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Let {ϕn} be a sequence of rational functions with arbitrary complex poles, generated
by a certain three-term recurrence relation. In this paper we show that under some
mild conditions, the rational functions ϕn form an orthonormal system with respect to
a Hermitian positive-definite inner product.
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1. Introduction

In [8] a Favard theorem was given for Laurent polynomials. Later, several Favard theorems were determined for classes of
rational functions with restrictions on the poles: first, the restriction that the poles are complex and outside the extended
real line (or, using an inverse Cayley transformation, outside the unit circle), see e.g. [1,2,4,7]; afterwards, the restriction
that the poles are all on the extended real line (or on the unit circle), see e.g. [3,4]. Finally, in [5, Theorem 3.10] a Favard
theorem was given for rational functions without restrictions on the poles.

The complete proof of this last Favard type theorem was omitted in [5] because at first it seemed that the outline of the
proof would be similar to the proof given in [4, Chapter 11.9]. However, a detailed study in [6] revealed that Theorem 3.10
could not be proved as in [4]; hence, it is still unproved.

The aim of this paper is to give a complete proof for Theorem 3.10 in [5]. In Section 3 we will give this complete proof,
but first we start with an overview of the theoretical preliminaries in the next section.

2. Preliminaries

The field of complex numbers will be denoted by C and the Riemann sphere by C = C ∪ {∞}. For the real line we use
the symbol R, while the extended real line will be denoted by R. Let c = a + ib, where a,b ∈ R. Then we denote the real
part of c by �{c} = a and the imaginary part by �{c} = b.

Suppose a sequence of poles {α1,α2, . . .} ⊂ C \ {0} is given. Define the factors

Zk(x) = Zαk (x) = x/(1 − x/αk), k = 1,2, . . . ,
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and the basis functions

b0(x) ≡ 1, bk(x) = bk−1(x)Zk(x), k = 1,2, . . . .

Then the space of rational functions with poles in {α1, . . . ,αn} is defined as

Ln = span{b0,b1, . . . ,bn}.
We denote with Pn the space of polynomials of degree less than or equal to n. Let πn be given by

π0(x) ≡ 1, πn(x) =
n∏

k=1

(1 − x/αk).

Then we may write equivalently Ln = {pn/πn: pn ∈ Pn}. In the remainder, we will use the notation πn\ j , with 0 � j � n, to
denote the polynomial πn\ j = πn/π j ∈ Pn− j .

Note that the value α∅ = 0 represents a forbidden value for the poles αk . Since we consider only a countable number of
poles αk , we can always find a point α∅ ∈ C so that αk �= α∅ for every k � 1. A simple transformation can bring this α∅ to
any position that we would prefer. Therefore, this forbidden value α∅ is not a real restriction on the sequence of poles, and
we may assume it to be fixed by the value zero.

We define the substar conjugate of a function f ∈ L∞ as

f∗(x) = f (x).

This way we have that f (x) has a pole in x = α iff f∗(x) has a pole in x = α. With Ln∗ we then denote the space of rational
functions given by Ln∗ = { f∗: f ∈ Ln}.

Next, let us consider an inner product that is defined by a linear functional M:

〈 f , g〉 = M{ f g∗}, f , g ∈ L∞.

The functional M is called Hermitian positive-definite (HPD) iff M{ f f∗} > 0 for all f ∈ L∞ \{0} and M{ f∗} = M{ f } for every
f ∈ L∞ · L∞∗ .

Suppose there exists a sequence of rational functions {ϕn}, with ϕn ∈ Ln \ Ln−1, so that the ϕn form an orthonormal
system with respect to the HPD linear functional M; i.e. M{ϕ jϕk∗} = δ jk , where δ jk denotes the Kronecker Delta. Further,
assume that these rational functions are of the form ϕn(x) = pn(x)/πn(x). We then call ϕn regular iff pn(αn−1) �= 0 and
pn(αn−1) �= 0. In the special case in which αn−1 = ∞, pn(∞) �= 0 means that pn ∈ Pn \ Pn−1.

