01 m/s and 0.02 m/s. When K¼1 and
K¼2 the figure shows that, with a gas velocity U¼0.01 m/s,
the bed has expanded without any obvious bubble observed.
The figure also shows that, for K¼5, channelling occurs when
U¼0.01 m/s. However, when the gas velocity is increased to
U¼0.02 m/s, fully developed bubbles are observed in all cases.
This suggests that for 0rKr5 the minimum bubbling velocity
s of 0.01 m/s and 0.02 m/s and K¼0, 1, 2 and 5.
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Fig. 7. Effect of surface energy on bed expansion.
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Fig. 9. Breakup of the connectivity network.

Table 5
Minimum fluidisation and minimum bubbling velocities for K¼0, 1, 2 and 5.

K¼0 K¼1 K¼2 K¼5

Umf (m/s) 0.0048 0.0048 0.0048 0.0048

Umb (m/s) 0.01 0.014 0.015 0.02

Umb/Umf (dimensionless) 2.08 2.92 3.12 4.17
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lies in the range 0.01 m/srUmbr0.02 m/s and that with increasing
surface energy a higher gas velocity is required to reach the
bubbling regime, if that is possible. These are similar results to
those obtained by Ye et al. (2004) who used a 2D DEM–CFD model
to study the interparticle force effect on Group A fluidisation and
found that the minimum bubbling velocity Umb, based on the
observation of the first appearance of a bubble in the bed, increased
with increase in surface energy. They also observed that channelling
occurred for higher surface energies.

Fig. 7 indicates that the rate of bed expansion with increasing
gas velocity is essentially the same for all cases, although the
initial bed expansion for 0.005 m/s oUo0.01 m/s is slightly
lower when K¼0. Some researchers have reported a decrease in
the bed height near the minimum bubbling point Umb. However
this pheno-menon is not observed in our simulations.

Fig. 8 shows the effect of surface energy on the evolution with
increasing superficial gas velocity of the pressure drop and the
average number of contacts. It can be seen that in the fixed bed
regime the pressure drop curve is independent of surface energy.
A pressure drop overshoot occurs around the minimum fluidisa-
tion velocity for the systems with surface energy. For K¼1 and
K¼2 the overshoot is slight but, for K¼5, the average pressure
drop increases to a maximum value that is 10% greater than that
necessary to balance the self-weight of the bed and then drops to
equal the bed weight divided by the cross-sectional area of the
bed. To understand the overshoot phenomenon, a bed with
vertical periodic boundaries was simulated. The data indicate
that the overshoot is solely due to the wall effect; this is
considered further below. Therefore for all the cases with K40,
minimum fluidisation occurs when the normalized pressure drop
first equals unity, which occurs before the overshoot appears.

The most notable aspect of Fig. 8 is that, for K40, bond
breaking occurs in two stages: (i) approximately 40% of bonds are
broken, creating a ‘partially fluidised’ bed, and (ii) for a higher
bond strength a higher gas velocity is required to break the
remaining bonds in order to ‘fully fluidise’ the bed. Fig. 9
illustrates the effect of surface energy on the loss of inter-
particle contacts in the bed and the corresponding increase in
the proportion of ‘‘fines’’ as the gas velocity is increased in the
‘homogeneous expansion’ regime. For convenience, fines are here
defined as singlets, doublets and triplets. It can be seen that no
more than 10% of fines are produced until the gas velocity is high
enough to reduce the number of contacts to below 60% of the
original number. Initially, in the fixed bed regime all of the
particles are interconnected in one big cluster/agglomerate. For
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Fig. 8. Effect of surface energy on the evolution of pressure drop and number of

contacts with increasing superficial gas velocity.
K40, when the gas velocity is increased above Umf, a sufficient
number of contacts is broken to form a few relatively large
agglomerates, which consist of most of the particles in the bed,
and the proportion of singlets, doublets and triplets is small. The
strength of the agglomerates so formed depends on the strength
of the interparticle bonds. As can be seen in Fig. 9, further bond
breaking required to fracture the initially formed agglomerates
requires a higher gas velocity for higher values of surface energy.
Once this has been achieved, further disintegration of the
agglomerates continues progressively until the fines predominate
and occupy the whole bed. At this point the bed can be considered
to be ‘fully fluidised’.

On this basis, minimum fluidisation and minimum bubbling
velocities for the cases with and without surface energy are
shown in Table 5. Fig. 10 shows typical particle configurations
when K¼0, 1, 2 and 5 for gas velocities of 0.01 m/s, 0.014 m/s,
0.015 m/s and 0.02 m/s, corresponding to the minimum bubbling
velocities given in Table 5.

