
Journal of Discrete Algorithms 8 (2010) 117–130

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Finite automata based algorithms on subsequences and supersequences
of degenerate strings

Costas Iliopoulos a,∗, M. Sohel Rahman a, Michal Voráček b, Ladislav Vagner b

a Algorithm Design Group, Department of Computer Science, King’s College London, Strand, London WC2R 2LS, United Kingdom
b Department of Computer Science & Engineering, Czech Technical University, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2008
Accepted 1 October 2008
Available online 22 September 2009

Keywords:
Finite automata
Degenerate strings
Longest common subsequence
Shortest common supersequence
Constrained longest common subsequence

In this paper, we present linear-time algorithms for the construction two novel types of
finite automata and show how they can be used to efficiently solve the Longest Common
Subsequence (LCS), Shortest Common Supersequence (SCS) and Constrained Longest Common
Subsequence (CLCS) problems for degenerate strings.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present efficient algorithms to construct two novel types of finite automata on degenerate strings,
namely the subsequence automaton (SubAtm) and the supersequence automaton (SuperAtm) and show how they can be used to
efficiently solve three classic problems in computer science. In particular, we consider the classic and well-studied Longest
Common Subsequence (LCS) and the Shortest Common Supersequence (SCS) problems along with a recent interesting variant
of the former, namely the Constrained LCS (CLCS) problem. Note however that, all the problems considered here are in
a different setting, i.e., for degenerate strings. We first present algorithms for the construction of the above-mentioned
two automata, both of which work in linear time with respect to the length of the given degenerate strings. Notably, the
subsequence automaton for degenerate strings can be seen as an extension of subsequence automaton for (normal) strings
also known as direct acyclic subsequence graph (DASG) in the literature. A finite automaton accepting all subsequences of a
given string was first mentioned by Hébrard and Crochemore [9]. Baeza-Yates proposed its right to left construction [3] and
Troníček and Melichar presented its left to right construction [24]. Using the efficient construction of SubAtm and SuperAtm,
we then present efficient algorithms for the LCS, SCS and CLCS problems for degenerate strings.

LCS and SCS problems are two heavily studied classic problems in computer science, both having extensive applications
in diverse areas. Given a string, a subsequence is formed by deleting some of the characters of the string without disturbing
the relative positions of the remaining characters. In such a case, the given string is said to be the supersequence of
the formed subsequence. Given a set of strings, the LCS problem aims to compute a subsequence of maximum length,
which is common to all the strings of the set. On the other hand, the goal of the SCS problem is to compute a string of
minimum length having each of the strings of the set as its subsequence. The LCS length provides a convenient measure
of similarity for long molecules, considered as nucleotide sequences [21], and also for arbitrary sequential objects, such

* Corresponding author.
E-mail addresses: csi@dcs.kcl.ac.uk (C. Iliopoulos), sohel@dcs.kcl.ac.uk (M.S. Rahman), voracem@fel.cvut.cz (M. Voráček), xvagner@fel.cvut.cz (L. Vagner).
1570-8667/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2008.10.004

https://core.ac.uk/display/82223694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:csi@dcs.kcl.ac.uk
mailto:sohel@dcs.kcl.ac.uk
mailto:voracem@fel.cvut.cz
mailto:xvagner@fel.cvut.cz
http://dx.doi.org/10.1016/j.jda.2008.10.004


118 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
as files. Another application of LCS can be found in text editing dealing with the problem of converting one word into
another by a minimum number of edit operations – deletion and insertion of a letter, replacement of a letter with another,
transposition of neighboring letters [26,16]. Data compression [20] requires storing a large number of similar files with
maximum space economy. This can be achieved by using the file LCS or SCS with a collection of shorter codes for restoring
the files. In cluster analysis, LCS can be used to estimate the closeness of an object to a template [17]. SCS and LCS problems
find applications in mechanical engineering [15] as well. Here, SCSs play a special role: it is used to identify the shortest
standardized technological process for a given set of separate technological processes, viewed as sequences of processing
operations [22,4]. Apart from above classic references, applications of LCS and SCS, especially in bioinformatics, can be found
in [8] and references therein.

The LCS problem for k strings (k � 2) (k-LCS) was first shown to be NP-hard [18] and later proved to be hard to be
approximated [14]. More specifically, Jiang and Li, in [14], showed that there exists a constant δ > 0 such that if k-LCS
problem has a polynomial time approximate algorithm with performance ratio nδ , then P = N P . The restricted but probably
the more studied problem that deals with two strings (2-LCS) has been studied extensively (see [5] for a survey). The classic
dynamic programming solution to 2-LCS problem, invented by Wagner and Fischer [26], has O (n2) worst case running time,
assuming, for the sake of simplicity, that the given strings are of equal length, n. The dynamic programming approach was
generalized by Itoga [13] to get a solution for k-LCS problem in O (knk) time. Like the k-LCS problem, k-SCS problem is
also NP-hard and hard to be approximated [14]. Interestingly, the 2-SCS problem can be easily solved from the solution of
corresponding 2-LCS problem: in the solution of LCS, we just need to insert the ‘non-lcs’ characters preserving the order of
the characters. Also, Timkovsky [23] showed that SCS problem can be solved using the dynamic programming approach in
the same running time as LCS problem.

CLCS problem, on the other hand, is a relatively newer variant of the classic LCS problem. In CLCS, the computed longest
common subsequence must also be a supersequence of a given string z [2,1,25]. This problem itself is interesting from the
combinatorial point of view but its main motivation comes from bioinformatics: in the computation of the homology of
two biological sequences it is important to take into account a common specific or putative structure [25]. This problem
was introduced, quite recently, by Tsai in [25], where an algorithm was presented solving the problem in O(n4r) time
complexity. Here r = |z|. Later, Chin et al. [6] and independently, Arslan and Eğecioğlu [2,1] presented improved algorithm
with O(n2r) time and space complexity. Very recently, Iliopoulos and Rahman [11] presented another efficient algorithm for
CLCS problem having time complexity O (Rr log log n), where R is the number of ordered matches between the two (main)
strings. To the best of our knowledge, there has not been any work on the general version of the CLCS problem, i.e., the
k-CLCS problem in the literature.

In this paper, we show how the k-LCS, k-SCS and k-CLCS problems for degenerate strings can be solved efficiently using
the two finite automata SubAtm and SuperAtm. The motivation to consider degenerate strings comes from the fact that these
are extensively used in molecular biology to express polymorphism in DNA sequences, e.g. the polymorphism of protein
coding regions caused by redundancy of the genetic code or polymorphism in binding site sequences of a family of genes.
To the best of our knowledge, the only work that directly relates to our research is the very recent paper of Iliopoulos
et al. [12], where LCS and CLCS problems on degenerate strings were considered and a number of efficient algorithms were
presented. However, in [12], the authors only consider the two-strings version of both the problems and do not consider
the SCS problem. Furthermore, to achieve efficiency, the authors in [12] assumes that the sets of letters in the degenerate
strings are given in sorted order.

