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Abstract

Matrix coordinate transformations are defined as substitution operators without requiring an ordering prescription or an inclusion function
from the Abelian coordinate transformations. We construct transforming objects mimicking most of the properties of tensors. We point out some
problems with the matrix generalization of contravariant vectors. We suggest to use the substitution operators to search for an inclusion function.
© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

Much of the non-perturbative knowledge about string the-
ory is the result of studying extended objects like D-branes.
In the case of a single D-brane, one can construct an effective
action on the worldvolume of the D-brane, incorporating the
low-energy description of open strings ending on this D-brane
[1]. In particular, the D-brane carries a U(1) vector field, of
which the degrees of freedom correspond to the massless vibra-
tion modes of the open strings tangential to the brane. On the
other hand, the open string modes normal to the brane give rise
to a set of scalars in the effective theory. These so-called em-
bedding scalars are then interpreted as coordinates describing
the embedding of the D-brane in the target spacetime.

This picture changes dramatically in the presence of multiple
coinciding D-branes. In the case of N parallel D-branes at short
distance (compared to the string length

√
α′ ), extra bosonic de-

grees of freedom enhance the N U(1) symmetry groups of each
object to a single U(N) group [2]. In this case, the N brane
components behave collectively and are rather described as a
single object, which we will call the multiple brane. This U(N)

symmetry is reflected in the effective action of the multiple
brane. In particular, the multiple brane carries a U(N) Yang–
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Mills vector field with the same role as the U(1) Born–Infeld
vector of the single branes and instead of a set of real scalar
fields the multiple brane carries a set of Hermitian matrices
Xμ transforming in the adjoint of U(N). Based on similarity
with the single brane, the nth eigenvalue of the U(N) matrix
Xμ is interpreted as the position of the nth constituent brane in
the transverse direction xμ. Such matrix coordinates open up
the possibility of fuzzy brane configurations (see for example
[3–6]), but also quite some challenges.

In this Letter, we will focus on one of these challenges,
which consists of coordinate transformations. Indeed, as the
multiple D-brane is embedded in ordinary, relativistic space-
time, a coordinate transformation in the target space should
leave the effective action invariant. The question of invariance
brings up another, more basic question: how does a coordinate
transformation affect a matrix coordinate? Most of the arti-
cles concerning matrix coordinate transformations, e.g. [7–11],
search for a homomorphism between ordinary, Abelian coordi-
nate transformations and (a subset of) matrix coordinate trans-
formations. De Boer and Schalm [7] have pointed out that such
a homomorphism requires a dependency on the background
metric. So, one strategy would be to follow this lead and search
for such an inclusion function, allowing a background met-
ric dependence. Here, however, we will take a different route:
instead we will forget about the Abelian coordinate transfor-
mations and try to construct an algebra of matrix coordinate
transformations on its own. As we do not require a homomor-
phism between the algebra of Abelian coordinate transforma-
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tions and our matrix coordinate transformations, we will not
use any background metric. Actually, we will make no refer-
ences to an Abelian background whatsoever.

So, our goal is to develop a group of matrix coordinate trans-
formations, henceforth abbreviated by MCT. While we do not
require a homomorphism from the Abelian coordinate trans-
formations to the MCTs, we will use a projection from the
MCTs unto the Abelian coordinate transformations. Such a pro-
jection is quite natural, as Abelian coordinates can be seen as
(1 × 1)-matrices. We will require that this projection is a homo-
morphism from the MCT algebra unto the algebra of Abelian
general coordinate transformations. In Section 2, we will define
matrix functions to use as MCTs or as objects transforming un-
der these MCTs. We define a substitution operator which serves
as an infinitesimal MCT in Section 3.

Once we have defined consistent matrix coordinate transfor-
mations, we will look at their representations. In the Abelian
case, we have a collection of invariant and covariant objects
such as scalars, vectors and tensors. We want to create tensor-
like objects transforming under the MCT representations and
exhibiting most of the properties of the Abelian tensors. We
will define a contravariant vector in Section 4, thereby proving
that the parameter of an infinitesimal MCT is indeed a con-
travariant vector. In the same section we will already point out
some difficulties regarding scalar multiplication. In Section 5,
covariant vectors and tensors are defined. We show how to get a
structure similar to that of the antisymmetric differential forms
using a differential operator not unlike the substitution operator
defined in Section 3. We will look at contractions in Section 6
and draw attention to some problems that occur when defining
dual spaces.

