from timepoint to timepoint. Stacked cumulative percent plots can be applied to diverse disease types and to outcomes with varying amounts of anticipated change from timepoint to timepoint.

PMC3

USING FRONTIER ANALYSIS TO OPTIMIZE THE OVERALL LIFE YEARS GAINED IN VACCINATION POLICY OF INFECTIOUS DISEASES

Chang CJ, Wu DP, Lin TF, Fan CG

Chang Gung University, Taipei, Taiwan, Academia Sinica, Taipei, Taiwan

OBJECTIVES: The aim of the study is to utilize the novel frontier analysis to search for optimal strategies of vaccination policy against infectious diseases with limited vaccine supply. METHOD: An important goal of public health research is to predict clinical impact by nation-wide mass vaccination in preventing infectious diseases. Vaccination is usually given across potential vulnerable populations such as children. However, due to limited resources provided by the government among a growing number of competing vaccine products, some vaccinations are to be given to some targeted high-risk cohorts against infectious diseases, such as pneumonia or influenza. Hence, the optimal strategy of vaccination policy for effective disease control becomes a practical concern. We propose a model using frontier analysis to seek the optimal vaccination policy in controlling infectious disease epidemics with limited resources. The problem is initially formulated to find the maximal life years gained while minimizing the variance. Various vaccination policies were explored in finding the optimal vaccination strategy. The indirect effects on unvaccinated cohorts were also considered in the analysis. The technique is illustrated using pneumococcal conjugate vaccine (PCV) in Taiwan as an example. RESULTS: Using the empirical study of PCV and various scenarios of the policy with limited resources, we provide the best vaccination strategy among various defined cohorts and report the maximal life years gained with the fixed total cost of the vaccine given. Our study can be generalized to the optimization of vaccination strategies for most infectious diseases among different population structures. CONCLUSIONS: When disease burden is high, more emphasis should be laid on the possible health benefits gained with a vaccination program, instead of just considering the economic benefits. Our study can help to guide decision makers in determining optimal uses of limited quantities of vaccine across multiple targeted cohorts to effectively control infectious diseases.

PMC4

A FRAMEWORK FOR DEVELOPING A FLEXIBLE CONTROL-BASED ASTHMA POLICY MODEL

Lampeen EU, Hansen RN, Briggs A, Sullivan SD

University of Washington, Seattle, WA, USA, University of Glasgow, Glasgow, UK

OBJECTIVES: The goal of asthma management is to gain and maintain control. Several validated patient-reported measures are available to assess the degree of control: Asthma Control Questionnaire (ACQ), Asthma Control Test (ACT), and the Asthma Therapy and Assessment Questionnaire (ATAQ). We propose a flexible and transparent model of asthma that represents disease variability through exacerbation rates and any one of the three control instruments. METHODS: We developed a Markov model to simulate cohorts transitioning among six health states: an asthma control continuum state (variability in control is tracked using one of the three control instruments), the severity levels of asthma exacerbation, and asthma and non-asthma related death. To estimate the cost and outcome weights for the control continuum state, we explored the relationship between the ATAC (higher ATAC = less control) and management costs (including absenteeism costs) and utilities using a large asthma registry of exacerbation-free patients. A hypothetical asthma intervention added to standard-of-care was compared to standard-of-care alone as summarized by the following product profile: a 50% reduction in asthma exacerbation rates, a 0.5 absolute improvement in the ATAC score, and an additional $10,000 per annum intervention cost. RESULTS: The estimated change in bi-weekly asthma management costs for a one unit increase in the ATAC score was $16.12 (robust SE = $3.93) and for utilities was $0.05 (robust SE = 0.0041). Assuming a five year time horizon, the hypothetical intervention plus standard-of-care had an incremental mean cost of $25,800 (95% interval $16,600, $41,000), quality adjusted life year (QALY) of 0.257 (0.038), and cost per QALY of $100,500/QALY ($13,700, $199,800). CONCLUSIONS: As relationships emerge between any of the instruments of control and costs and utilities, this versatile model can forecast: long-term burden of disease, value of existing and emerging interventions, and inputs that yield the highest return from further study.

PMC5

EFFECTS OF HETEROGENEITY ON THE ESTIMATION AND COMPARISON OF MEDICATION ERROR RATES

de Moor C, Golenitsky A

PMQ Inc, Pompano, NC, USA

OBJECTIVES: The clinical consequences and costs of medication errors (ME) have significant implications on quality of care. A detailed understanding of the occurrence and patterns of MEs is critical to reducing ME rates and improving patient outcomes. However, ME rates are often estimated inaccurately. ME rates are typically heterogeneous with respect to hospitals and units within hospitals, because of differences in health care provider (HCP) experience and skill. Although this heterogeneity has important implications for the precision and power of ME analysis, it is seldom taken into account in the estimation of MEs. METHODS: To evaluate the effects of heterogeneity on the precision and power of estimated ME rates, we assumed three sources of heterogeneity: hospital, unit (or HCP) within hospital, and random error. We derived formulas representing the variances of the estimated ME rates and the variances of comparisons of ME rates, and graphically illustrated the effects of sample sizes and magnitude of heterogeneity on the variances. RESULTS: The heterogeneity associated with hospital and unit induces clustering of MEs within hospitals and units, increasing variability in the estimated ME rates compared with what would be observed in the absence of heterogeneity. Even in the presence of low levels of heterogeneity, the variances of the estimated ME rates can be substantially increased. Power associated with comparisons of ME rates also can be substantially affected with decreased power for comparisons between hospitals or units and increased power for comparisons within hospitals or units. CONCLUSIONS: Heterogeneity of MEs with respect to hospitals and hospital units (or HCPs) can have a substantial effect on precision and power, and should be incorporated in the analyses ME rates. We provide precision and power formulas for planning future studies of MEs.