The rest of the paper is organized as follows. In Section 2, we present the notations and definitions. In Sections 3 and 4
we present our main results. In particular, we present the construction algorithms for SubAtm and SuperAtm in Section 3 and
in Section 4, we show how they can be used to solve LCS, SCS and CLCS for degenerate strings. Finally, we briefly conclude
in Section 5.

2. Preliminaries

An alphabet Σ is a non-empty finite set of symbols. A string over a given alphabet is a finite sequence of symbols. The
empty string is denoted by ε. The set of all strings over an alphabet Σ (including empty string ε) is denoted by Σ∗ .

Definition 1. A string x̃ = x̃1 x̃2 . . . x̃n is said to be degenerate, if it is built over the potential 2|Σ | − 1 non-empty sets of
letters belonging to Σ . We say that x̃i ∈ {P (Σ) \ ∅} = P +(Σ) and |x̃i | denotes the cardinality of x̃i . The empty degenerate
string is denoted ε̃.

In what follows, the set containing the letters a and c will be denoted by [a, c] and the singleton [c] will be simply
denoted by c for the ease of reading. Also, we use the following convention: we use normal letters like x to denote normal
strings. The degenerate strings are denoted by normal letters with tilde accent, e.g. x̃.

Definition 2. The Language represented by degenerate string x̃ is the set L(x̃) = {u | u = u1u2 . . . un, u j ∈ x̃ j, 1 � j � n, u ∈ Σ∗}.
A string u is said to be an element of degenerate string x̃, denoted u ∈ x̃, if it is an element of language represented by x̃.
The language represented by ε̃ is L(ε̃) = {ε}.



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 119
We define the concatenation operation on the set of degenerate strings in the usual way: if x̃ and ỹ are degenerate
strings over Σ , then the concatenation of these strings is x̃ ỹ. The length |x̃| of degenerate string x̃ is the number of its sets
(of letters). Note that, there may exist singleton sets. A degenerate string ṽ is a factor (resp. prefix, suffix) of a degenerate
string x̃ if x̃ = ũ ṽ w̃ (resp. x̃ = ṽ w̃ , x̃ = ũ ṽ).

Definition 3. A (normal) string v = v1 . . . v� of length � is said to occur in a degenerate string x̃ = x̃1 x̃2 . . . x̃n at position
i,1 � i � n, if, and only if, v j ∈ x̃i−�+ j , for all 1 � j � �. The position of the first occurrence of v in x̃ is denoted by foccur(v, x̃).

Definition 4 (Sets of Subsequences of Degenerate Strings). For a set of k � 2 degenerate strings, S = {x̃1, x̃2, . . . , x̃k} and degen-
erate string z̃ over an alphabet Σ , where x̃ j = x̃ j1 x̃ j2 . . . x̃ jn j for 1 � j � k, we define the followings sets:

(i) Set of all subsequences of x̃ j :

Sub(x̃ j) = {
u ∈ Σ∗ | u ∈ x̃ ji1 x̃ ji2 · · · x̃ jim ∧ x̃ j = x̃ j1 x̃ j2 · · · x̃ ji1−1x̃ ji1

x̃ ji1+1 · · · x̃ ji2−1x̃ ji2

x̃ ji2+1 · · · x̃ jim−1x̃ jim

x̃ jim+1 · · · x̃ jn,

x̃ ji ∈ P +(Σ), 1 � i � n, 1 � i1 < i2 < · · · < im � n, m � 0
}
.

(ii) Set of all common subsequences of S:

CSub(S) =
{

u ∈ Σ∗
∣∣∣ k∧

j=1

u ∈ Sub(x̃ j)

}
.

(iii) Set of all longest common subsequences of S:

LCSub(S) = {
u ∈ Σ∗ | u ∈ CSub(S) ∧ ∀v ∈ CSub(S): |v| � |u|}.

(iv) Set of all constrained common subsequences of S with respect to z̃:

CCSub(S, z̃) = {
u ∈ Σ∗ | u ∈ CSub(S) ∧ ∃v: v ∈ z̃ ∧ v ∈ Sub(u)

}
.

(v) Set of all constrained longest common subsequences of S with respect to z̃:

CLCSub(S, z̃) = {
u ∈ Σ∗ | u ∈ CCSub(S, z̃) ∧ ∀v ∈ CCSub(S, z̃): |v| � |u|}.

Definition 5 (Sets of Supersequences of Degenerate Strings). For a set of k � 2 degenerate strings, S = {x̃1, x̃2, . . . , x̃k}, over an
alphabet Σ , where x̃ j = x̃ j1 x̃ j2 . . . x̃ jn j for 2 � j � k, we define followings sets:

(i) Set of all supersequences of x̃ j :

Super(x̃ j) = {
v ∈ Σ∗ | ∃ u ∈ x̃ j: u ∈ Sub(v)

}
.

(ii) Set of all common supersequences of S:

CSuper(S) =
{

u ∈ Σ∗
∣∣∣ k∧

j=1

u ∈ Super
(
x̃ j

)}
.

(iii) Set of all shortest common supersequences of S:

SCSuper(S) = {
u ∈ Σ∗ | u ∈ CSuper(S) ∧ ∀v ∈ CSuper(S): |v| � |u|}.

Definition 6 (Maximum Length Function, Minimum Length Function). Let L be a language over an alphabet Σ .

(i) The Maximum Length Function, MaxLen : P (Σ∗) �→ P (Σ∗), is defined for L as

MaxLen(L) = {
w | w ∈ L ∧ ∀v ∈ L: |v| � |w|}.

(ii) The Minimum Length Function, MinLen : P (Σ∗) �→ P (Σ∗), is defined for L as

MinLen(L) = {
w | w ∈ L ∧ ∀v ∈ L: |v| � |w|}.



120 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
We now give brief definitions to the related concepts of finite automata. A nondeterministic finite automaton M is a
quintuple (Q ,Σ, δ, I, F ), where: Q is a finite set of states, Σ is an input alphabet, δ is a mapping δ : Q × (Σ ∪ {ε}) �→
P (Q ) called a state transition function, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. A deterministic
finite automaton M is a special case of nondeterministic finite automaton, such that, transition mapping is a function δ:
Q × Σ �→ Q and there is only one initial state q0 ∈ Q . The left language of state q of finite automaton M , denoted

←−L M(q),
is a set of strings, for which there exists a sequence of transitions from the initial state to state q. Language accepted by
finite automaton M , denoted L(M), is a set of words, for which there exists a sequence of transitions from the initial state
to some of the final states. The depth of state q of acyclic finite automaton M is the length of the longest string in its left
language.

