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Physiological and pharmacological implications of AT1 versus
AT2 receptors. Angiotensin II (Ang II) has diverse physiological
actions that lead, for instance, to increases in extracellular volume
and peripheral vascular resistance and blood pressure, and it has
also been implicated in the regulation of cell growth and differ-
entiation. Molecular cloning and pharmacological studies have
defined two major classes of Ang II receptors, designated AT1 and
AT2. Most effects of Ang II are mediated by AT1 receptors. Much
less is known about the physiological role of AT2 receptors.
Recent evidence suggests involvement of AT2 receptors in devel-
opment, cell differentiation, apoptosis, and regeneration in vari-
ous tissues. AT1 and AT2 receptors have been shown to exert
counteracting effects on cellular growth and differentiation, vas-
cular tone, and the release of arginine vasopressin. In each
condition, the AT2 receptor appears to down-modulate actions
mediated by the AT1 receptor, resulting in decreased cellular
proliferation, decreased levels of serum arginine vasopressin
levels, or decreased vasoconstrictor responses. In addition, in
neuronal cell lines, the AT2 receptor exerts antiproliferative
actions and promotes neurite outgrowth, an effect accompanied
by significant changes in the expression pattern of growth/differ-
entiation-related genes.

The octapeptide angiotensin II (Ang II) is the major
effector of the renin-angiotensin system (RAS) and exerts
a wide range of actions. Besides its physiological contribu-
tion to cardiovascular, renal, and endocrine functions and
its osmoregulatory role in the central nervous system, Ang
II plays a major role in the pathogenesis of hypertension
and is also considered an important factor in cardiovascular
pathology, such as cardiac left ventricular hypertrophy and
fibrosis, vascular media hypertrophy, or neointima forma-
tion and structural alterations of the heart and kidney, such
as postinfarct remodeling and nephrosclerosis. Recently,
Ang II has also been implicated in cell growth and differ-
entiation. In the kidney, for example, Ang II is involved in
angiogenesis occurring during glomerular differentiation
[1] and nephrosclerosis [2]. Furthermore, the role of Ang II

as a growth factor has been demonstrated in studies on
fibroblasts, adrenal cortical, vascular smooth muscle
(VSM), or cardiac cells, and growth-modulating effects
have been shown also in mesangial and tubular cells of the
kidney [3, 4].

ANGIOTENSIN II RECEPTOR SUBTYPES

The development of highly specific and selective AT1
receptor antagonists, such as losartan, valsartan, eprosar-
tan, irbesartan, candesartan, telmisartan, and others [5, 6],
and AT2 receptor ligands/antagonists, such as PD123177,
PD123319, and CGP42112 [6, 7], was the basis for the
identification and characterization of Ang II receptor sub-
types. Two main Ang II receptor subtypes have been
characterized, AT1 and AT2, which are heterogeneously
distributed in peripheral tissues and in the brain (Table 1)
[5, 8–10]. In humans, only a single gene encoding for the
AT1 receptor is expressed, which is localized on chromo-
some 3. In rodents, however, AT1a and AT1b receptor
isoforms exist, which are localized on chromosomes 17 and
2, respectively. They show 91% similarity for nucleic acid
and 96% similarity for amino acids [11, 12]. Although AT1a
and AT1b subtypes seem to be more or less equally
expressed in spleen, liver, and kidneys [4, 11, 12], the AT1a
receptor seems to predominate in VSM, heart, lung, ovary,
and hypothalamus [4, 11–14]. The fact that AT1a predom-
inates in VSM suggests that this subtype plays a role in
vasoconstriction. On the other hand, as the AT1b receptor
subtype seems to prevail in the anterior pituitary, adrenal
gland, uterus, and several periventricular brain areas [4,
12–15], this receptor may be involved in hormonal secre-
tion and central osmotic control. In humans and mice, the
genes for the AT2 receptor are localized on the X-chromo-
some. Both AT1 and AT2 receptors belong to the seven-
transmembrane-domain superfamily of receptors, but the
nucleic acid sequence of the AT1 receptor has only 34%
identity with the AT2 receptor sequence. The AT2 receptor
is found ubiquitously in fetal tissues. In the adult organism,
this receptor is expressed highly in the adrenal medulla,
uterus, and ovary, and is also found in vascular endothe-
lium and certain areas of the brain [4, 10, 16, 17]. The fact
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that the AT2 receptor is expressed at high levels in embry-
onic tissues but much less so in normal adult tissues has
prompted speculation on its possible role in cell growth and
differentiation. The presence of different subtypes for the
AT2 receptor and the existence of AT3 and AT4 receptor
subtypes are still controversial [18–23].