The snapshots shown in Fig. 11 illustrate the evolution of the
structure of the particle bed as the superficial gas velocity is
increased from below the minimum fluidised velocity Umf to the
minimum bubbling velocity Umb step by step, for K¼0. In each
snapshot, the three columns show (i) the six largest cluster sizes
in the system (left column), (ii) singlets, doublets and triplets
(centre column; colour coded by size) and (iii) the spatial
distribution of interparticle contacts (right column). Note that
clusters of intermediate sizes are not shown. It can be seen that
the number of interparticle contacts decreases sharply when Umf

is reached and correspondingly the mass percentage of singlets,
doublets and triplets increases sharply. The figure clearly shows
the degradation of large clusters, the increase in fines production
and the corresponding loss of contacts as the gas velocity is
increased.

In the fixed bed regime, as shown in the snapshots for
U¼0.0048 m/s, almost all of the particles belong to one big
cluster. When U¼0.0050 m/s the big cluster has broken into



Fig. 10. Typical particle configurations when K¼0, 1, 2 and 5 for gas velocities of

0.01 m/s, 0.014 m/s, 0.015 m/s and 0.02 m/s.

      U = 0.0048 m/s                   U = 0.0050 m/s                  U = 0.0060 m/s 

       U = 0.0080 m/s                   U = 0.0085 m/s                     U = 0.01 m/s 

Fig. 11. Cluster visualisation when K¼0.

U=0.0048m/s U=0.0050m/s U=0.0060m/s 

U=0.0080m/s U=0.0095m/s U=0.014m/s 

Fig. 12. Cluster visualisation when K¼1.
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two large clusters with a significant increase in the number of
singlets, doublets and triplets. Note that, at U¼0.0050 m/s, the
two very large clusters (shown in blue and dark grey) are not
connected to each other. In other words, the particle connectivity
between the bottom and the top of the bed has been broken. By
further increasing the gas velocity, the cluster sizes continuously
decrease until the bed is full of singlets, doublets and triplets, at
which stage the number of remaining contacts is very small.

Fig. 12 illustrates the evolution of the bed structure for K¼1.
Initially, the structure of the bed breaks into two when minimum
fluidisation is reached. The difference from the K¼0 case is that,
due to surface energy, there are two agglomerates rather than
two clusters and consequently the number of singlets, doublets
and triplets remains low until U¼0.0075 m/s. At this point,
the second large reduction in the number of contacts begins
(see Fig. 8) when the gas velocity is sufficiently high to break up
the large agglomerates, leading to a corresponding rapid increase
in the fractional mass of fine particles, as shown in Fig. 9. With
further increase in gas velocity, the connectivity network com-
pletely disintegrates until finally the bed consists entirely of
singlets, doublets and triplets and is fully fluidised.
4. Discussion

The results of the simulations reported in Section 3 indicate
that the value of Umf is independent of the value of surface energy
used. However, this result needs to be qualified. In the simula-
tions the value of surface energy was attributed to the particles
after pluvial deposition of the particle bed. It can be argued that it
would be more realistic to introduce surface energy prior to
pluvial deposition when the system is in the state of a granular
gas with no contacts. The consequence of this would be that the
initial voidage of the packed bed would be expected to be higher
and this in itself would affect the value of Umf. The significance of
the results reported in this paper is that although, in reality, the
value of Umf may depend on the value of surface energy this is
solely due to the higher voidage of the initial bed and not to
increased bed resistance resulting from stronger interparticle
bonds.

Rhodes et al. (2000) investigated the transition from freely
bubbling to cohesive behaviour when a superficial velocity of
0.64 m/s was applied to a 2D monodisperse bed of 8000 spheres
(dp¼500 mm, rp¼2650 kg/m3). An artificially imposed (constant)
interparticle attractive force was used which was a multiple, K, of
the single particle buoyant weight. From the analysis of snapshots
of the beds, obtained for a wide range of K values, it was deduced
that the onset of cohesive behaviour occurred when K¼47. When
the particle size was doubled it was found that the corresponding
value of K was 16. In a later paper, Wang and Rhodes (2004) used
a larger bed (15,000 spheres) and concluded that K¼30 repre-
sents a typical condition of defluidisation. A state of complete
defluidisation, i.e. negligible bed activity, was observed when K

was increased to about 40.
Xu et al. (2001) examined the effect of interparticle adhesive