We conclude this section by giving a formal definition of the LCS, the SCS and the CLCS problem for degenerate strings
along with an example.

Problem “DLCS” (LCS Problem for Degenerate Strings) 1. Given a set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k}, over an
alphabet Σ , the DLCS problem for S is to compute the set LCSub(S).

Problem “DSCS” (SCS Problem for Degenerate Strings) 1. Given set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k}, over an
alphabet Σ , the DSCS problem for S is to compute the set SCSuper(S).

Problem “DCLCS” (CLCS Problem for Degenerate Strings) 1. Given set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k} and degen-
erate string z̃ over an alphabet Σ , the DCLCS problem for S and z̃ is to compute the set CLCSub(S, z̃).

Example 7. Suppose, we are given the sets of degenerate strings S1 = {x̃1 = aba[b, c], x̃2 = abb[a, c]} and S2 = { ỹ1 =
b[a, c], ỹ2 = [a, c]b}. The table on the left shows an example of an LCS of S1 and the table on the right shows an example
of an SCS of S2.

x̃1 a b a [b, c]
x̃2 a b b [a, c]

LCS a b b

ỹ1 b [a, c]
ỹ2 [a, c] b

SCS a b a

Example 8. Suppose, we are given set of degenerate strings S3 = {x̃ = [a, f ]bddaaa, ỹ = [a, c]ba[c,d]aa[d, f ]} and degenerate
string z̃ = b[c,d]d. The table on the left shows an example of LCS of S3 and the table on the right shows an example of
CLCS of S3 with respect to degenerate string z̃. Note that although the LCS is of length 5 the CLCS is of length 4 only.

x̃ [a, f ] b d d a a a
ỹ [a, c] b a [c,d] a a [d, f ]

LCS a b d a a

x̃ [a, f ] b d d a a a
ỹ [a, c] b a [c,d] a a [d, f ]
z̃ b [c,d] d

CLCS a b d d

3. Subsequence and supersequence automata for degenerate strings

In this section, we present two novel types of finite automata, namely the subsequence automaton (SubAtm), which accepts
the set of all subsequences of a given degenerate string and the supersequence automaton (SuperAtm), which accepts the set
of all supersequences of a given degenerate string. Both SubAtm and SuperAtm are deterministic and minimal and its number
of states and transitions are linear with respect to the length of the given degenerate strings. Moreover, SubAtm is acyclic.
Next, we present online linear time algorithms to construct SubAtm and SuperAtm.

The set of all subsequences and (resp. supersequences) of a given degenerate string is a regular language and therefore,
according to basic principles of finite formal language theory [10], it is possible to construct a finite automaton accepting
the set. The considered sets can be expressed by simple regular expressions, which can be easily transformed by standard
procedure [10] into nondeterministic finite automata with linear number of states with respect to the length of the input
strings. For our case however, we need deterministic finite automata instead of the nondeterministic ones. These can be
obtained by determinization of NFAs. However, after the determinization, the resulting automaton, in general, can have up
to 2n states, not to mention the unacceptable time requirements of the determinization process.

3.1. Subsequence automaton

The subsequence automaton, SubAtm for degenerate string x̃ = x̃1 x̃2 . . . x̃n , can be defined as M = (Q ,Σ, δ,q0, F ), where
Q = F = {q0,q1,q2, . . . ,qn} and δ(qi, s) = q j , j = min{k | s ∈ x̃k, i + 1 � k � n} if {k | s ∈ x̃k, i + 1 � k � n} = ∅; otherwise
δ(qi, s) is undefined. For an example of SubAtm, see Fig. 1 (automata M1, M2).

Next, we present an online algorithm to compute SubAtm. The algorithm builds SubAtm from left to right, i.e., in each
step, SubAtm(x̃1 x̃2 . . . x̃k) is extended to SubAtm(x̃1 x̃2 . . . x̃k+1). This operation is performed by adding a new state qk+1, on



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 121
Fig. 1. Deterministic finite automata M1, M2, M ′ and M , where L(M1) = Sub(x̃), L(M2) = Sub( ỹ), L(M1) = L(M1) ∩ L(M2), L(M) = MaxLen(L(M ′)) =
LCSub(x̃, ỹ) = {abc,abb,aba}, for x̃ = aba[b, c] and ỹ = abb[a, c].

the left of the automaton and then, by adding new transitions for all symbols s ∈ x̃k+1 leading from all states q� not
having transition for s, where 0 � � � k. The new transitions are added as follows. Firstly, let us consider a prefix x̃[1..k] =
x̃1 x̃2 . . . x̃i x̃i+1 . . . x̃k , such that, s ∈ x̃i and s /∈ x̃l , where 1 � i < l � k < n. Then, it holds that, δ(ql, s) is undefined for i � l � k.
Secondly, let us consider extended prefix x̃[1..k + 1] = x̃1 x̃2 . . . x̃i x̃i+1 . . . x̃k x̃k+1, where x̃k+1 is such that s ∈ x̃k+1. Then it
holds that δ(ql, s) = qk+1 for i � l � k. Therefore, for the added symbol s, it is sufficient to add a transition only to the states
qi,qi+1, . . . ,qk . This can be easily ensured by memorizing the leftmost state (its index) for each symbol of the alphabet not
having the appropriate transition. The steps are formally presented in Algorithm 1.

Algorithm 1. Online construction of SubAtm.

The basic properties of the subsequence automaton and of Algorithm 1 are summarized in the following lemmas.

Lemma 9. Let M = (Q ,Σ, δ,q0, F ) be automaton output by Algorithm 1, given the degenerate string x̃ = x̃1 x̃2 . . . x̃n as the input.
Then, for all q ∈ Q and u ∈ Σ∗ , it holds that(

u ∈ ←−L M(q) ∧ depth(q) = i
) ⇔ (

u ∈ Sub(x̃) ∧ foccur(u, x̃) = i
)
.

Proof. We first prove the “if” part by applying induction on the number of states. (Note that depth(qi) = i.)

(i) Base case: i = 0. The construction gives
←−L M(q0) = {ε} and by the definition of Sub(x̃), it holds ε ∈ Sub(x̃).

(ii) Induction step: Let us assume that the assertion holds for all states qi , where 0 � i � k − 1. We show that it holds
for qk as well. Now, consider a u ∈ ←−L M(qk). Then, there exists a sequence of transitions δ(q0, u1) = q j1 , δ(q j1 , u2) =
q j2 , . . . , δ(q jm−1 , um) = q jm = qk . The construction gives um ∈ x̃k and by the hypothesis, we have u1, . . . , um−1 ∈ Sub(x̃)
and foccur(u1, . . . , um−1, x̃) = jm−1. The algorithm constructs all the transitions in the way they are oriented from a
state with lower number to a state with higher number, and hence jm−1 < k. Hence by the definition of subsequence
we get u1, . . . , um−1, um ∈ Sub(x̃), u occurs at position k in x̃. Moreover, according to the construction, the occurrence
of um at position k in the generalized suffix x̃ jm−1+1, . . . , x̃n is the first one. Hence, it holds that foccur(u, x̃) = k.