Lastly, we will discuss the MCTs and their transforming ob-
jects in Section 7. While the problems at the level of matrix
vectors seem quite serious, we believe that the substitution op-
erator and the matrix objects may help in the search for the
inclusion function of De Boer and Schalm.

2. The matrix function

In the Abelian case, both the tensor fields and the coordinate
transformations consist of (real or possibly complex) functions
of the coordinates. In order to construct MCTs and transforming
objects, we need to define functions of the matrix coordinates.
There are many ways of defining these, one of them being for
example a non-Abelian Taylor expansion [12]:

(1)F(X) =
∞∑

k=0

1

k! (∂λ1 · · ·∂λk
f )|x=0X

λ1 · · ·Xλk .

The coefficients in this expansion are derivatives of an Abelian
function and therefore imply a totally symmetric ordering of
the Xμ. However, this ordering prescription, and indeed any
ordering prescription, does not fit with matrix coordinate trans-
formations, as the composition G = F1 ◦ F2 will not obey the
same prescription as F1 and F2, as pointed out in [7].

Instead of choosing a particular ordering prescription, as
in (1), we will allow any ordering. A matrix function F(X) is
then defined by its expansion

(2)F(X) =
∞∑

k=0

1

k!fλ1...λk
Xλ1 · · ·Xλk ,

where the coefficients fλ1...λk
are complex numbers. In contrast

to the Abelian case, the coefficients need not to be symmetric
for the exchange of indices. The product used in the definition
of the matrix function (2) is the ordinary matrix product.

Note that the image of such a function is not always a Her-
mitian matrix, even if the matrix coordinates are. However, by
restricting the coefficients, it is possible to define Hermitian
matrix functions, that is to say: functions whose image is a
Hermitian matrix if the arguments are. Moreover, the sum and
the composition of two Hermitian matrix functions is again a
Hermitian matrix function. For simplicity, we will not require
hermiticity. So, from now on, we will allow the matrix coordi-
nates Xμ to be general complex matrices. We will give more
thought about hermiticity in the discussion in Section 7.

3. The substitution operator and matrix scalars

In this section we will define a matrix version of the operator
ξρ∂ρ . In the Abelian case, an infinitesimal coordinate transfor-
mation looks like

(3)xμ → yμ = xμ − ξμ(x).

The parameter ξ(x) = (ξ0(x), . . . , ξD−1(x)) is a set of D

Abelian functions ξμ(x) that transform as a vector under co-
ordinate transformations, where D is the number of spacetime
dimensions. The matrix analogy of the general coordinate trans-
formation (3) looks like

(4)Xμ → Yμ(X) = Xμ − Ξμ(X),

where the parameter Ξ(X) = (Ξ0(X), . . . ,ΞD−1(X)) consists
of D matrix functions Ξμ(X). Notice that we do not (yet) call
Ξ a vector, as being a vector implies a certain transformation
under matrix coordinate transformations. At this point, we do
not know yet how a matrix generalization of the vector trans-
formation looks like.

An Abelian scalar is defined as a function of the coordinates
which is invariant under coordinate transformations (3):

(5)f ′(y) = f (x).

Its variation is again a scalar and defined by

(6)δξf (x) = f ′(x) − f (x).

To first order in ξ , the variation is equal to

δξf (x) =
∞∑

k=0

1

k! (∂λ1 · · ·∂λk
f )(0)

(
ξλ1xλ2 · · ·xλk + · · ·

+ xλ1 · · ·xλk−1ξλk
)

(7)= ξρ∂ρf (x).

We will now use the same reasoning to construct a matrix scalar
and its variation: a matrix scalar is a matrix function which is
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invariant under MCTs:

(8)F ′(Y ) = F(X).

The variation of the matrix scalar is defined by F ′(X) − F(X)

and to first order in Ξμ, it can be written in function of the
series expansion as

δΞF(X) =
∞∑

k=0

1

k!fλ1...λk

(
Ξλ1(X)Xλ2 · · ·Xλk + · · ·

(9)+ Xλ1 · · ·Xλk−1Ξλk (X)
)
.