THE AT1 RECEPTOR

The AT1 receptor reportedly interacts with various G
proteins and is coupled to one of the two heteromeric G
proteins: Gqa or Gia. Ang II binding to specific sites of the
extracellular and membrane-spanning portions of the AT1
receptor releases the a subunit of the G protein and
subsequently activates phospholipase C via Gq or inhibits
adenylate cyclase via Gi. Phospholipase C activation gen-
erates 1,4,5-inositol trisphosphate and diacylglycerol, with
subsequent activation of protein kinase C and an increase
in intracellular [Ca21] via L-type Ca21 channels [24–26].
The rise in intracellular [Ca21] is accompanied by typical
AT1 receptor-associated responses such as vasoconstric-
tion, renal salt and water retention, aldosterone and vaso-
pressin release, effects on glomerular filtration rate, and
renal blood flow, as well as the Ang II-mediated stimulation
of cell growth. Protein kinase C and elevated intracellular
[Ca21] promote expression of growth-related inducible
transcription factors, such as, c-fos, c-myc, and c-jun [27].
The proteins encoded by the growth-related inducible
transcription factors act as transcription factors for various
target genes, which may be involved in the stimulation of
mitogenesis. Ang II also induces, via the AT1 receptor,
transcription of platelet-derived growth factor-A chain and
transforming growth factor-b1 and so is coupled directly to
growth factor expression [28, 29]. It was shown recently that
stimulation of AT1 receptors in VSMcells (VSMCs) in-
duces rapid phosphorylation of tyrosine in the intracellular
kinases Jak2 and Tyk2 and that this phosphorylation is
associated with increased Jak2 activity [30]. This is signifi-
cant, because the Jak-STAT pathway may be the signaling
mechanism used by cell surface-binding cytokines respon-
sible for transcriptional activation of early growth response

genes [31]. This pathway may thus play an additional role in
the control of AT1-mediated cell growth.

VSMCs in culture, a cell line commonly used for studying
trophic effects of Ang II, express only AT1 receptors, and
consequently, trophic effects shown in these cells can be
mediated only by AT1 receptors [17]. In all experiments on
these cells, AT2 receptor ligands are ineffective. The
growth responses of VSMCs to Ang II vary with the
particular VSMC studied, and the mechanisms leading to
differential growth responses are still controversial. Dzau
et al have proposed that Ang II represents a bifunctional
growth factor for VSMCs by simultaneously stimulating
proliferative and antiproliferative pathways that appear to
be mediated by the activation of platelet-derived growth
factor-AA and transforming growth factor-b1, respectively,
thereby shifting the balance in favor of hypertrophy instead
of hyperplasia in some instances [32].

Compared with AT2 receptors, AT1 receptors dominate
by far in the adult human [33] and rat [34] kidneys; only 5%
to 10% of the Ang II receptors are AT2. This predomi-
nance of AT1 receptors might in part explain why angio-
tensin converting enzyme (ACE) inhibitors and AT1 antag-
onists act very similarly in the kidney [35]. AT1 antagonists
can also vasodilate the renal vessels, particularly the glo-
merular efferent (and afferent) arterioles, increase cortical
renal plasma flow [36, 37], and enhance glomerular filtra-
tion rate via a contraction of mesangial cells. Beneficial
effects, in extent comparable to those of ACE inhibitors, on
proteinuria, microproteinuria, and diabetes-induced
changes of the kidney have also been described for AT1
antagonists [38], and in spontaneously hypertensive rats,
AT1 antagonists improve cardiac and vascular structure and
function similar to ACE inhibitors [39].

In newborn rat kidneys, AT1 mRNA occurs in glomeruli,
vessels, and nephrogenic cortex, areas where cell prolifer-
ation and differentiation occur simultaneously. Blockade of
the AT1 receptor in newborn rats arrests nephrovascular
maturation and renal growth, resulting in altered kidney
architecture, characterized by fewer, thicker, and shorter
afferent arterioles, reduced glomerular size and number,

Table 1. AT1 and AT2 receptors and their distribution

AT1 receptor AT2 receptor

Distribution Widely distributed in adult tissues, e.g.,
blood vessels, kidney, adrenal gland, heart, liver, brain

Widely distributed in fetal tissues,
expression in the adult brain, adrenal glands,
ovary, uterus, endothelium, myocardium