We now prove the “only if” part by induction on the length � of u.



122 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
Fig. 2. Deterministic finite automata M1, M2, M ′ and M , where L(M1) = Super(x̃), L(M2) = Super( ỹ), L(M ′) = L(M1) ∩ L(M2), L(M) = MinLen(L(M ′)) =
SCSuper(x̃, ỹ) = {aba,abc, cba, cbc,bcb,bab}, for x̃ = b[a, c], ỹ = [a, c]b.

(i) Base case: � = 1. Let us consider u = u1 and foccur(u1, x̃) = i. Then, there exists a transition δ(q0, u1) = qi , what is given
by the construction. As a consequence, we have u1 ∈ ←−L M(qi).

(ii) Induction step: Let us assume that the assertion holds for all strings u with length 0 � � � k − 1. We now show that it
holds also for u = u1u2 . . . uk . Let us consider u ∈ Sub(x̃)∧ foccur(u, x̃) = ik . By hypothesis we have u1u2 . . . uk−1 ∈ Sub(x̃)
and foccur(u1u2 . . . uk−1, x̃) = ik−1 and u1u2 . . . uk−1 ∈ ←−L M(qik−1). By the definition of foccur, it holds that ik−1 < ik .
Furthermore we know that there is a first occurrence of uk at position ik in the suffix x̃ik−1+1, . . . , x̃n . But from the
construction, there exists a transition δ(qik−1 , uk) = qik . Therefore, it holds

←−L M(qik−1 ) · {uk} ⊆ ←−L M(qik ) and finally u ∈←−L M(qik ). �
Lemma 10. Given a degenerate string x̃ of length n over an alphabet Σ , Algorithm 1 correctly constructs deterministic finite automaton
M accepting language L(M) = Sub(x̃) in O(n|Σ |) time using O(|Σ |) additional space. M is acyclic, minimal and has exactly n + 1
states and O(|Σ |n) transitions.

Proof. Since all the states of M are final, by Lemma 9, we must have L(M) = Sub(x̃).
Now, let us consider the number of states and transitions of M . The algorithm first creates the initial state and then

it creates one new state in each step. The total number of steps is given by the length n of x. Hence the total number
of states is n + 1. Now, M can get the maximum number of transitions only when all symbol-sets of x̃ are equal to σ .
Each step of the algorithm adds exactly |σ | transitions leading from the current last state to the new added state of the
automaton.

Next, we prove that M is deterministic. The values of the array leftm[s] for a given s divide the interval 0..n of the
numbers of states into disjoint subintervals. Each state with the number within the subinterval is visited and a transition
for s is added exactly once. Therefore, M remains deterministic.

Now we prove that M is acyclic and minimal. Clearly M is acyclic because the algorithm adds transitions to states only
in the way that a transition leads from a state with a lower number to a state with a higher number.

The longest subsequence of x̃ is consisted of a letter from each of its sets (of letters). Therefore, in the automaton, there
must exists a sequence of transitions of length n. Now since the automaton is acyclic, the automaton has to have at least
n + 1 states. Therefore, since we have already proven that M has exactly n + 1 states, M must be minimal.

Finally, we concentrate on the time and space complexities of the algorithm. One iteration of the outer loop beginning
at line 4 adds one state and certain number of transition. The loop is performed n times. However, as we have already
established, the total number of transitions is in the worst case n|Σ | (see above). Hence the total time complexity is
O(n|Σ |).

The additional space requirement is only due to the array leftm[s] of size |Σ |. Hence, the space complexity of the
algorithm is O (|Σ |). �
3.2. Supersequence automaton

The supersequence automaton, SuperAtm for degenerate string x̃ = x̃1 x̃2 . . . x̃ can be defined as M = (Q ,Σ, δ,q0, F ),
where Q = {q0,q1,q2, . . . ,qn}, F = {qn} and δ(qi−1, s) = qi , for all s ∈ x̃i and δ(qi−1, s) = qi−1, otherwise, where 1 � i � n,
and δ(qn, s) = qn for all s ∈ Σ . For an example of SuperAtm, see Fig. 2 (automata M1, M2).

The algorithm for the online construction of SuperAtm is presented in Algorithm 2. It is easy to realize that Algorithm 2
is a straightforward realization of the definition of SuperAtm.



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 123
Algorithm 2. Construction of SuperAtm.

The basic properties of the SuperAtm and Algorithm 2 are summarized in the following lemma.

Lemma 11. Given a degenerate string x̃ of length n, Algorithm 2 correctly constructs a deterministic finite automaton M accepting
language L(M) = Super(x̃) in O(|Σ |n) time. M has n + 1 states and |Σ |(n + 1) transitions.

Proof. First, we prove correctness of the algorithm. Then we prove the time and space complexities of the algorithm before
considering the size of the resulting automaton.

(i) Correctness
Clearly it is sufficient to prove that u ∈ L(M) ⇔ u ∈ Super(x̃), for all u ∈ Σ, x̃ ∈ P +(Σ)∗ .
First, we define automata M and M ′ , both based on the degenerate string x̃ = x̃2 . . . x̃n . M is defined as a quintuple
M = (Q ,Σ, δ,q1, F ), where Q = {q1, . . . ,qn}, F = {qn} and δ = {∀i ∈ [2..n]: (∀s ∈ Σ \ x̃i : δ(qi−1, s) = qi−1,∀s ∈ x̃i :
δ(qi−1, s) = qi), ∀s ∈ Σ : δ(qn, s) = qn .
M ′ , on the other hand, is defined as a quintuple, M ′ = (Q ′,Σ, δ′,q0, F ), where Q ′ = Q ∪ {q0} and δ′ = δ ∪ {∀s ∈
Σ \ x̃1: δ(q0, s) = q0,∀s ∈ x̃1: δ(q0, s) = q1}.
We further define automaton M ′′ constructed for x̃ = ε̃, as M ′′ = (Q ′′,Σ, δ,q0, F ′), where Q ′′ = {q0}, F ′′ = {q0} and
δ′′ = {∀s ∈ Σ: δ(q0, s) = q0}. Now we are ready to prove the correctness of the lemma. We first prove the “if” part and
then we consider the “only if” part. Both the parts are proved by induction on the length � of x̃.
“⇒”
(a) Base case: � = 0. We need to consider string x̃ = ε̃ and hence the automaton M ′′ . By construction we have L(M ′′) =

