Minimax Inequalities of Ky Fan

JI HUI ZHANG
Department of Applied Mathematics
Northwestern Polytechnical University
Xi’an 710072, P.R. China
and
Department of Mathematics, Tianshui Teachers College
Tianshui, Gansu 741000, P.R. China

RUYUN MA
Department of Mathematics, Northwest Normal University
Lanzhou, Gansu 730070, P.R. China

(Received March 1996; accepted November 1997)

Abstract—in this paper, we found a new result by relaxing the condition of [1, Theorem 3]. As its direct consequence, we have obtained some new minimax inequalities of Ky Fan and minimax theorems. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords—Minimax theorem, Ky Fan’s inequality, Fixed point, Set-valued mapping.

1. INTRODUCTION AND PRELIMINARIES

Since Fan has generalized KKM theorem, numerous applications of this theorem have been found. Fan’s theorem is now becoming a very versatile tool in nonlinear analysis, such as fixed point, variational inequalities, see [2-7]. Fan’s theorem was used in [3,8,9] to prove fixed point and minimax theorem in topological vector spaces. Ha [1,2] has given generalization of Fan’s theorem and Fan’s minimax inequality. In this paper, we obtain a new theorem by relaxing closed condition of sets of [1, Theorem 3]. From this, we give some new Fan’s minimax inequalities and minimax theorem. Our main result is the following Theorem 2.

Let X and Y be topological spaces. By a set-valued mapping f defined on X with values in Y, we mean that to each point $x \in X$, f assigns a unique nonempty subset $f(x)$ of Y. f is called upper semicontinuous if for each open subset G of Y, the set \(\{x \in X: f(x) \subseteq G\} \) is open in X. It is easy to show (e.g., [10]) that if Y is a compact Hausdorff and if $f(x)$ is closed for each $x \in X$, then f is upper semicontinuous if and only if the graph \(\{(x,y) \in X \times Y: y \in f(x)\} \) of f is closed in $X \times Y$. We first cite a lemma in [1] which will suit our purpose.

Lemma 1. Let E be a Hausdorff topological vector space and $K \subseteq E$ be a compact convex subset. Let Z be an n-simplex. If q is an upper semicontinuous set-valued mapping defined on Z such that $q(x)$ is a nonempty closed convex subset of K for each $x \in Z$, and if $P: K \rightarrow Z$ is a (single-valued) continuous mapping, then there exists $x_0 \in Z$ such that $x_0 \in P(q(x_0))$.

Our result is as follows.
Theorem 2. Let E and F be Hausdorff topological vector spaces, let $X \subset E$ and $Y \subset F$ be nonempty convex subsets, and let $A \subset X \times Y$ be a subset such that

(a) for each $x \in X$, the set $\{y \in Y : (x, y) \notin A\}$ is convex, or empty,
(b) for each $y \in Y$, there exists a closed subset $X_y \subset X$ such that set $\{x \in X : (x, y) \in A\} \subset X_y$.

Suppose that there exists a subset B of A and a compact convex subset K of X such that B is closed in $X \times Y$, and

(c) for each $y \in Y$, the set $\{z \in K : (z, y) \in B\}$ is nonempty and convex.

Then

$$\bigcap_{y \in Y} X_y \cap K \neq \emptyset.$$

Remark 1. The above theorem has a weaken closed Condition (b) as compared with [1] and is a new result.

Proof. Suppose that the assertion of the theorem is false. That is, if $\exists x_0 \in X \setminus K$, we prove that there exists $z_0 \in K$ such that