We can read this expansion as being the expansion of F(X),
where each X in turn is substituted by a Ξ(X) in the same
place, and summed over all possibilities, taking in account that
each Ξλ(X) is again a matrix function of the type (2). Actually,
this is the same procedure as in the Abelian case shown by the
expansion in (7), only that there the procedure is equivalent to
taking a derivative ∂ρ followed by a multiplication by ξρ . This
equivalence, however, is not true in the matrix case, due to the
non-Abelian character of the matrix coordinates. Instead, we
define an operator Ξρ∂ρ which is read as follows: take each Xρ

in turn and substitute by a Ξρ(X). The upper line indicates the
non-Abelian nature of this substitution operator. The effect of
the substitution operator on a matrix scalar is determined by the
expansion:

Ξρ∂ρF (X) =
∞∑

k=0

1

k!fλ1...λk

(
Ξλ1(X)Xλ2 · · ·Xλk + · · ·

(10)+ Xλ1 · · ·Xλk−1Ξλk (X)
)
.

Having defined the substitution operator, we can simply say that
the variation of the matrix scalar is

(11)δΞF(X) = Ξρ∂ρF (X).

The commutator of two substitution operators is again a substi-
tution operator,

Ξρ∂ρ

(
Λσ ∂σ F (X)

) − Λρ∂ρ

(
Ξσ ∂σ F (X)

)

(12)= (
Ξρ∂ρΛσ − Λρ∂ρΞσ

)
∂σ F (X),

with parameter Ξρ∂ρΛσ − Λρ∂ρΞσ . This shows that the sub-
stitution operators form an algebra. Note that for the case
that the embedding scalars commute, our results reduce to the
known results of the Abelian case.

Since the substitution operator works linearly on the series
expansion, the sum of two matrix scalars is again a matrix
scalar. Moreover, the product of two matrix scalars is also a
matrix scalar. The Leibniz rule holds in this case:

(13)Ξρ∂ρ(F · G) = Ξρ∂ρF · G + F · Ξρ∂ρG.

4. The contravariant matrix vector

In the Abelian case, a contravariant vector consists of D

components aμ(x), which in turn are functions of the coor-
dinates. Under an infinitesimal coordinate transformation with
parameter ξρ , the contravariant vector transforms as

(14)δξ a
μ = ξρ∂ρaμ − aρ∂ρξμ.

Using the substitution operator (10), the definition of a con-
travariant vector can easily be adapted to the matrix case. A ma-
trix vector consists of D components Aμ(X), which are matrix
functions of the matrix coordinates, their expansion being given
by

(15)Aμ =
∞∑

k=0

1

k!a
μ
λ1...λk

Xλ1 · · ·Xλk .

The variation of this covariant matrix vector is again a matrix
covariant vector and given by

(16)δΞAμ = Ξρ∂ρAμ − Aρ∂ρΞμ.

The commutator of two variations is then

[δΞ , δΛ]Aμ = Ξρ∂ρ

(
Λσ ∂σ Aμ − Aρ∂ρΛμ

)

= (
Ξρ∂ρΛσ − Λρ∂ρΞσ

)
∂σ Aμ

(17)− Aρ∂ρ

(
Ξσ ∂σ Λμ − Λσ ∂σ Ξμ

)
,

which is again of the same form as (16), with parameter
Ξρ∂ρΛσ − Λρ∂ρΞσ , indicating that the matrix vector trans-
forms indeed under a vector-like representation of the MCTs.

Moreover, the matrix vector transformation is linked to the
matrix scalar transformation by the commutator. Indeed,

δΞ (δΛF) = (
Ξρ∂ρΛσ − Λρ∂ρΞσ

)
∂σ F + δΛ(δΞF)

(18)= δ(δΞ Λμ)F + δΛ(δΞF).

This relation is the matrix version of the relation between
Abelian scalar and vector transformations

(19)δξ (δλf ) = δ(δξ λμ)f + δλ(δξf ).

While the definition and the transformation of the ma-
trix contravariant vector seem promising, some properties of
Abelian vectors are not met by the matrix vector. Indeed, one
of the most basic properties of an Abelian vector is that it be-
longs to a vector space. While this property may seem trivial,
it cannot be met by a matrix vector (at least not over the ma-
trix scalars), regardless how the latter is defined. Due to their
non-commutative nature, the matrix scalars do not form a field.
Matrix vectors can thus at most form a module over the matrix
scalars, but not a vector space. Suppose we left multiply the
matrix vector Aμ by the matrix scalar F . Assuming the Leibniz
rule holds, the variation of such a product is:

δΞ

(
F · Aμ

) = δΞF · Aμ + F · δΞAμ

(20)= Ξρ∂ρ(F · A) − F · Aρ∂ρΞ.