Σ∗ and by Definition 4, we have Super(ε̃) = Σ∗ . Hence L(M ′′) = Super(ε̃).
(b) Induction step: We assume it holds that u ∈ L(M) ⇒ u ∈ Super(x̃), for all u ∈ Σ, x̃ ∈ P +(Σ)∗ , where |x̃| < n. Now,

our strategy is to consider string x̃2 . . . x̃n and automaton M for which the hypothesis holds and, using that, we will
show that it also holds for string x̃1 . . . x̃n and automaton M ′ . By the induction hypothesis, M accepts strings of the
form u = w1s2 w2s3 . . . sn wn , where si ∈ x̃i , w j ∈ Σ∗ . By the construction, it holds that L(M ′) = (Σ \ x̃i)

∗ x̃1 L(M).
Hence the string accepted by M ′ is of the form u′ = v0s1u, i.e., u′ = v0s1 w1s2 v2s3 . . . sn wn , where v0 ∈ (Σ \ x̃1)

∗ ,
s1 ∈ x̃1. Therefore, we have u ∈ Super(x̃1 . . . x̃n).

“⇐”
(a) Base case: Similar to the “if” part.
(b) Induction step: We assume it holds that u ∈ Super(x̃) ⇒ u ∈ L(M), for all u ∈ Σ, x̃ ∈ P +(Σ)∗ , where |x̃| < n. As

above, our strategy is to consider string x̃2 . . . x̃n and automaton M for which the proposition holds and, using that,
we will show that it also holds for string x̃1 . . . x̃n and automaton M ′ . Let us have string u ∈ Super(x̃1 . . . x̃n) and we
can consider w.l.o.g. the string is of the form u′ = v0s1 v1s2 . . . sn wn , where vi−1 ∈ (Σ \ x̃i)

∗ wn ∈ Σ∗ and si ∈ x̃i , so
we consider the first occurrence of s1 . . . sn in u. Since by the construction we have L(M ′) = (Σ \ x̃i)

∗ x̃1 L(M) and
since according to induction preposition the string u = v1s2 . . . vn wn is accepted by automaton M , it must hold that
the string u′ = v0s1u = v0s1 v1s2 . . . sn wn is accepted by M ′ .

(ii) Time complexity
The loop at line 3 is performed n times and the total number of transitions created in a single iteration (either in loop
at line 6 or in loop at line 7) is exactly |Σ |. Hence the total time complexity is O(|Σ |n).

(iii) Size of the resulting automaton:
By the construction, one state are created during initialization and n states are created by the for loop at line 3. Exactly
n|Σ | transitions in total are created the by for loops at line 6 and at line 7. Another n transitions are created by for
loop at line 9. Hence the resulting automaton has n + 1 states and (n + 1)|Σ | transitions. �



124 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
4. Algorithms for LCS, SCS and CLCS

In this section, we show how we can use SubAtm and SuperAtm to efficiently solve Problems DLCS, DSCS and DCLCS.
Both the algorithms to solve Problems DLCS and DSCS work in O(|Σ |∏k

j=1 n j) time and space. The algorithm to solve

Problem DCLCS on the other hand works in O(|Σ |(∏k
j=1 n j)r) time and space. In what follows, we discuss all the algorithms

simultaneously, because, they basically follow a common scheme, differing only in particular steps. The algorithms are based
on Lemmas 12, 13 and 14, respectively.

Lemma 12. Let S = {x̃1, x̃2, . . . , x̃k} be a set of degenerate strings over an alphabet Σ , then the following holds:

LCSub(S) = MaxLen

(
k⋂

j=1

Sub(x̃ j)

)
.

Lemma 13. Let S = {x̃1, x̃2, . . . , x̃k} be a set of degenerate strings over an alphabet Σ , then the following holds:

SCSuper(S) = MinLen

(
k⋂

j=1

Super(x̃ j)

)
.

Lemma 14. Let S = {x̃1, x̃2, . . . , x̃k} be a set of degenerate strings and z̃ be degenerate string over an alphabet Σ , then the following
holds:

CLCSub(S, z̃) = MaxLen

((
k⋂

i=1

Sub(x̃i)

)
∩ Super(z̃)

)
.

The proof of Lemmas 12, 13 and 14 follows directly from the definitions of the sets involved. Note that, all of these sets
form regular languages. This implies that we can represent each of them by a finite automaton. It is therefore sufficient to
construct a finite automaton accepting the set LCSub(S) (resp. SCSuper(S), CLCSub(S, r)) to solve DLCS (resp. DSCS, DCLCS)
problem. All the strings of the (output) set can then be easily obtained by finding paths (e.g. by DFS traversal) in the
transition diagram of the (output) automaton from the initial state to all the final states. The string(s) are then given by
spelling the labels of transitions on the paths.

The Algorithm LCSub-Atm constructing a finite automaton M = (Q ,Σ, δ,q0, F ), such that L(M) = LCSub(S) for a set of
degenerate strings S = {x̃1, x̃2, . . . , x̃k}, works in the following steps:

(i) For each degenerate string x̃ j in S , construct automaton M j ,

M j ← Sub-Atm(x̃ j), L(M j) = Sub(x̃ j).

(ii) From automata M1, M2, . . . , Mk construct automaton M ′ ,

M ′ ← Intersection(M1, M2, . . . , Mk), L(M ′) =
k⋂

j=1

L(M j) =
k⋂

j=1

Sub(x̃ j).

(iii) Transform automaton M ′ into automaton M ,

M ← MaxLen-Atm(M ′), L(M) = MaxLen
(

L(M ′)
) = MaxLen

(
k⋂

j=1

Sub(x̃ j)

)
.

An example of Algorithm LCSub-Atm is depicted in Fig. 1.
The Algorithm SCSuper-Atm constructing a finite automaton M = (Q ,Σ, δ,q0, F ), such that L(M) = SCSuper(S) for a set

of degenerate strings S = {x̃1, x̃2, . . . , x̃k}, works in the following steps:

(i) For each degenerate string x̃ j in S , construct automaton M j ,

M j ← Super-Atm(x̃ j), L(M j) = Super(x̃ j).

(ii) From automata M1, M2, . . . , Mk construct automaton M ′ ,

M ′ ← Intersection(M1, M2, . . . , Mk), L(M ′) =
k⋂

j=1

L(M j) =
k⋂

j=1

Super(x̃ j).



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 125
Fig. 3. Deterministic finite automata M1, M2, M ′ , M ′′ , M ′′′ and M , where L(M1) = Sub(x̃), L(M2) = Sub(x̃), L(M ′) = L(M1) ∩ L(M2), L(M ′′) = Super(z̃),
L(M ′′′) = L(M ′) ∩ L(M ′′), L(M) = MaxLen(L(M ′′′)) = CLCSub(x̃, ỹ, z̃) = {aba}, for x̃ = aba[b, c], ỹ = abb[a, c] and z̃ = [a, c][a].

