

NORTH-HOLLAND

A Conjecture on Permanents*

Seok-Zun Song

Department of Mathematics Cheju National University Cheju 690-756, Republic of Korea

Submitted by Richard A. Brualdi

ABSTRACT

We show, by a direct proof, that the $n \times n$ (0,1) matrix with the last n-1 entries on the main diagonal equal to 0 and all the other entries equal to 1 is never barycentric for $n \ge 4$, which was a conjecture of R. A. Brualdi on permanents.

Let $D = [d_{ij}]$ be an *n*-square (0, 1) matrix, and let

$$\Omega(D) = \{ X = [x_{ij}] \in \Omega_n \mid x_{ij} = 0 \text{ whenever } d_{ij} = 0 \}.$$

Then $\Omega(D)$ is a face of Ω_n , the polytope of $n \times n$ nonnegative doubly stochastic matrices, and since it is compact, $\Omega(D)$ contains a minimizing matrix A such that per $A \leq per X$ for all $X \in \Omega(D)$.

Let R_n denote the $n \times n$ (0, 1) matrix with zero trace and all off-diagonal entries equal to 1, and $E_{1,1}$ denote the $n \times n$ matrix whose (1,1) entry is 1 and whose other entries are all zero. Let $C_n = R_n + E_{1,1}$.

Brualdi [1] defined an $n \times n$ (0, 1) matrix D to be barycentric if

$$per \ b(D) = min\{per \ X : X \in \Omega(D)\},\$$

where the barycenter b(D) of $\Omega(D)$ is given by

$$b(D) = \frac{1}{per D} \sum_{p \le D} P,$$

LINEAR ALGEBRA AND ITS APPLICATIONS 222:91-95 (1995)

© Elsevier Science Inc., 1995 0024-3795/95/\$9.50 655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(93)00286-9

^{*}Supported by Korea Science & Engineering Foundation #921-0100-011-2, and in part by TGRC-KOSEF.

where the summation extends over the set of all permutation matrices P with $P \leq D$ and per D is their number.

Brualdi conjectured in [1] that C_n is never barycentric for $n \ge 4$ and that

$$X_n(\alpha) = \begin{pmatrix} \beta & \alpha & \alpha & \alpha & \ddots & \ddots & \alpha \\ \alpha & 0 & \gamma & \gamma & \ddots & \ddots & \gamma \\ \alpha & \gamma & 0 & \gamma & \ddots & \ddots & \gamma \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \alpha & \gamma & \gamma & \cdots & \gamma & 0 & \gamma \\ \alpha & \gamma & \gamma & \cdots & \gamma & \gamma & 0 \end{pmatrix}$$
(1)

is the unique minimizing matrix in $\Omega(C_n)$ for $\alpha = \beta = 1/n$ and $\gamma = (n-1)/n(n-2)$. In [2], Minc showed that $X_n(\alpha)$ is not a minimizing matrix in $\Omega(C_n)$ for $\alpha = \beta = 1/n$ and $\gamma = (n-1)/n(n-2)$, but it is a minimizing matrix for $\alpha = (per R_{n-1})/d$, $\beta = (n-2)(per R_{n-2})/d$, and $\gamma = (per C_{n-1})/d$ with $d = per C_n - per C_{n-1}$ among the forms of (1), which implies that C_n is never barycentric for $n \geq 4$. Minc also claimed that $X_n(\alpha)$ in (1) becomes the barycenter of $\Omega(C_n)$ for $\alpha = (per R_{n-1})/(per C_n)$; but the barycenter is not correct.

In this note, we give the correct barycenter of $\Omega(C_n)$, and we show that C_n is never barycentric for $n \geq 3$ by a direct calculation from the correct barycenter.

LEMMA 1. The barycenter of $\Omega(C_n)$ is the form $X(\alpha)$ in (1) with

$$\alpha = \frac{per C_{n-1}}{per C_n}, \qquad \beta = \frac{per R_{n-1}}{per C_n}, \qquad \gamma = \frac{per C_{n-1} + per C_{n-2}}{per C_n}.$$
 (2)

PROOF. If we write the barycenter $b(C_n)$ of $\Omega(C_n)$ as

$$b(C_n) = \frac{1}{per C_n} \sum_{P \leq C_n} P = \frac{1}{per C_n} [b_{ij}],$$

then b_{ij} is the number of permutations P such that the (i, j) position of P is 1 and $P \leq C_n$. Thus $b_{ii} = 0$ for i = 2, ..., n, and for other i and j

$$b_{ij} = per \ C_n(i \mid j). \tag{3}$$

That is, $b_{11} = per R_{n-1}$, $b_{j1} = b_{1j} = per C_{n-1}$, and $b_{ij} = per C_{n-1} + per C_{n-2}$ by changes of rows and columns, for i, j = 2, ..., n with $i \neq j$.

Therefore the barycenter $b(C_n)$ of $\Omega(C_n)$ is the form $X_n(\alpha)$ in (1) with the required values α, β , and γ in (2).

