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ABSTRACT 

We show, by a direct proof, that the n x n (0,l) matrix with the last n - 1 
entries on the main diagonal equal to 0 and all the other entries equal to 1 is never 
barycentric for n > 4, which was a conjecture of R. A. Brualdi on permanents. 

Let D = [dij] be an n-square (0, 1) matrix, and let 

R(D) = {X = [xij] E i-2, 1 Xij = 0 whenever dij = 0). 

Then R(D) is a face of R,, the polytope of n x n nonnegative doubly 
stochastic martices, and since it is compact, a(D) contains a minimizing 
matrix A such that per A < per X for all X E a(D). 

Let R, denote the n x n (0,l) matrix with zero trace and all off-diagonal 
entries equal to 1, and Er,r denote the n x n matrix whose (1,l) entry is 1 
and whose other entries are all zero. Let C,, = R, + El,l. 

Brualdi [l] defined an n x n (0,l) matrix D to be barycentric if 

per b(D) = min{perX : X E 0(D)}, 

where the barycenter b(D) of G(D) is given by 

b(D) = $ c P, 
PSD 
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where the summation extends over the set of all permutation matrices P 
with P 5 D and per D is their number. 

Brualdi conjectured in [l] that C, is never burycentric for n > 4 and 
that 

-p cl cl Q:. . a- 
ck 0 y 7.. .y 
aye 7.’ 

XT%(Q) = . . . I 7 (1) . . . . . . . . ‘.. . . 
(Y y y ..‘. y 0 y 
a y y ‘... y y 0 

is the unique minimizing matrix in R( Cn) for (Y = ,B = l/n and y = 
(n - l)/n(n - 2). In [2], M’ mc showed that Xn(a) is not a minimizing 
matrix in O(C,) for (Y = p = l/n and y = (n - l)/n(n - 2), but it 
is a minimizing matrix for Q = (perR,_l)/d,P = (n - 2)( perR,_z)/d, 
and y = (per C+i)/d with d = per C, - per C,_l among the forms of 
(l), which implies that C, is never barycentric for n 2 4. Mint also 
claimed that Xn(cy) in (1) becomes the barycenter of R( Cn) for Q = 
( per &_i)/( per C,); but the barycenter is not correct. 

In this note, we give the correct barycenter of R( Cn), and we show 
that C, is never barycentric for n > 3 by a direct calculation from the 
correct barycenter. 

LEMMA 1. The barycenter of R(C,) is the form X((Y) in (1) with 

a: = per G-I 
P= 

per K-1 
per C, ’ per C, ’ Y= 

per C,_beT+cp”r G-2. c2j 
?I 

PROOF. If we write the barycenter b( Cn) of n( Cn) as 

then b,i is the number of permutations P such that the (i,j) position of P 
is 1 and P 5 C,. Thus bii = 0 for i = 2, . . , n, and for other i and j 

b%j = per &(i ( j). (3) 

That is, bll = perR,-1, b.jl = bl, = per Cn_l, and bij = per Cn-l + 
per Cn_2 by changes of rows and columns, for i,j = 2,. . . , n with i # j. 
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Therefore the barycenter b( Cn) of 0( Cn) is the form &(a) in (1) with the 
required values cy, p, and y in (2). H 

The following lemma is a known result (see [a]). 

LEMMAS. If A = (aij) is a minimizing matrix in O( Cn) and up, > 0, 
then per A( p 1 q) = per A. 

Let C,, R,, and b( Cn) be the matrices defined above. Clearly, 

per C, = per R, + per R,_ 1. 

And we have (from $3.4 in [3]) 

per R, = n! 1 - f + L - . . 
. 2! + (-l)“-$ 

THEOREM. For n 2 4, C, is never burycentric. 

PROOF. Suppose to the contrary that C, is barycentric. Then Lemma 
2 implies that 

perb(G)(l 11) = per b( Cn)(l 1 n). 

Using (2) and (4), we calculate 

per b( Cn)(l 1 1) = yn-‘per R,_l 

(6) 

+2 per CL1 + per C,_2 _ 
per C, 

’ per R,_l 

Y-‘(per G-1 + per Rn-2 + per R,_s)per R,_l = 
per C, 

(7) 

and 

per b( Cn)(l 1 n) = wyne2per C,_, 

n-2 per G-1 =y . 
per C, 

. per C,_, 

y”-‘( per R,_l + per R,_2)per G-1 
per C, 

(8) 

Substituting (7) and (8) into (6), we have 

(per R,-2 + per R,-s)per R,_l = per R,_2per G-1 

= per R,_2 ’ (per R,_l + per Rn_2). 
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That is, 
per R,_sper R,_l = (per Rn_2)‘. (9) 

Now, we consider three cases; 

Case 1. For n = 4, we have per RI = 0, per Rz = 1, and per R3 = 2. 
Thus 

per R,_sper R,_l = 0 < 1 = (per R,_z)~, 

which contradicts (9). That is, Cd is not barycentric. 

Case 2. Let n be any odd integer greater than 4. Using (5), we have 

per R,_gper R,_l = (n - 3)!(n - l)! 

> (n - 3)!(n - 2)!(n - 2) 

= (per R,_z)~. 

This inequality contradicts the equation (9)) and hence C, is never barycen- 
tric for any odd integer n greater than 4. 

Case 3. Let n be any even integer greater than 4. From (5), we have 

perRn-2-n = (n-2)! 

> 9, 
per R,-1 = (n - 1)per Rn-2 - 1, 

per Rn_3 = 
per R,_z - 1 

n-2 ’ 

(19) 

(11) 

(12) 
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Using (lo), (ll), and (12), we have 

per Rn-zper R,_l - (per R,_z)’ 

per Rn_2 - 1 
= n _ 2 {(n - l)per Rn-2 - 1) - (per Rn-d2 

= s( per R,_z)’ - &per R,_z + & - (per R,_z)’ 

1 
= -per Rn_2( per R,_z - n) + & 

n-2 

> 0. 

This implies (9) does not hold for this case. That is, C, is never barycentric 
for any even integer n greater than 4. ??

We remark that C’s is also not barycentric, because ;Rg is the unique 
minimizing matrix on Zn( C’s) (by Theorem 5 in [l]) and b( C’s) is 

1 1 1 
1 
3 

I 1 102. 

1 2 0 
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