(iii) Transform automaton M ′ into automaton M ,

M ← MinLen-Atm(M ′), L(M) = MinLen
(

L(M ′)
) = MinLen

(
k⋂

j=1

Super(x̃ j)

)
.

An example of Algorithm SCSuper-Atm is depicted in Fig. 2.
The Algorithm CLCSub-Atm constructing a finite automaton M = (Q ,Σ, δ,q0, F ), such that L(M) = CLCSub(S, z̃) for a set

of degenerate strings S = {x̃1, x̃2, . . . , x̃k} and a degenerate string z̃, works in the following steps:

(i) For each degenerate string x̃ j in S , construct automaton M j ,

M j ← Sub-Atm(x̃ j), L(M j) = Sub(x̃ j).

(ii) From automata M1, M2, . . . , Mk construct automaton M ′ ,

M ′ ← Intersection(M1, M2, . . . , Mk), L(M ′) =
k⋂

j=1

L(M j) =
k⋂

j=1

Sub(x̃ j).

(iii) For degenerate string z̃ construct automaton M ′′:

M ′′ ← Super-Atm(z̃), L(M ′′) = Super(z̃).

(iv) For automata M ′ and M ′′ construct automaton M ′′′:

M ′′′ ← Intersection(M ′, M ′′), L(M ′′′) = L(M ′) ∩ L(M ′′) =
((

k⋂
i=1

Sub(x̃i)

)
∩ Super(z̃)

)
.

(v) Transform automaton M ′′′ into automaton M:

M ← MaxLen-Atm(M ′′′), L(M) = MaxLen
(

L(M ′′′)
) = MaxLen

((
k⋂

i=1

Sub(x̃i)

)
∩ Super(z̃)

)
.

An example of Algorithm CLCSub-Atm is depicted in Fig. 3.
The first step of both Algorithm LCSub-Atm (to solve DLCS) and Algorithm CLCSub-Atm (to solve DCLCS) uses Algorithm 1

and the first step of Algorithm SCSuper-Atm (to solve DSCS) uses Algorithm 2. In the following subsections, we discuss the
rest of the steps of the algorithms in detail and analyze the running time of the algorithms.



126 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
4.1. Finite automaton for intersection of languages

In this section, we discuss the construction of an automaton for the intersection of languages. This is required for the
Step 2 of DLCS and DSCS algorithms and Steps 2 and 4 of DCLCS algorithm. We use a variant of that standard algorithm
that creates only accessible states. Algorithm 3 formally presents the steps. As can be easily seen, this algorithm builds the
resulting automaton by simultaneous traversal of the input automata. The key properties of the resulting automaton and the
algorithm are presented in the following lemma:

Lemma 15. Given deterministic finite automata M1, M2, . . . , Mk, having n1,n2, . . . ,nk states, respectively, Algorithm 3 correctly
constructs deterministic finite automaton M accepting language L(M) = ⋂k

j=1 L(Mk) in O(|Σ |∏k
i=1 ni) time. M has at most

O(
∏k

i=1 ni) states and at most O(|Σ |∏k
i=1 ni) transitions. Moreover, if some of automata Mi are acyclic, then M is also acyclic.

The algorithm is adapted from [19], where the proof is provided.

Algorithm 3. Construction of an automaton for intersection of languages.

4.2. Maximum length strings and minimum length strings automaton

In this section, we discuss the algorithms for transforming an automaton representing a finite language into an au-
tomaton accepting only a subset of strings of that language having maximum length (Step 3 of DLCS algorithm, Step 5
of DCLCS algorithm) and minimum length (Step 3 of DSCS algorithm), respectively. The main idea of both the algorithms
is to remove from the input automaton some states and some transitions to achieve that the resulting automaton ac-
cepts only the longest (resp. shortest) strings of the language of the input automaton. Hence, if the original automaton is
M ′ ← (Q ′,Σ, δ′,q0, F ′), then the resulting automaton is M ← (Q ,Σ, δ,q0, F ), where Q ⊆ Q ′ , F ⊆ F ′ and δ ⊆ δ′ . We use
a variant of the longest-path (resp. shortest-path) algorithm for DLCS and DCLCS problems (resp. DSCS problem) so as to
remove from the automaton, all the transitions and states, which are not part of any longest (resp. shortest) path from the
initial state to some of the final states.

During the longest-path (resp. shortest-path) algorithm it is necessary to memorize, for each state, all its predecessor
on the current longest (resp. shortest) path. We ensure this by adding new transitions leading from the target state to
its predecessor. In other words, we construct a new automaton with the same set of states as the original automaton,
where the set of transitions is replaced by a subset of transitions being part of some longest (resp. shortest) path from the
initial state to some of the final states; however, here the transitions are reversed. Hence, the output of the longest-path
(resp. shortest-path) algorithm is a nondeterministic automaton possibly with unreachable states accepting L(ML)

R (resp.
L(M S)

R ). Therefore, the stage continues by applying, first the standard procedure [10] for removal of unreachable states
and then, the standard procedure [10] for automata reversal to obtain the desired automaton.



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 127
4.2.1. Maximum length automaton
Given an acyclic deterministic finite automaton M = (Q ,Σ, δ,q0, F ), Algorithm MaxLen-Atm constructs a finite automa-

ton MM = (Q ,Σ, δ,q0, F ) such that L(MM) = MaxLen(L(M)). The algorithm works in the following steps:

(i) Transform automaton M into automaton MR such that L(MR) = MaxLen(L(M))R using the longest-path algorithm for
DAGs based on topological ordering of states.

(ii) Remove all unreachable states from automaton MR using standard procedure and thereby obtain automaton M ′
R such

that L(MR) = L(M ′
R).

(iii) Apply the standard reversal procedure on automaton M ′
R and thereby obtain automaton MM such that L(MM) =

L(M ′
R)R .

In case of DLCS problem (resp. DCLCS problem), the input of this stage is a deterministic automaton ML accepting the set
L(ML) = ⋂k

j=1 Sub(x̃ j) (resp. L(ML) = (
⋂k

j=1 Sub(x̃ j)) ∩ z̃). Such an automaton is acyclic (Lemma 10). Therefore, as the first
step of the algorithm, we employ a modification of the longest-path algorithm for directed acyclic graphs (DAGs) based on
the topological ordering of nodes (states) [7], which works in linear time with respect to the number of edges of the given
graph. This (Algorithm 4) keeps for each state of the automaton M its input degree din (number of incoming transitions)
and the current longest path to that state from the initial state len[q]. The algorithm uses queue C for closed states (states
with zero input degree). In the beginning, the initial state q0 of the automaton M is put into queue C . The main loop of
the algorithm works as follows: a closed state p is dequeued. Target state q of each transition leading from p is visited, its
input degree is decreased by 1 and the length of path from q0 via p to q is computed. If such a path is the longest one
from q0 to q, p is set as a predecessor of q. Predecessor is memorized in the form of a reversed transition. That is why the
resulting automaton of this stage accepts reversed longest strings of L. Obviously, if there exist more than one longest path
to state q, it has more predecessors. If the input degree of state q is decreased to zero, it is closed and put into the queue C .
The algorithm keeps a set S of states being targets of the longest paths form state q0 in the graph. This set is being realized
during the visit of each state. Finally, the states in set S becomes the initial states of the reversed automaton MR and state
q0 becomes its only final state.