The following lemma is a known result (see [2]).

LEMMA 2. If $A = (a_{ij})$ is a minimizing matrix in $\Omega(C_n)$ and $a_{pq} > 0$, then per $A(p \mid q) = per A$.

Let C_n, R_n , and $b(C_n)$ be the matrices defined above. Clearly,

$$per C_n = per R_n + per R_{n-1}.$$
(4)

And we have (from $\S3.4$ in [3])

per
$$R_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right).$$
 (5)

THEOREM. For $n \ge 4$, C_n is never barycentric.

PROOF. Suppose to the contrary that C_n is barycentric. Then Lemma 2 implies that

$$per \ b(C_n)(1 \mid 1) = per \ b(C_n)(1 \mid n).$$
(6)

Using (2) and (4), we calculate

$$per \ b(C_n)(1 \mid 1) = \gamma^{n-1} per \ R_{n-1}$$

$$= \gamma^{n-2} \cdot \frac{per \ C_{n-1} + per \ C_{n-2}}{per \ C_n} \cdot per \ R_{n-1}$$

$$= \frac{\gamma^{n-2}(per \ C_{n-1} + per \ R_{n-2} + per \ R_{n-3})per \ R_{n-1}}{per \ C_n}$$
(7)

and

$$per \ b(C_{n})(1 \mid n) = \alpha \gamma^{n-2} per \ C_{n-1}$$

$$= \gamma^{n-2} \cdot \frac{per \ C_{n-1}}{per \ C_{n}} \cdot per \ C_{n-1}$$

$$= \frac{\gamma^{n-2}(per \ R_{n-1} + per \ R_{n-2})per \ C_{n-1}}{per \ C_{n}}.$$
(8)

Substituting (7) and (8) into (6), we have

$$(per R_{n-2} + per R_{n-3})per R_{n-1} = per R_{n-2}per C_{n-1}$$

= per R_{n-2} · (per R_{n-1} + per R_{n-2}).

That is,

$$per R_{n-3} per R_{n-1} = (per R_{n-2})^2.$$
(9)

Now, we consider three cases;

Case 1. For n = 4, we have $per R_1 = 0$, $per R_2 = 1$, and $per R_3 = 2$. Thus

$$per R_{n-3} per R_{n-1} = 0 < 1 = (per R_{n-2})^2,$$

which contradicts (9). That is, C_4 is not barycentric.

Case 2. Let n be any odd integer greater than 4. Using (5), we have

$$per R_{n-3} per R_{n-1} = (n-3)!(n-1)! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{1}{(n-3)!}\right) \\ \times \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots - \frac{1}{(n-2)!} + \frac{1}{(n-1)!}\right) \\ > (n-3)!(n-2)!(n-2) \\ \times \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{1}{(n-3)!} - \frac{1}{(n-2)!}\right) \\ \times \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots - \frac{1}{(n-2)!}\right) \\ = (per R_{n-2})^2.$$

This inequality contradicts the equation (9), and hence C_n is never barycentric for any odd integer n greater than 4.

Case 3. Let n be any even integer greater than 4. From (5), we have

$$per R_{n-2} - n = (n-2)! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{1}{(n-2)!} \right) - n$$

> $(n-2)! \left(\frac{1}{2!} - \frac{1}{3!} \right) - n$
> 0, (10)

$$per R_{n-1} = (n-1)per R_{n-2} - 1, \tag{11}$$

$$per R_{n-3} = \frac{per R_{n-2} - 1}{n-2}.$$
 (12)

Using (10), (11), and (12), we have

$$per R_{n-3} per R_{n-1} - (per R_{n-2})^2$$

$$= \frac{per R_{n-2} - 1}{n-2} \{ (n-1)per R_{n-2} - 1 \} - (per R_{n-2})^2$$

$$= \frac{n-1}{n-2} (per R_{n-2})^2 - \frac{n}{n-2} per R_{n-2} + \frac{1}{n-2} - (per R_{n-2})^2$$

$$= \frac{1}{n-2} per R_{n-2} (per R_{n-2} - n) + \frac{1}{n-2}$$

$$> 0.$$

This implies (9) does not hold for this case. That is, C_n is never barycentric for any even integer n greater than 4.

We remark that C_3 is also not barycentric, because $\frac{1}{2}R_3$ is the unique minimizing matrix on $\Omega(C_3)$ (by Theorem 5 in [1]) and $b(C_3)$ is

$$\frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}.$$

The author wishes to thank the referee for his comments on this paper and to thank Jongseon Suh and Changsung Song for their encouragement.

REFERENCES

- 1 Richard A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, *Linear and Multilinear Algebra* 17:5–18 (1985).
- 2 Henryk Minc, On a conjecture of R. A. Brualdi, *Linear Algebra Appl.* 94:61–66 (1987).
- 3 Henryk Minc, *Permanents*, Encyclopedia Math. Appl. 6, Addison-Wesley, Reading, Mass., 1978.

Received 5 August 1993; final manuscript accepted 4 October 1993