Function Vasoconstriction, cardiac contractility, aldosterone release,
glomerular filtration, renal blood flow, cardiac and
vascular hypertrophy, central osmoregulation

Possible role in growth and development
(antiproliferation, inhibition of neointima, cell differentiation)

Structure Seven-transmembrane-receptor, G-protein-coupling Seven-transmembrane-receptor, G-protein-coupling

Ligands Losartan, valsartan, irbesartan, candesartan,
eprosartan, telmisartan, tasosartan

PD 123177, CGP 42112A, PD 123319

Isoforms AT1a, AT1b ?
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and tubular dilation [1]. When the mouse AT1a receptor
gene is disrupted in embryonic stem cells (AT1 knockout),
however, the deletion is not lethal, and mice are born in
expected numbers with normal vasculature, kidneys, and
hearts but significantly lower blood pressure [40]. This
suggests that the effects of AT1 receptor blockade on renal
structure and function might not only be due to blockade of
the AT1 receptor itself. Actions of the unopposed AT2
receptor may contribute, as AT1 receptor antagonists do
not affect the AT2 receptor (and potentially other angio-
tensin receptor subtypes) but even expose it to increased
Ang II levels. The latter is due to the loss of the negative
feedback exerted by Ang II via the AT1 receptor on renin
release, and hence on its own generation. It is thus con-
ceivable that under blockade of AT1 receptors, Ang II
interactions with other unopposed Ang II receptors, such
as AT2, are intensified, contributing to the beneficial effects
on cardiac and vascular structure seen with AT1 antagonists
[17, 41].

THE AT2 RECEPTOR

In contrast to the AT1 receptor, much less is known
about the structural and functional properties of the AT2
receptor. Although this Ang II receptor subtype has been
cloned recently [42, 43], its molecular structure and signal
transduction pathway are far from completely understood.
The rat AT2 receptor cDNA encodes for a 363-amino acid
protein that has a seven-transmembrane topology and 34%
homology in nucleic acid sequence to the AT1-receptor.
However, it is still controversial whether the AT2 receptor
is coupled to G proteins and how it signals. Kambayashi et
al have reported that the rat AT2 receptor inhibits a
phosphotyrosine phosphatase in COS-7 cells stably express-
ing the rat AT2 receptor [42]. This effect is dependent on a
pertussis-toxin—sensitive, G-protein—coupled mecha-
nism. Further evidence in support of AT2 receptor coupling
to G proteins has been provided by Kang et al who have
shown that Gi (but not Go) is involved in AT2 receptor-
mediated modulation of K1 channels in rat primary cul-
tures of neuronal origin [44]. On the other hand,
Mukoyama et al have reported that the rat AT2 receptor
shares a seven-transmembrane domain topology that may
belong to a unique class of seven-transmembrane receptors
for which G-protein coupling has not been demonstrated
[43]. In their studies, stimulation of the cloned AT2 recep-
tor, transiently expressed in COS-7 cells, failed to increase
1,4,5-inositol trisphosphate or intracellular [Ca21], and no
apparent effects on cAMP and cGMP levels or phospho-
tyrosine phosphatase activity could be observed. In NG
108-15 cells, which express AT2 receptors constitutively,
AT2 receptor stimulation inhibits T-type Ca21 channels
through an as yet undefined pathway [26]. In another cell
line, PC12W, which only expresses AT2 receptors, Ang II
stimulates a membrane-associated phosphotyrosine phos-
phatase and inhibits atrial natriuretic peptide-sensitive

particulate guanylate cyclase via a G-protein—independent
pathway [28, 45].

The relationship between AT2 receptor-mediated signal-
ing and tyrosine phosphorylation [42, 45] and the fact that
the AT2 receptor subtype is highly and transiently ex-
pressed in fetal tissues followed by a dramatic decrease in
most organs just after birth [46] suggests that this receptor
plays a role in physiological processes involving cellular
growth, differentiation, and adhesion. Recent studies in our
laboratory demonstrate that angiotensin peptides can exert
an antimitogenic action on rat and bovine endothelial cells
of different origin via the AT2 receptor, suggesting that
Ang II has different growth-modulating actions depending
on the presence or absence of Ang II receptor subtypes on
a given cell [17, 47, 48]. In further studies in PC12W cells,
we also demonstrated that Ang II inhibits fetal calf serum-
and epidermal growth factor-induced proliferation and
potentiated nerve growth factor- and epidermal growth
factor-mediated growth inhibition via the AT2 receptor [41,
49, 50]. This effect is obviously not AT2-mediated, as c-fos
and c-jun mRNA expression are not inhibited through the
AT2 receptor [51]. Our results are supported by recent
findings by Nakayima et al [52] who have attempted to
characterize the role of the AT2 receptor in the model of
neointima formation in the balloon-injured rat carotid
artery. In this in vivo gene transfer study, the AT2 receptor
was transfected to the injured vessel, and the formation of
neointima was studied in the presence or absence of the
AT2 receptor. Morphometric analysis performed 14 days
after balloon injury revealed that myointimal size was
reduced by 70% in the presence of the AT2 receptor. This
effect could be reversed by the AT2 antagonist PD 123319,
suggesting that the expressed AT2 receptor mediated the
inhibiting effect on neointima formation.