The basic properties of the maximum length automaton and the algorithm for its construction are summarized in the
following lemma.

Lemma 16. Given an acyclic deterministic finite automaton M ′ with n transitions, Algorithm MaxLen-Atm correctly constructs a
deterministic finite automaton M accepting language L(M) = MaxLen(L(M ′)) in O(n) time. M has at most as many states and at
most as many transitions as M ′ .

4.2.2. Minimum length automaton
The Algorithm MinLen-Atm for the construction of minimum length automaton can be obtained from Algorithm MaxLen-

Atm by replacing the Step 1 by the following step:

(i) Transform automaton M into automaton MR such that L(MR) = MinLen(L(M))R , using the shortest-path algorithm
based on the breadth-first-search, considering the transitions of M to be unit-cost edges.

In case of the DSCS problem, the input of the stage is a deterministic automaton M S accepting the set L(M S) =⋂k
j=1 Super(x̃ j). Here, we employ, as the first step of the algorithm, a modification of the shortest-path algorithm for graphs

with unit-cost edges based on the breadth-first-search algorithm working in linear time with respect to the number of
edges of the input graph [7]. This works, because, a transition diagram of a finite automaton can be seen as a graph with
unit-cost edges. The formal steps are described in Algorithm 5.

For each state q of the automaton M , the algorithm keeps the current length len[q] of the shortest path from the initial
state q0. Each state can have one of three possible status’, namely FRESH (not yet visited), OPEN (visited but child states
are not yet processed) and CLOSE (all child states are processed). The algorithm keeps track of the status in status[q]. The
algorithm uses queue C for OPEN states.

At first, the initial state q0 of the automaton M , is put into C . Each time a state p is dequeued, each of its child state q
is visited. If status[q] is FRESH, then its len[q] is set to len[p] + 1 and p is set as its predecessor on the shortest path from
the initial state. If state q is already in the queue (i.e. OPEN) and the length of the shortest path from q0 via p is equal to
len[q], then state p is set as its another predecessor on the shortest path from the initial state. Predecessors are memorized
in the form of reversed transition. That is why the resulting automaton of this stage accepts reversed shortest strings of L.
The algorithm keeps a set S of final states being targets of the shortest paths form state q0 in the graph. This set is realized
as the states are removed from the queue C . Finally, the states in set S becomes the initial states of the reversed automaton
MR and state q0 becomes its the only final state.

Notably, the input automaton is not required to by acyclic in this case. The basic properties of the minimum length
automaton and of the algorithm for its construction are summarized in the following lemma.



128 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
Algorithm 4. Construction of nondeterministic finite automaton MR for deterministic acyclic finite automaton M accepting language L(MR ) =
MaxLen(L(M))R .

Lemma 17. Given a deterministic finite automaton M ′ , with the number of transitions n, Algorithm MinLen-Atm correctly constructs
finite automaton M, accepting language L(M) = MinLen(L(M ′)) in O(n) time. M has at most as many states and at most as many
transitions as automaton M ′ .

4.3. Complexity

Algorithm LCSub-Atm (resp. Algorithm SCSuper-Atm is based on Lemma 12 (resp. Lemma 13). Individual correctness of
the component algorithms and the fact that the relevant preconditions are met follow from the discussions and lemmas in
the corresponding sections. Therefore, the correctness of the algorithms follow. Here, we deduce the running time of the
algorithms.

Lemma 18. Given a set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k}, where x̃ j = x̃ j1 x̃ j2 . . . x̃ jn j for 2 � j � k, Algorithm LCSub-

Atm correctly constructs finite automaton M accepting language L(M) = LCSub(S) in O(|Σ |∏k
j=1 n j) time.

Proof. Each automaton M j,1 � j � k, is constructed in O(|Σ |n j) time (Lemma 10) and it has exactly n j + 1 states

(Lemma 10). Therefore, automaton M ′ is constructed in O(|Σ |∏k
j=1 n j) time (Lemma 15) and automaton M ′ has at most∏k

j=1(n j +1) states. Hence, construction of M from M ′ takes O(|Σ |∏k
j=1 n j) time (Lemma 16). So, the total time complexity

of the algorithm is O(|Σ |∏k
j=1 n j). �



C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130 129
Algorithm 5. Construction of deterministic finite automaton MM for deterministic acyclic finite automaton M accepting language L(MM ) = MinLen(L(M)).

Lemma 19. Given a set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k}, where x̃ j = x̃ j1 x̃ j2 . . . x̃ jn j for 2 � j � k, Algorithm SCSuper-

Atm correctly constructs finite automaton M accepting language L(M) = SCSuper(S) in O(|Σ |∏k
j=1 n j) time.

Proof. Each automaton M j , 1 � j � k, is constructed in O(|Σ |n j) time (Lemma 11) and it has exactly n j + 1 states and

|Σ |(n j + 1) transitions (Lemma 11). Therefore, automaton M ′ is constructed in O(|Σ |∏k
j=1 n j) time (Lemma 15) and au-

tomaton M ′ has at most
∏k

j=1(n j + 1) states and at most |Σ |∏k
j=1(n j + 1) transitions (Lemma 15). Construction of M from

M ′ takes O(|Σ |∏k
j=1 n j) time (Lemma 17). Therefore, the total time complexity of the algorithm is O(|Σ |∏k

j=1 n j). �
The following lemma presents the correctness and time complexity of Algorithm CLCSub-Atm (to solve DCLCS problem).

Lemma 20. Given a set of k � 2 degenerate strings S = {x̃1, x̃2, . . . , x̃k}, where x̃ j = x̃ j1 x̃ j2 . . . x̃ jn j for 2 � j � k, and degenerate
string z̃ of length r, Algorithm CLCSub-Atm correctly constructs finite automaton M accepting language L(M) = CLCSub(S, z̃) in
O(|Σ |(∏k

j=1 n j)r) time.

Proof.