The variation of the product is clearly different from the matrix
vector transformation shown in Eq. (16). This may mean that
we have to abandon the Leibniz rule and define the variation of
F · Aμ to be of the form described in Eq. (16). There are, how-
ever, two other possibilities, both holding the Leibniz rule. The
first is stating that the scalar multiplication of a matrix vector
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does not necessarily result in a matrix vector. The second pos-
sibility is to define a bigger set of matrix vectors, closed under
both left and right scalar multiplication. These objects are linear
combinations of objects like F · Aμ · G. The transformation of
such objects is not straightforward and should be defined by the
Leibniz rule. It is still unclear whether these new objects should
be included in the definition of matrix vectors or not. For the
sake of clarity, we will not do so. Whenever we refer to a ma-
trix contravariant vector, it will be an object of the form Aμ.

5. Covariant vectors and tensors

While the contravariant vectors are linked to the scalars by
the commutator, the covariant vectors are linked by the differ-
ential operator. In the Abelian case,

(21)df = dxρ ∂ρf.

The differential operator d = dxρ ∂ρ can easily be extended to
the matrix case using the substitution operator. We define the
matrix operator d acting on a scalar function as converting in
turn each X in the expansion into a dX and summing over all
contributions:

dF =
∞∑

k=0

1

k!fλ1···λk

(
dXλ1 Xλ2 · · ·Xλk

+ · · · + Xλ1 · · ·Xλk−1 dXλk
)

(22)= dXρ ∂ρF.

Here, dXμ is seen as a basis element for a sort of matrix cotan-
gent space. We assume that dXμ does not commute with Xν .
As in the Abelian case, however, we assume that the operator d

commutes with δ. The object dF transforms then as follows:

δΞ (dF ) = d(δΞF) = d
(
Ξμ∂μF

)

(23)= dΞμ ∂μF + Ξμ∂μ dF,

where it is understood that in the last term Ξμ∂μ only acts on
the X’s in the expansion of dF , and leaves the dX’s untouched.
In order to interpret (23) as a variation of dF without reference
to F itself, we should be able to write the right-hand side in
function of dF only.

For this purpose, let us define dΞμ ∂μ (with underlined ∂)
as an operator which takes in turn each dXμ and substitutes it
by dΞμ, leaving all X’s untouched. The operator dΞμ ∂μ can
then be written as a composition of the differential operator d

followed by dΞμ ∂μ and hence allows us to write the transfor-
mation (23) in function of dF only:

(24)δΞ (dF ) = dΞμ ∂μ(dF ) + Ξμ∂μ(dF ).

With this result we can define now a general covariant matrix
vector (not necessarily the differential of a matrix scalar) by the
series

(25)B =
∞∑

k=1

k∑

j=1

b
(j)
λ1...λk

Xλ1 · · ·Xλj−1 dXλj Xλj+1 · · ·Xλk ,

where the upper Latin index in the expansion coefficients indi-
cates the position of the dX in the terms of the expansion. In
analogy of (23), the variation of B under coordinate transfor-
mations is defined as

(26)δΞB = dΞμ ∂μB + Ξμ∂μB.

Taking a commutator of two such transformations with para-
meters Ξμ and Λμ yields a new transformation with parameter
Ξρ∂ρΛμ − Λρ∂ρΞμ.

Notice that, unlike the contravariant vector of Section 4, the
covariant matrix vector B cannot be written in function of D

components. On the other hand, when we left or right multiply
B by a matrix scalar, the product will still be of the form (25).
The covariant matrix vectors form a left and right module over
the matrix scalars.

Covariant tensors can be defined easily in the same way as
the covariant vector. We have to take into account one subtlety.
In the Abelian case, a covariant two-tensor has the form

(27)C = Cμν dxμ ⊗ dxν.