$$[x_0] \times Y \subset A, \quad (1.1)$$

or else, for each $y \in Y$, let $A(y) = \{z \in X : (z, y) \notin A\}$. Then for each $x \in K$, there exists $y \in Y$ such that $(x, y) \notin A$, namely, $x \in A(y)$. By $A(y) = X \setminus \{x \in X : (x, y) \in A\}$ and Condition (b), $A(y) \supset X \setminus X_y = V_y$, $V_y \subset X$ can be an open subset, and $\cap_{y \in Y} V_y = X \setminus \cap_{y \in Y} X_y \supset K$. Thus, since K is compact subset, there exists a finite subset $\{y_1, y_2, \ldots, y_n\}$ of Y such that $K \subset \cup_{i=1}^n V_{y_i}$. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be a continuous partition of unity on K subordinated to the cover V_{y_i} ($1 \leq i \leq n$), that is, $\alpha_1, \alpha_2, \ldots, \alpha_n$ is a nonnegative real-valued continuous functions on K such that for each $1 \leq i \leq n$, α_i vanishes on $K \setminus V_{y_i}$ and $\sum_{i=1}^n \alpha_i(x) = 1$, for all $x \in K$. Let us define a mapping $P : K \rightarrow Y$ by $P(z) = \sum_{i=1}^n \alpha_i(x) y_{i}$. For $x \in K$ and any index i, if $\alpha_i(x) > 0$, then $x \in A(y_i)$ and so $(x, y_i) \notin A$. By (a), we have $(x, \sum_{i=1}^n \alpha_i(x) y_i) \notin A$. Hence, for all $x \in K$,

$$(x, P(x)) \notin A. \quad (1.2)$$

On the other hand, let Z be the convex hull of the set $\{y_1, y_2, \ldots, y_n\}$ in Y. We define a set-valued mapping q on Z with values in K by $q(z) = \{z \in K : (x, z) \notin B\}$. By (c), $q(z)$ is nonempty and convex for each $z \in Z$. Since B is closed in $X \times Y$, each $q(z)$ is closed in K and the graph of q is closed in $Z \times K$; thus q is an upper semicontinuous set-valued mapping defined on Z. Since P is continuous by Lemma 1, there exists $z_0 \in Z$ such that $z_0 \in \hat{P}(q(z_0))$. If $z_0 \in q(z_0)$ is such that $P(x_0) = z_0$; then $(x_0, P(x_0)) \in B \subset A$, which contradicts (1.2), hence, (1.1) is true. But this contradicts $\cap_{y \in Y} X_y \subset X \setminus K$ again, therefore, we must have $\cap_{y \in Y} X_y \cap K \neq \emptyset$. This proves the theorem.

2. MAIN RESULTS

As an immediate consequence of Theorem 2, we obtain some new minimax theorems and some minimax inequalities of Ky Fan. Let X be a convex set in a vector space and let f be a real-valued function defined on X. We recall that f is quasiconvex if for any real number the set $\{z \in X : f(z) < t\}$ is convex, f is quasiconcave if $-f$ is quasiconvex. Clearly the quasiconvexity of f implies that the set $\{z \in X : f(z) < t\}$ is convex for any real number t.

Theorem 3. Let E and F be Hausdorff topological vector spaces and let $X \subset E$ and $Y \subset F$ be nonempty convex subsets. If $f, g, h : X \times Y \rightarrow R$ are function such that

(i) $f(x, y) \leq g(x, y) \leq h(x, y)$, for all $(x, y) \in X \times Y$,
(ii) $f(x, y)$ is lower semicontinuous on X, for each $y \in Y$,
(iii) $g(x, y)$ is quasiconcave on Y, for each $x \in X$,
(iv) $h(x, y)$ is lower semicontinuous on $X \times Y$ and $h(x, y)$ is quasiconvex on X, for each $y \in Y$.
Then
\[
\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \inf_{K \in \mathcal{K}} \sup_{y \in Y} \min_{x \in K} h(x, y),
\] (2.1)
where \(\mathcal{K} = \{ K \subset X \mid K \text{ is compact convex subsets of } X \} \). If, in addition, \(X \) is compact, then
\[
\min_{x \in X} \sup_{y \in Y} f(x, y) \leq \sup_{y \in Y} \min_{x \in X} h(x, y).
\] (2.2)