forces on fluidisation behaviour using a monodisperse system of
4500 spheres (dp¼100 mm, rp¼1440 kg/m3). They used a van der
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Waals force of 8.76�10�8 N, corresponding to a Hamaker con-
stant of 2.1�10�20 J, which for the particles they considered is
equivalent to a value of K¼12. From their simulations they found
Umf¼0.012 m/s and Umb¼0.028 m/s. Then, using a superficial
velocity U¼0.048 m/s, they examined the effect of artificially
increasing the van der Waals forces by changing K. From snap-
shots of the beds, they concluded that good fluidisation was
obtained with continuous bubbles of relatively small size rising
through the bed if Ko30. For 40oKo100, the fluidisation quality
deteriorated significantly and severe channelling occurred,
although the bed was fluidisable at higher gas velocities. When
K4300, fluidisation was impossible with the bed consisting of
large blocks of particles.

Ye et al. (2004) simulated a fluidised bed consisting of mono-
disperse spheres (dp¼100 mm, rp¼900 kg/m3) and calculated the
van der Waals forces based on Hamaker constants of 10�22,
10�21and 10�20 J, which for their particles correspond to values
of K¼0.56, 5.6 and 56. In all three cases, Umf was found to be
about 0.004 m/s. Snapshots of the beds indicated that Umb¼

0.028 m/s and 0.030 m/s for K¼0.56 and 5.6 respectively. For
K¼56, however, no obvious bubble appeared when U¼0.052 m/s
but channelling was observed adjacent to the side walls.

Moreno-Atanasio et al. (2007) simulated monodisperse 2D
fluidised beds consisting of 45,000, 98 mm-sized spheres. They
used Eq. (5) to calculate the force required to break an adhesive
contact for values of surface energy equal to 0.37 mJ/m2 and
37 mJ/m2 which, for their particle system, corresponds to values
of K¼6.8 and 68 respectively. These authors, however, did not use
JKR theory to model the particle–particle interactions. Instead,
they used the conventional linear spring-dashpot model and
simply added the ‘adhesion force’ to the spring and dashpot
forces in the equation of motion, when particles were in contact.

It was shown in Fig. 6 that, when the superficial gas velocity
was 0.01 m/s, channelling occurred if K¼5. This value is much
lower than the values quoted by the above authors. However, it is
noted that all the above authors simply include the adhesion force
in the equations of motion when a contact is first established.
When two particles are separating, the adhesion force is set to
zero when the contact overlap ar0. The above authors also
assume that adhesion has no effect on the repulsive normal force–
displacement relationship. Consequently, for the case of a linear
spring model, the resultant (effective) normal contact force–
displacement relationship is as illustrated in Fig. 13a. As shown
in the figure, when contact is first made (a¼0) the effective
normal force is equal to the adhesion force indicated by point A.
The line 0A illustrates the ‘jump to contact’ observed in AFM
experiments. When the two particles are compressed the effective
normal force increases along line AB, which is parallel to the
repulsive force–displacement line given by P¼kna. During
unloading the force decreases along line BA, and at point A, when
a¼0, all the elastic work done during loading has been recovered.
In the simulations reported by the above authors the adhesion
force is set to zero and the force instantaneously follows the line
A0. This is physically unrealistic since it implies that a contact
‘bond’ can be broken without doing any work.

In contrast, the JKR model of adhesion, as illustrated in Fig. 13b,
modifies the repulsive Hertzian contact force–displacement rela-
tionship and requires extra work to be done in order to break the
contact. As shown in the figure, there is a ‘jump to contact’, i.e.
OA, when a¼0. During compressive loading and unloading the
force follows the path ABA. On returning to point A all the elastic
work done during loading has been recovered but the radius of
the contact area is finite at point A. If the contact is to be broken
the force has to follow the curve AC. At point C the contact breaks,
the force instantaneously becomes zero and the work required to
break the contact Wc is given by the area under the curve AC;
which can be expressed (Thornton and Ning, 1998) as

Wc ¼ 7:09
G5Rn4

En2

 !1=3

ð10Þ

If the adhesion force is simply included in the equations of
motion and set to zero when ar 0, no work is required to break a
contact. In simulations using this approach it is difficult to
prevent contacts breaking unless an excessively high value is
attributed to the adhesion force. Consequently, the values of K
reported by the above authors are physically unrealistic.

The question remains as to the physical basis for the appar-
ently homogeneous expansion which is a characteristic feature of
beds of Group A particles. As discussed earlier, stability analyses
for uniform fluidised beds predict that they will not be stable
against voidage perturbations so that if this approach is taken,
some form of elasticity of the bed must be invoked, either
deriving from the elastic behaviour of particle contacts (Rietema
and co-workers) and/or hydrodynamic factors (Gibilaro and co-
workers). However in the simulations for both K¼0 and K¼1,
when U¼0.0050 m/s, the connectivity from the bottom to the top
of the bed has been broken. Consequently, the bed expansion
cannot be attributed to the so-called elasticity of the bed
structure.