The dxμ is placed first to indicate that it is a basis element
of the first component of the cotangent space. In the matrix
case, the place of dXμ has already a meaning due to the non-
commutative nature of the factors. So, we will use a subindex
d(i)X

μ to indicate that it is a basis element of the ith factor
of the tensor space. A general matrix covariant 2-tensor can be
defined by a series

(28)

C =
∞∑

k=2

k∑

i,j=1
i 	=j

c(i,j)
μ1...μk

Xμ1 · · ·d(1)X
μi · · ·d(2)X

μj · · ·Xμk .

Generalisation to higher rank tensor is straightforward.
The transformation of such a tensor is given by

(29)δΞC = Ξρ∂ρC + dΞρ ∂ρC.

Notice that this formula is the same as Eq. (26). Indeed, the
operator dΞρ∂ρ takes care of both the dXμs. In the Abelian
limit, it reduces to the two terms of the tensorial transformation.

A special subset of the Abelian tensors is formed by the an-
tisymmetric differential forms. Since we have a matrix version
of a differential operator, we can construct a similar structure
within the matrix tensors. First, we can define a antisymmetric
form by imposing an antisymmetry conditions on the coeffi-
cients in the expansion of (28)

(30)c(i,j)
μ1...μk

= −c(j,i)
μ1...μk

,

such that the expansion is given by

C =
∞∑

k=2

k∑

i,j=1
i 	=j

c(i,j)
μ1...μk

(
Xμ1 · · ·d(1)X

μi · · ·d(2)X
μj · · ·Xμk

(31)− Xμ1 · · ·d(2)X
μi · · ·d(1)X

μj · · ·Xμk
)
.

The second step is extending the differential operator d to vec-
tors and antisymmetric forms. Let us give an example with the
covariant matrix vector B defined in (25).
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dB ≡
∞∑

k=2

[
b(1)
μ1...μk

(
d(1)X

μ1 d(2)X
μ2 Xμ3 · · ·Xμk

+ d(1)X
μ1 Xμ2d(2)X

μ3 · · ·Xμk + · · ·
+ d(1)X

μ1Xμ2 · · ·Xμk−1d(2)X
μk

)

− b(1)
μ1...μk

(
d(2)X

μ1 d(1)X
μ2 Xμ3 · · ·Xμk

+ d(2)X
μ1 Xμ2 d(1)X

μ3 · · ·Xμk + · · ·
+ d(2)X

μ1 Xμ2 · · ·Xμk−1 d(1)X
μk

)

+ · · ·
+ b(k)

μ1...μk

(
d(2)X

μ1 Xμ2 · · ·Xμk−1 d(1)X
μk

+ Xμ1 d(2)X
μ2 Xμ3 · · ·Xμk−1 d(1)X

μk + · · ·
+ Xμ1 · · ·Xμk−2 d(2)X

μk−1 d(1)X
μk

)

− b(k)
μ1...μk

(
d(1)X

μ1 Xμ2 · · ·Xμk−1 d(2)X
μk

+ Xμ1 d(1)X
μ2 Xμ3 · · ·Xμk−1 d(2)X

μk + · · ·
(32)+ Xμ1 · · ·Xμk−2 d(1)X

μk−1 d(2)X
μk

)]
.

This definition ensures that d(d.) = 0. Indeed, if B = dF , then
all coefficients b

(j)
λ1...λk

in (25) are equal for a given index struc-
ture {λ1 . . . λk}, and the antisymmetry of the d operator makes
that the different terms in dB cancel. Also the other way around
is correct: if dB = 0, then this is due to the fact that the differ-
ent terms in B have the same coefficients and hence B can be
written as B = dF . This property is clearly important as one
intents to incorporate gauge fields in the multiple D-brane ef-
fective action.

6. The contravariant vector again

We have what appears to be a consistent definition for co-
variant vectors, tensors and form fields. We have also made
some attempts to construct contravariant vectors. In the Abelian
case, the covariant vectors are defined as the dual space to the
contravariant vectors. Can we, at this point, define a sort of
contraction between covariant and contravariant matrix vectors,
resulting in a matrix scalar?