Proof. We can assume that the right-hand side of (2.1) is not \(+\infty\). Choose a real number \(t \) such that
\[
t > \inf_{K \in \mathcal{K}} \sup_{y \in Y} \min_{x \in K} h(x, y).
\]
let \(A = \{(x, y) \in X \times Y : g(x, y) \leq t\} \) and \(B = \{(x, y) \in X \times Y : h(x, y) \leq t\} \). Then
(a) for each \(x \in X \), by (iii), set \(\{y \in Y : (x, y) \notin A\} \) is convex or empty and satisfies Condition (a) of Theorem 2,
(b) for each \(y \in Y \), by (i), set \(\{x \in X : (x, y) \in A\} \subseteq \{x \in X : f(x, y) \leq t\} = X_y \), by (ii), \(X_y \) is closed and satisfies Condition (b) of Theorem 2. It is easy to verify that \(B \) is closed in \(X \times Y \), \(B \subset A \), and for any \(y \in Y \), set \(\{x \in X : (x, y) \in B\} \) is convex,
(c) let \(K \) be a compact convex subset of \(X \) such that
\[
t > \sup_{y \in Y} \min_{x \in K} h(x, y).
\]
Then for any \(y \in Y \), the set \(\{x \in K : h(x, y) \leq t\} \) is nonempty and convex. Thus, by Theorem 2,
\[
\bigcap_{y \in Y} X_y \cap K \neq \emptyset; \tag{2.3}
\]
that is, there exists \(x_0 \in K \) such that
\[
f(x_0, y) \leq t, \quad \text{for all } y \in Y. \tag{2.4}
\]
This shows that
\[
\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq t, \tag{2.5}
\]
and hence, (2.1) is proved.

We shall establish the following similarities of the proof of Theorem 3.

Theorem 4. Let \(f, g, h : X \times Y \rightarrow R \) be as in Theorem 3. Then for each \(\lambda \in R \), one of the following situations holds:
(a) there exists \(x_0 \in X \) such that \(f(x_0, y) \leq \lambda \), for all \(y \in Y \),
(b) there exists \(y_0 \in Y \) such that \(h(x, y_0) > \lambda \), for all \(x \in X \).

Remark 2. The condition of Theorem 4 is different from [4, Theorem 6.2], where \(X \) or \(Y \) need not be compact.

The following three minimax theorems are obtain from Theorem 3 as special cases by taking \(f = g \), \(f = h \), \(f = g = h \).

Corollary 5. Let \(f, h : X \times Y \rightarrow R \) be two real-valued functions satisfying:
(i) \(f(x, y) \leq h(x, y) \), for all \((x, y) \in X \times Y \),
(ii) \(f(x, y) \) is lower semicontinuous on \(X \), for each \(y \in Y \),
(iii) \(f(x, y) \) is quasiconcave on \(Y \), for each \(x \in X \),
(iv) \(h(x, y) : X \times Y \rightarrow R \) is lower continuous and \(h(x, y) \) is quasiconvex on \(X \), for each \(y \in Y \).
Then,
\[\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \inf_{K \subset R} \sup_{y \in Y} \min_{x \in K} h(x, y). \]

If \(X \) is compact, then
\[\min_{x \in X} \sup_{y \in Y} f(x, y) \leq \sup_{y \in Y} \min_{x \in X} h(x, y). \]

Corollary 6. Let \(f, g : X \times Y \to \mathbb{R} \) be two real-valued functions satisfying:

(i) \(f(x, y) \leq g(x, y) \), for all \((x, y) \in X \times Y,\)
(ii) \(f(x, y) \) is lower continuous on \(X \), for each \(y \in Y,\)
(iii) \(g(x, y) \) is quasiconcave on \(Y \), for each \(x \in X,\)
(iv) \(g(x, y) : X \times Y \to \mathbb{R} \) is lower continuous and \(g(x, y) \) is quasiconvex on \(X \), for each \(y \in Y.\)

Then,
\[\inf_{x \in X} \sup_{y \in Y} f(x, y) \leq \inf_{K \subset R} \sup_{y \in Y} \min_{x \in K} g(x, y). \]

If \(X \) is compact, then
\[\min_{x \in X} \sup_{y \in Y} f(x, y) \leq \sup_{y \in Y} \min_{x \in X} g(x, y). \]

Corollary 7. Let \(f : X \times Y \to \mathbb{R} \) be a real-valued function verifying:

(i) \(f(x, y) \) is quasiconcave on \(Y \), for each \(x \in X,\)
(ii) \(f(x, y) \) is quasiconvex on \(X \) for each \(y \in Y,\) and \(f(x, y) : X \times Y \to \mathbb{R} \) is lower continuous.

Then,
\[\inf_{x \in X} \sup_{y \in Y} f(x, y) = \inf_{K \subset R} \sup_{y \in Y} \min_{x \in K} f(x, y). \]

If \(X \) is compact, then
\[\min_{x \in X} \sup_{y \in Y} f(x, y) = \sup_{y \in Y} \min_{x \in X} f(x, y). \]

Remark 3. Corollary 7, that is, [3, Theorem 4], thus, Theorem 3, Corollary 5, and Corollary 6 are all the generalization of [1, Theorem 4].