Foscolo and Gibilaro (1984) proposed a hydrodynamic criter-
ion to predict the onset of bubbling in fluidised beds. Their
approach was based on the suggestion of Wallis (1969) that
bubbles occur when the propagation velocity of a voidage
disturbance, ue, reaches the velocity of elastic waves, ue, in the
bed. From the criterion that ue¼ue they obtained a prediction
of the voidage at minimum bubbling velocity Umb. However,
their model implies that Umb is independent of surface energy.
In a subsequent paper (Foscolo et al., 1985) they attempted to
incorporate interparticle (adhesive) forces into their model and as
a consequence purported to show that when ue¼ue the voidage
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and hence Umb increases with increase in the so-called interpar-
ticle force. This result was obtained by adding an extra term in the
equation for the elastic wave velocity that accounted for the
so-called interparticle force. Their argument, however, is flawed
by the fact that their interparticle force term is related to the
so-called elasticity of the bed, as suggested by Rietema (1973).
The simulation results shown in Fig. 12 demonstrate that, for
adhesive particles, the bed starts to break-up into agglomerates as
soon as Umf is exceeded and that the agglomerates disintegrate
with further increases in the superficial gas velocity. Consequently,
the simulations demonstrate that the modified theory of Foscolo
et al. (1985) is not applicable to beds of adhesive particles,
irrespective of the type of adhesion, i.e. van der Waals, electro-
static, magnetic or liquid bridge forces.

A further difficulty for theories based on stability of contin-
uous structures is illustrated by the results for K¼1 in Fig. 12.
From the simulations, there is a cluster at the top of the bed, the
top of which defines the bed height and the bed height increases
incrementally as the gas velocity is incrementally increased.
Therefore the bed expansion is simply due to the increased gas
velocity ‘lifting’ the uppermost cluster to a higher position. It is
also clear from Fig. 12 that the expansion of the bed is not
homogeneous due to the existence of agglomerates in which the
particles are moving in unison with each other. In other words,
the strain in an agglomerate is negligible compared to the
apparent strain suggested by the movement of the top of the bed.

Massimilla and co-workers have a different view of the
expanded bed, derived from direct microscopic observation, in
which the structure does not expand uniformly, at least not on a
single particle level, but by nucleation and growth of cavities.
They draw attention to the role of such cavities in focussing the
through-flow of gas, which as the gas flow increases, causes the
cavities to expand. This is in agreement with the findings of the
present simulations, which also show cavity formation and
expansion. Their studies clearly could not show the existence of
agglomerates or the lack of continuity in the structure. It was also
observed by Geldart and Wong (1984) that Group A powders ‘are
far from being homogeneous’.

A further piece of evidence that aggregates occur in fluidised
beds of particles under the influence of van der Waals forces alone
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can be found in the results of experiments on fine particles — in
Geldart’s group C. In this case, fluidisation often does not take
place at all, but if it does occur, sometimes induced by applied
vibration, it does so with the particles in aggregated form (see, for
example, Chaouki et al., 1985; Lauga et al., 1991; Wang et al.,
2002). The resulting aggregates are sometimes strong enough to
be removed intact from the bed. It is well-known, of course, that
with the addition of stronger interparticle forces by the addition
of free liquid to the bed, strong aggregation can occur, and this
effect is exploited in commercial fluidised bed agglomerators.
5. Stability considerations

Consider a 2D system of spheres and assume a coefficient of
interparticle friction m¼1 (no sliding anywhere). The number of
degrees of freedom for a single particle is 3 (two linear velocities
and one rotational velocity). Therefore if the number of particles
is N the total number of degrees of freedom for the system is 3N.
The number of unknown forces (constraints) at a contact is 2 (one
normal force and one tangential force) and if there is C number of
contacts then the total number of unknown forces in the system
is 2C. If the total number of degrees of freedom equals the total
number of constraints then the system (structure) is said to be
deterministic (isostatic). In this case

3N¼ 2C or C=N¼ 3=2 ð11Þ

For this condition we can define a critical coordination number
(average number of contacts per particle) as

Zc ¼ 2C=N¼ 3 ð12Þ

If Z4Zc then the system is indeterminate (hypostatic) which
means there are more contacts than necessary to ensure stability.
It is a redundant system. If ZoZc then equilibrium cannot be
satisfied which means there are fewer contacts than necessary to
keep the system stable and the system becomes a mechanism
(hyperstatic).