The answer lies in the substitution operator dΞρ ∂ρ we de-
fined earlier. It substitutes dXρ by dΞρ , turning a matrix vector
into a matrix vector. If we define an operator which substitutes
dXρ by some matrix function instead, the result will be a ma-
trix function without dXρ . In short, the contraction between

(33)B =
∞∑

k=1

k∑

j=1

b
(j)
λ1...λk

Xλ1 · · ·Xλj−1 dXλj Xλj+1 · · ·Xλk ,

and the contravariant vector A = Aμ∂μ is

A · B = Aμ∂μB

(34)=
∞∑

k=1

k∑

j=1

b
(j)
λ1...λk

Xλ1 · · ·Xλj−1Aλj Xλj+1 · · ·Xλk ,

where Aμ is of the form of (15). In order to check whether A ·B
behaves as a matrix scalar, one needs to calculate its variation
by means of the Leibniz rule. Indeed, we see that

δΞ (A · B) = δΞA · B + A · δΞB

= (
Ξρ∂ρAμ − Aρ∂ρΞμ

)
∂μB

+ Aμ∂μ

(
Ξρ∂ρB + dΞρ∂ρB

)

(35)= Ξρ∂ρ(A · B).

This proves that the covariant and contravariant matrix vectors
are indeed dual objects. In fact, the matrix scalar transforma-
tion (11) can be written in terms of a differential and a contrac-
tion with a matrix contravariant vector:

(36)Ξρ∂ρF = Ξρ∂ρ dF.

This brings the transformation in closer connection to the
Abelian case, where ξρ∂ρ can be interpreted as a derivative fol-
lowed by a contraction.

Every form dual to Aρ∂ρ is of the form defined by formula
(25). On the other hand, there are objects dual to the matrix
covariant vector which are not of the form Aρ∂ρ . Indeed, take

any operator F · Aμ∂μ · F ′ which works on a matrix covariant
vector B as follows. Take every dXμ out of the series of B and
replace it with a Aμ, then left multiply the result by a matrix
scalar F , then right multiply the result by a matrix scalar F ′:

(37)
(
F · Aρ∂ρ · F ′)B = F · (Aμ∂μB

) · F ′.
The result of this operation is a matrix scalar, as it is the product
of three matrix scalars. So, the dual space of the matrix covari-
ant vectors consists not only of matrix contravariant vectors of
the form Aμ∂μ, but there are also linear combinations of opera-

tors such as F ·Aμ∂μ ·F ′, which, as mentioned in Section 4, do
not behave as contravariant vector in the sense of the definition
used there. Indeed, the set of these operators is closed under left
and right multiplication by matrix scalars. As a drawback, the
operations described here have a difficult variation.

Now we are able to spot a more serious problem, namely
trying to identify the dual space of this second, bigger set of
matrix contravariant vectors. Its elements would be linear com-
binations of operators like G ·B ·G′, working on F ·Aμ∂μ ·F ′
like

(38)(G · B · G′)
(
F · Aμ∂μ · F ′) = G · F · Aμ∂μB · F ′ · G′.

From these examples it becomes clear what we are getting into:
a tower of ever bigger spaces for the matrix vectors. As things
are now, no solution has yet been found to this problem. The
same difficulty can also be spotted in a different way. If we
compare the set of the matrix contravariant vectors Aρ∂ρ to the
set of the matrix covariant vectors defined by the series (25),
we see that they are not isomorphous. This problem needs to
be solved before we can define a matrix generalization of a
metric, which implies an isomorphism between covariant and
contravariant vectors.

7. Discussion

At first sight, the substitution operator seems to be a valid
candidate for infinitesimal MCTs. Indeed, the substitution op-
erators do form an algebra. A consistent definition of a matrix
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scalar has been given in Section 3. The product of two matrix
scalars is a matrix scalar and its variation obeys the Leibniz
rule.

A matrix generalization of the contravariant vector has been
defined in Section 4. Its variation (16) has been modelled af-
ter the variation of the Abelian contravariant vector. With this
definition, the transformation of the contravariant matrix vector
is linked to the transformation of the matrix scalar by the com-
mutation relation given in Eq. (18). Moreover, the parameter of
the infinitesimal MCT varies in the same way as the matrix vec-
tor. Unlike the Abelian vectors, however, the matrix vectors do
not form a vector space. It is actually impossible to define ma-
trix vectors such that they would form a vector space over the
matrix scalars, as the matrix scalars do not form a field. If we
cannot make a vector space, can we at least form a module?
The answer is quite tricky, as there are different possibilities.
We can make the set of the contravariant matrix vectors de-
fined by Aμ and with a transformation given by Eq. (16) into
a module if we abandon the Leibniz rule. Losing the Leib-
niz rule is undesirable, especially since the rule holds for the
scalars. The preferred idea is that scalar multiplication of a con-
travariant matrix vector results in a new object, which is more
complex than the original contravariant matrix vector. The vari-
ations of these objects are determined by the Leibniz rule and
are quite cumbersome. It is still unclear whether these new ob-
jects should be included in the definition of matrix vectors or
not.