In case of a regular system of orthonormal rational functions (i.e., the orthonormal rational functions ϕn are regular for
every n � 1), it follows from [5, Section 3] that the ϕn satisfy a three-term recurrence relation of the form:

ϕn(x) = Zn(x)
{

En
[
1 + Fn/Zn−1(x)

]
ϕn−1(x) + Cnϕn−2(x)/Zn−2∗(x)

}
,

En �= 0, Fn ∈ C, Cn = −En
[
1 + Fn/Zn−1(αn−1)

]
/En−1 �= 0, n � 1. (1)

3. Favard theorem

In order to derive a Favard type theorem, we need to verify whether, starting from a regular system of rational functions
{ϕn} for which the ϕn are generated by the three-term recurrence relation (1), there exists a HPD inner product for which
the ϕn form an orthonormal system. So, assume that {ϕn}∞n=0 is a sequence of rational functions in L∞ and that the
following assumptions are satisfied:

(A1) α−1 ∈ R \ {0} and αn ∈ C \ {0}, n = 0,1, . . . ,
(A2) ϕn is generated by the three-term recurrence relation (1),
(A3) ϕn ∈ Ln \ Ln−1, n = 1,2, . . . , and ϕ0 ∈ C \ {0},
(A4) |En|−2 = 2�{τn + ρn}, n = 1,2, . . . , where

τn = Fn[1 + F n A(αn−1,ωn)]
A(αn,αn)

, ρn =
∣∣∣∣1 + Fn A(αn−1,αn−1)

En−1

∣∣∣∣
2 A(αn−2,ωn)

A(αn,αn)
,

A(α,β) = 1/Zα(x) − 1/Zβ(x), ωn = |αn|2/�{αn}, and E0 ∈ C \ {0}.

Further, let Sn and S∞ be given by

Sn = span{ϕkϕl∗: 0 � k, l � n and k �= l} = Sn∗, n > 0,

respectively S∞ = span{Sn: n = 1,2, . . .}. Then we define M on S∞ by setting M{ f } = 0 for every f ∈ S∞ . Note that it is
always possible to define M in such a way, independent of whether the assumptions given by (A1)–(A4) are satisfied.
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Next, let Tn and T∞ be given by

Tn = span{ϕkϕk∗: 0 � k � n} = Tn∗, n > 0,

respectively T∞ = span{Tn: n = 1,2, . . .}. Clearly we then have that Sn + Tn = Ln · Ln∗ for every n > 0. Hence, it remains to
extend the definition of M to T∞ in such a way that M{ϕkϕk∗} = 1 for every k � 0. Note that this extension is possible iff
the following condition holds true:

φ =
∑

akϕkϕk∗ ∈ S∞ iff
∑

ak = 0. (2)

We will now prove by induction that the condition given by (2) holds true under the assumptions given by (A1)–(A4).

Initialisation n = 1
Consider the subspace L1 · L1∗ = S1 + T1. We then have the following theorems.

Theorem 1. Under the assumptions given by (A1)–(A4) it holds that (ϕ1ϕ1∗ − ϕ0ϕ0∗) ∈ S1 .

Proof. Starting from the three-term recurrence relation (1), and performing some computations similar to those in the proof
of [5, Theorem 3.9] (but without taking inner products), we find that there exists a function f1 ∈ S1 so that

|E1|−2ϕ1ϕ1∗ = 2�{τ1}ϕ0ϕ0∗ + f1.

Finally, because 2�{ρ1} = 0 for α−1 ∈ R \ {0}, it follows from assumption (A4) that (ϕ1ϕ1∗ − ϕ0ϕ0∗) = |E1|2 f1 ∈ S1. �
Theorem 2. Under the assumptions given by (A1)–(A4) it holds for j = 0,1 that ϕ jϕ j∗ /∈ S1 .