Defining the coordination number as Z¼2C/N is not appropriate
since this is the apparent coordination number and includes particles
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with no contacts. We can define a geometric coordination number

Zg ¼ 2C= N�N0ð Þ ð13Þ

where N0 is the number of particles with no contacts. However, this
definition includes particles with only one contact and these do not
contribute to the stability of the system. Therefore, in order to
examine stability, we define a mechanical coordination number

Zm ¼ 2C�N1ð Þ= N�N1�N0ð Þ ð14Þ

where N1 is the number of particles with only one contact.
In Fig. 14, the average pressure drop and the average mechanical

coordination number are plotted against superficial gas velocity
for different values of K. The figure indicates that Zm�3 when
U�Umf, except for the case of K¼5. Fig. 15 shows the effect
of increasing the gas velocity on the normalised pressure drop
and the mechanical coordination number for K¼5. The figure
shows results obtained for both a wall bounded system and
a system with vertical periodic boundaries. It can be seen from
Fig. 15 that when the average pressure drop becomes equal to the
bed weight divided by the cross-sectional area of the bed (for the
case of vertical periodic boundaries) and when, in the case of a
wall bounded system, the overshoot in the average pressure drop
reaches a maximum value then the mechanical coordination
number Zm�3.15. For systems with finite values of interparticle
friction (in this case m¼0.3) the stability criterion is uncertain but
is expected to be somewhat higher than 3 (in 2D Zc¼3 for m¼N).
Therefore, it is concluded that Umf corresponds to the point when
the system becomes hyperstatic, signifying the start of a transi-
tion from solid-like to fluid-like behaviour.

Pandit et al. (2006) explained that the reason for an overshoot
in the bed pressure drop curve is the time taken by the bed
particles to rearrange themselves in response to the increment
given to the gas velocity. They also argued that, in the presence of
cohesive interparticle forces, the bed particles take a longer time
to rearrange themselves and this leads to the overshoot in the bed
pressure drop curve. Ye et al. (2004) reported that the generation
of the overshoot of the pressure drop near the minimum fluidisa-
tion point is affected by both the particle-wall friction and the
interparticle van der Waals forces. However, as demonstrated by
Fig. 15, when vertical periodic boundaries are used there is no
overshoot in the pressure drop, clearly indicating that, at least for
the simulations presented here, the pressure drop overshoot is an
artefact resulting from the extra kinematic constraint provided by
the wall boundaries.
6. Conclusions

Results have been presented to show how the pressure drop, bed
expansion, number of contacts and average coordination number
change with superficial gas velocity. Visualisations, including video
sequences, have been used to illustrate how the particle configura-
tion, the particle velocity field, the fluid velocity field and the spatial
distribution of interparticle contacts vary as the superficial gas
velocity is increased.

The results of the simulations presented indicate that U¼Umf

when the fluid pressure drop across the bed first equals the
buoyant weight of the solid particles per unit cross-sectional area.
This occurs before any apparent overshoot. For adhesive particle
systems, the simulations indicate that the pressure drop over-
shoot is an artefact due to the constraint provided by the vertical
wall boundaries.

Because surface energy was introduced after pluvial deposi-
tion of the bed, the value of Umf was found to be independent of
the value of surface energy used. This demonstrates that surface
energy dependency of Umf in real experiments is due to differ-
ences in initial bed voidage and is not due to increased bed
resistance resulting from stronger interparticle bonds.

At Umf the system is not fully fluidised in that Umf corresponds
to the point when the system becomes a mechanism. When
surface energy is introduced to the system, the bed breaks up into
large agglomerates at minimum fluidisation and in order to break
down these agglomerates to create a fully fluidised bed, higher
superficial gas velocities are required as the value of surface
energy is increased.

For U4Umf the connectivity between the bottom of the bed
and the top surface no longer exists and the bed expansion is not
homogeneous. Consequently, Rietema’s (1973) suggestion that
the bed expansion is due to the bed ‘elasticity’ is not tenable. If we
define a ‘fully fluidised’ bed as one in which the ‘particles’ consist
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of only singlets, doublets and triplets that occupy the whole bed
then, as the surface energy is increased, a higher gas velocity is
required to attain this ‘fully fluidised state’. The fully fluidised
state corresponds to Umb and only when this state has been
reached can bubbling occur. Minimum bubbling velocity Umb

increases with surface energy.Therefore, with increasing surface
energy, the so-called ‘homogeneous’ expansion regime is
extended. Once the bed is fully fluidised the effect of surface
energy is no longer significant.
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