We have defined matrix covariant vectors in Section 5 us-
ing a generalization of the differential operator. First, we have
constructed a matrix generalization of a differential operator d

similar to the substitution operators defined earlier. The action
of this d on a matrix scalar function is based on the action of
the De Rham differential operator on an Abelian scalar. Assum-
ing that the variation of a differential is equal to the differential
of the variation, the variation of dF turns out to be of the
form (23). We defined a series expansion and a variation for
a general covariant matrix vector on basis of this dF . It turns
out that the contraction of a contravariant matrix vector Aμ with
a covariant matrix vector is a matrix scalar indeed. The Leibniz
rule holds in this case, which strengthens our argument against
abandoning it for scalar multiplication of matrix contravariant
vectors. On top of this, the matrix covariant vectors do form a
left and a right module under multiplication with matrix scalars.

It is possible to extend the definition of the matrix differ-
ential operator d towards matrix covariant vectors, resulting in
matrix two-tensors. By calculating d2, we prove that d indeed
behaves as an exterior derivative. Higher-rank matrix tensors
and antisymmetric forms were constructed in Section 5.

There seem to be quite some differences between the ma-
trix covariant and contravariant vectors. Unlike the matrix con-
travariant vector, the matrix covariant vectors cannot be written
in terms of D components which are matrix functions. The ma-
trix covariant vectors form a module for scalar multiplication
while the matrix contravariant vectors do not. It is impossible
to define an isomorphism between the matrix contravariant and
covariant vectors. Indeed, the two sets have a different cardi-
nality. This means we cannot define a matrix generalization of
a metric. It is possible that there exist better definitions for the
matrix vectors than ours, which do allow a matrix generaliza-
tion of a metric. The same problem has been discussed from a
different approach in Section 6. The covariant vectors defined
by the series in (25) form the entire dual space to the contravari-
ant vectors. The opposite, however, is not true, indicating also
the difference in cardinality.

Just like Abelian coordinates are real variables, the matrix
coordinates are Hermitian matrices. In the previous sections,
we allowed the matrix coordinates to be general complex matri-
ces. It is, however, quite easy to restrict the entire construction
to Hermitian matrix coordinates. By restricting the coefficients
in the series (2), we can define a Hermitian matrix function.
Such a function takes values in the Hermitian matrices if its
arguments are Hermitian. If the parameter of an infinitesimal
MCT consists of D Hermitean matrix functions, it transforms
a Hermitian matrix coordinate into a Hermitian matrix coordi-
nate. Moreover, a substitution with such a parameter will also
conserve the hermiticity of matrix functions. This allows a re-
striction of the discussion to Hermitian matrix coordinates and
objects.

Finally we want to indicate how the substitution operators
can be useful in combination with an inclusion function Φ . This
inclusion function is meant to map the Abelian functions onto
the matrix functions. As it is a homomorphism, it will transport
all structures from the Abelian case, including commutativity.
In this case, we expect no problems with the corresponding
contravariant and covariant matrix vectors in the image of the
inclusion function. The image of the inclusion function is a
subset of the matrix functions defined in (2). The coefficients
fλ1...λk

are determined by the expansion coefficients of the cor-
responding Abelian function and the background metric. As a
side remark, the inclusion function is linked to an Abelian back-
ground while the original set-up in our Letter is not. The matrix
transformations need to be modified to work on the background
metric as well as the matrix coordinates. Indeed, suppose that

(39)F(X,g) = Φ(f )(X,g)

is the image of the Abelian scalar f (x). Then the varia-
tion of F(X,g) under a MCT with parameter Ξρ(X,g) =
Φ(ξρ)(X,g) is given by

(δΞF)(X,g)

(40)= Ξρ∂ρF (X,g) − Subst(g → δξg)F (X,g).

Here, Subst(g → δξ g) means a substitution of the background
metric in the expansion by δξ g, in the same way as Xμ is sub-
stituted by Ξμ under the action of Ξμ∂μ.
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