Theorem 8. Let \(E \) and \(F \) be Hausdorff topological vector spaces, \(X \subset E, \ Y \subset F \) be nonempty convex subsets, and \(Y \) be compact. Let \(f, g : X \times Y \to \mathbb{R} \) be two real-valued function such that

(i) \(f(x, y) \leq g(x, y) \), for all \((x, y) \in X \times Y,\)
(ii) \(f(x, y) \) is quasiconvex on \(X \), for each \(y \in Y,\)
(iii) \(g(x, y) \) is upper continuous on \(Y \), for each \(x \in X.\)

If \(T \) is an upper semicontinuous set-valued mapping defined on \(X \) such that \(T \) is a nonempty closed convex subset of \(Y \) for each \(x \in X, \) then
\[\inf_{y \in T_x} f(x, y) \leq \max_{y \in Y} \min_{x \in X} g(x, y). \tag{2.6} \]

Remark 4. By taking Theorem 8, \(f = g, \) one gets [2, Theorem 1].

Proof. We can choose a real number \(t \) such that
\[\inf_{y \in T_x} f(x, y) > t, \]

let \(A = \{(x, y) \in X \times Y : f(x, y) \geq t\}, \ B = \{(x, y) \in X \times Y : y \in T_x\}, \) and \(Y_x = \{y \in Y : g(x, y) \geq t\} \) for each \(x \in X. \) It is easy to verify that \(A \) and \(Y_x \) satisfy Conditions (a) and (b) of Theorem 2, and that \(B \) is closed in \(X \times Y \) and satisfies Condition (c) of Theorem 2 by taking \(K = Y. \) Thus, by Theorem 2, \(\cap_{x \in X} Y_x \cap Y \neq \emptyset, \) that is, there exists \(y_0 \in K \) such that
\[g(x, y_0) \geq t, \tag{2.7} \]
for all \(x \in X \), this shows that
\[
\max_{y \in Y} \inf_{x \in X} g(x, y) \geq t,
\]
and therefore, (2.6) is proved.

By Theorem 8, we can obtain the following corollaries and theorems.

Corollary 9. Let \(f, g, T \) be as in Theorem 8. Assume further, that given \(\lambda \in \mathbb{R} \), we have
\[
\min_{x \in T x} f(x, y) \geq \lambda,
\]
for all \(x \in X \). Then there exists \(y_0 \in Y \) such that \(g(x, y_0) \geq \lambda \), for all \(x \in X \).

Remark 5. Corollary 9 is similar to the result of [4, Theorem 13.41.

Theorem 10. Let \(E \) be a Hausdorff topological vector space, \(X \subset Y, Y \subset E \) be nonempty convex subsets, and \(X \) be compact. Let \(f, g : X \times Y \rightarrow \mathbb{R} \) be two real-valued function satisfying Conditions (i)–(iii) of Theorem 8. Then,
\[
\inf_{x \in X} f(x, y) \leq \sup_{y \in Y} \inf_{x \in X} g(x, y).
\]

Theorem 11. Let \(E \) be a Hausdorff topological vector space, \(X \subset Y, Y \subset E \) be nonempty convex subsets, and \(X \) be compact. Let \(f : X \times Y \rightarrow \mathbb{R} \) be a real-valued function such that
\begin{enumerate}
\item \(f(x, y) \) is quasiconvex on \(X \), for each \(y \in Y \),
\item \(f(x, y) \) is upper continuous on \(Y \), for each \(x \in X \).
\end{enumerate}
Then,
\[
\inf_{x \in X} f(x, y) \leq \sup_{y \in Y} \inf_{x \in X} f(x, y).
\]

Corollary 12. Let \(f, g : X \times Y \rightarrow \mathbb{R} \) be two real-valued function verifying
\begin{enumerate}
\item \(f(x, y) \leq g(x, y) \), for all \((x, y) \in X \times Y \),
\item \(f(x, y) \) is lower continuous on \(Y \), for each \(x \in X \),
\item \(g(x, y) \) is quasiconcave on \(X \), for each \(y \in Y \).
\end{enumerate}
Then,
\[
\inf_{y \in Y} \sup_{x \in X} f(x, y) \leq \sup_{x \in X} g(x, y).
\]

References