Correctness: The algorithm is based on Lemma 14. Individual correctness of the component algorithms in Algo-
rithm CLCSub-Atm follows from the discussions and lemmas in the corresponding sections. Therefore, it remains
to show that the preconditions of those Lemmas are guaranteed. According to Lemma 10, the resulting automata
M1, M2, . . . , Mk are acyclic. Therefore, it follows from Lemma 15 that the automaton M ′ is acyclic too. Since the



130 C. Iliopoulos et al. / Journal of Discrete Algorithms 8 (2010) 117–130
automaton M ′ is acyclic the automaton M ′′′ is acyclic as well (Lemma 15). Finally, since automaton M ′′′ is acyclic,
automaton M is acyclic.

Time complexity: Each automaton M j,1 � j � k, is constructed in O(|Σ |n j) time (Lemma 10) and it has exactly n j + 1

states (Lemma 10). Therefore, automaton M ′ is constructed in O(|Σ |∏k
j=1 n j) time (Lemma 15) and automa-

ton M ′ has at most
∏k

j=1(n j + 1) states. Automaton M ′′ is constructed in O(|Σ |r) time (Lemma 11) and it
has exactly r + 1 states and |Σ |(r + 1) transitions (Lemma 11). Therefore, automaton M ′′′ is constructed in
O(|Σ |(∏k

j=1 n j)r) time (Lemma 15) and automaton M ′′′ has at most (
∏k

j=1(n j + 1))(r + 1) states and at most

|Σ |(∏k
j=1(n j + 1))(r + 1) transitions (Lemma 15). Hence, construction of M from M ′′′ takes O(|Σ |(∏k

j=1 n j)r)

time (Lemma 16). So, the total time complexity of the algorithm is O(|Σ |(∏k
j=1 n j)(r)). �

5. Conclusion

In this paper, we have presented efficient algorithms to construct two novel types of finite automata on degenerate
strings, namely the subsequence automaton (SubA) and the supersequence automaton and have shown how they can be used
to efficiently solve the LCS, SCS and CLCS problems on degenerate strings. In particular, we have presented linear time
algorithms for the construction of the above two automata, namely SubAtm and SuperAtm and have used them to solve
DLCS, DSCS and DCLCS problems. For DLCS and DSCS problems, the worst case running time of the corresponding algorithm
is O(|Σ |∏k

j=1 n j) and for DCLCS problem, it is O(|Σ |(∏k
j=1 n j)r). While using the automata approach to solve LCS and SCS

problems is not new, to the best of our knowledge, this is the first attempt to handle CLCS problem and problems with
degenerate strings using finite automata. We believe that, the subsequence and supersequence automata, along with the
techniques used in this paper, can be employed to different other problems involving degenerate strings.

References

[1] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained longest common subsequence problems, Int. J. Found. Comput. Sci. 16 (6) (2005) 1099–1109.
[2] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained longest common subsequence problems, in: Proceedings of the Prague Stringology Club

Workshop ’04, Prague, 2004, pp. 24–32.
[3] R.A. Baeza-Yates, Searching subsequences, Theoretical Computer Science 78 (1991) 363–376.
[4] A.M. Basin, V.N. Balabolin, V.N. Kryukov, An interactive system for multilevel design of technological processes of flexible production, Vestn.

Mashinostr. 2 (1987) 42–44.
[5] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: Proceedings of the Symposium on String Processing and

Information Retrieval, 2000, A Coru, Spain, IEEE Computer Society Press, 2000, pp. 39–48.
[6] F.Y.L. Chin, A. De Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constrained sequence problems, Inf. Process. Lett. 90 (4) (2004)

175–179.
[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, 1990.
[8] D. Gusfield, Algorithms on Strings, Trees, and Sequences – Computer Science and Computational Biology, University Press, Cambridge, 1997.
[9] J.J. Hébrard, M. Crochemore, Calcul de la distance par les sous-mots, RAIRO Inform. Théor. Appl. 20 (1986) 441–456.

[10] J.E. Hopcroft, J.D. Ullman, Introduction to Automata, Languages and Computations, Addison-Wesley, Reading, MA, 1979.
[11] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS and constrained LCS problems, Inf. Process. Lett. 106 (1) (2008) 13–18.
[12] C.S. Iliopoulos, M.S. Rahman, W. Rytter, Algorithms for two versions of lcs problem for indeterminate strings, in: International Workshop on Combina-

torial Algorithms (IWOCA), 2007, pp. 93–106.
[13] Y.S. Itoga, The string merging problem, BIT 21 (1) (1981) 20–30.
[14] T. Jiang, M. Li, On the approximation of shortest common supersequences and longest common subsequences, SIAM J. Comput. 24 (5) (1995) 1122–

1139.
[15] N.M. Kapustin, Development of Technological Parts Machining Processes by Computer, Mashinostroenie, Moscow, 1976 (in Russian).
[16] R. Lowrance, R.W. Wagner, An extension to the string-to-string correction problem, J. ACM 22 (2) (1975) 177–183.
[17] S.Y. Lu, K.S. Fu, A sentence-to-sentence clustering procedure for pattern analysis, IEEE Trans. Syst. Man. Cybern. SMC-8 (1978) 381–389.
[18] D. Maier, The complexity of some problems on subsequences and supersequences, J. Assoc. Comput. Mach. 25 (2) (1978) 322–336.
[19] B. Melichar, J. Holub, P. Mužátko, Languages and Translation, Publishing House of CTU, 1997.
[20] M. Rodeh, V.R. Pratt, S. Even, Linear algorithm for data compression via string matching, J. ACM 28 (1) (1981) 16–27.
[21] D. Sankoff, R.J. Cedergren, A test for nucleotide sequence homology, J. Molec. Biol. 77 (1973) 159–164.
[22] K. Tempelhof, H. Lichtenberg, Technological standardization as a prerequisite for computer-aided design of technological processes, in: N.M. Kapustin

(Ed.), Computer-Aided Design of Technological Processes, Mashinostroenie, Moscow, 1976, pp. 109–153 (in Russian).
[23] V.G. Timkovsky, The complexity of subsequences, supersequences and related problems, Kybern. 5 (1989) 1–13.
[24] Z. Troníček, B. Melichar, Directed acyclic subsequence graph, in: Proceedings of the Prague Stringology Club Workshop ’98, Prague, 1998 pp. 107–118.
[25] Y.T. Tsai, The constrained common subsequence problem, Inf. Process. Lett. 88 (2003) 173–176.
[26] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.


	Finite automata based algorithms on subsequences and supersequences of degenerate strings
	Introduction
	Preliminaries
	Subsequence and supersequence automata for degenerate strings
	Subsequence automaton
	Supersequence automaton

	Algorithms for LCS, SCS and CLCS
	Finite automaton for intersection of languages
	Maximum length strings and minimum length strings automaton
	Maximum length automaton
	Minimum length automaton

	Complexity

	Conclusion
	References