Siragy and Carey [53] recently have reported that pros-
taglandin E2 (PGE)2 and cGMP levels in the renal inter-
stitial fluid were not altered by AT1 and/or AT2 receptor
blockade during normal sodium intake in rats. However,
under conditions of sodium depletion, the AT2 antagonist
PD123319 inhibited the increase in cGMP engendered by
dietary sodium. Treatment with the AT1 antagonist losar-
tan had no effect on cGMP but significantly decreased
PGE2, whereas PD123319 further increased PGE2 levels. A
combined blockade with losartan and PD123319 decreased
both PGE2 and cGMP. These findings suggest that under
conditions of a stimulated renal RAS, but not under normal
conditions, the AT1 receptor promotes renal production of
PGE2, whereas the AT2 receptor mediates cGMP produc-
tion. These data imply an interaction between AT1 and AT2
receptors with respect to the production and release of
these intermediators. These findings are supported by data
obtained in spontaneously hypertensive rats, in which AT2
receptor-mediated stimulation of the bradykinin/nitric ox-
ide system can account for effects of AT1 receptor blockade
on aortic cGMP [54]. Postnatal blockade of AT2 receptors
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in newborn rats does not alter nephrovascular growth or
maturation [3], a finding consistent with AT2 receptors
being abundant during fetal life but disappearing soon after
birth [46, 55, 56]. Along these lines, AT2 mRNA in rat
kidney is expressed in undifferentiated nephrogenic mes-
enchymal tissue but not in the immature and mature
glomeruli and tubules from day 12 of fetal life to day 15
postpartum, disappearing totally after day 22 postpartum
[55, 57]. However, AT2 receptors can be reexpressed under
pathophysiological conditions involving tissue remodeling
or repair, such as in vascular neointima formation, post-
myocardial infarction, or nerve injury as well as apoptosis
[4, 58], to control excessive growth mediated via the AT1
receptor or by other growth factors. These findings, to-
gether with the fact that the AT2 receptor exerts growth-
inhibiting effects on neuronal and endothelial cells [17, 41]
and displays a growth-dependent regulation in cultured rat
mesangial cells [59], suggest that the AT2 receptor has
general significance for cell growth and differentiation.

SUMMARY

The characterization of the Ang II receptor subtypes
offers new tools to advance knowledge on the various
functions of Ang II. Recently, AT1 receptor antagonists
have been introduced as orally active antihypertensive
drugs. They block AT1 receptors specifically with low
toxicity and high therapeutic safety, and improve cardiac
and vascular structure and function similarly to ACE
inhibitors. The mechanisms for these additional effects of
AT1 blockers are not yet understood. Besides blood pres-
sure reduction, blockade of the AT1 receptor may prevent
the hypertrophic effects of Ang II with the help of the AT2
receptor. Furthermore, we could show that Ang II also
exerts differential growth-modulating actions depending on
the presence or absence of the receptor subtypes on a given
cell. Stimulation of AT1 receptors results in cell growth
and/or proliferation, whereas stimulation of AT2 receptors
inhibits cell proliferation. Moreover, there is evidence that
AT1 and AT2 receptors counteract each other by an as yet
unknown mechanism with respect to cell proliferation and
differentiation.

APPENDIX

Abbreviations used in this article are: ACE, angiotensin converting
enzyme; Ang II, angiotensin II; PGE2, prostaglandin E2; RAS, renin-
angiotensin system; VSM, vascular smooth muscle; VSMCs, vascular
smooth muscle cells.

Reprint requests to Thomas Unger, M.D., Institute of Pharmacology,
University of Kiel, Hospitalstr. 4, D-24105 Kiel, Germany.
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