Proof. First, consider the case that α1 ∈ R \ {0}, and suppose that ϕ1ϕ1∗ = p1 p1∗/π2
1 ∈ S1 = span{ϕ1ϕ0∗,ϕ1∗ϕ0}. We

then have that there exists a constant c �= 0 so that [cp1(x) + cp1∗(x)]/π1(x) = p1(x)p1∗(x)/π2
1 (x). Or, equivalently,

π1(x)[cp1(x)+ cp1∗(x)] = p1(x)p1∗(x). Taking x = α1, it then follows that p1(α1) = 0, contradicting our assumption given by
(A3). Consequently, ϕ1ϕ1∗ /∈ S1, and from Theorem 1 it then follows that ϕ0ϕ0∗ /∈ S1.

Finally, consider the case that α1 /∈ R, and suppose that ϕ0ϕ0∗ ∈ S1 = span{ϕ1ϕ0∗,ϕ1∗ϕ0}. We then have that there
exists a constant c �= 0 so that cp1(x)/π1(x) + cp1∗(x)/π1∗(x) = ϕ0ϕ0∗ . Or, equivalently, π1∗(x)cp1(x) + π1(x)cp1∗(x) =
π1(x)π1∗(x)ϕ0ϕ0∗ . Taking x = α1 or x = α1, it then follows that π1∗(α1)cp1(α1) = 0, respectively π1(α1)cp1∗(α1) = 0. But
this is impossible due to our assumption given by (A3) and due to the fact that c �= 0. Hence, ϕ0ϕ0∗ /∈ S1, and from Theo-
rem 1 it then follows that ϕ1ϕ1∗ /∈ S1. �

Hence, we now have proved that φ1 = a0ϕ0ϕ0∗ + a1ϕ1ϕ1∗ ∈ S1 iff a0 + a1 = 0.

Induction for n > 1
Consider the subspaces L j · L j∗ = S j + T j , with j = n − 1,n, and suppose that for j = n − 1 it holds that φn−1 =∑n−1

k=0 akϕkϕk∗ ∈ Sn−1 iff
∑n−1

k=0 ak = 0. We then have to prove for j = n that φn = ∑n
k=0 akϕkϕk∗ ∈ Sn iff

∑n
k=0 ak = 0.

Theorem 3. Under the assumptions given by (A1)–(A4) it holds for j = 0, . . . ,n − 1 that (ϕnϕn∗ − ϕ jϕ j∗) ∈ Sn.

Proof. Let us first consider the case in which j = n −1. Starting from the three-term recurrence relation (1), and performing
some computations similar to those in the proof of [5, Theorem 3.9] (but without taking inner products), we find that there
exists a function fn ∈ Sn so that

|En|−2ϕnϕn∗ = 2�{τn}ϕn−1ϕn−1∗ + 2�{ρn}ϕn−2ϕn−2∗ + fn.

Due to our assumption (A4) it follows that (ϕnϕn∗ −ϕn−1ϕn−1∗) = |En|2kn , where kn = fn −2�{ρn}(ϕn−1ϕn−1∗ −ϕn−2ϕn−2∗).
From the induction hypotheses it now follows that (ϕn−1ϕn−1∗ − ϕn−2ϕn−2∗) ∈ Sn−1 ⊆ Sn , so that |En|2kn ∈ Sn .

Finally, for j < n − 1 it holds that (ϕnϕn∗ − ϕ jϕ j∗) = (ϕnϕn∗ − ϕn−1ϕn−1∗) + (ϕn−1ϕn−1∗ − ϕ jϕ j∗), where it follows from
the induction hypotheses that (ϕn−1ϕn−1∗ − ϕ jϕ j∗) ∈ Sn−1 ⊆ Sn . This concludes the proof. �

It remains to prove that ϕ jϕ j∗ /∈ Sn for j = 0, . . . ,n. Therefore we first need the following lemma.

Lemma 4. Under the assumptions given by (A1)–(A4) it holds for every gn−2 ∈ Ln−2 that Zn−1∗ gn−2∗ϕn/Zn ∈ Sn−1 .
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Proof. First, note that there exist coefficients a1,a2, . . . ,an−1 so that

Zn−1(x)gn−2(x) =
n−1∑
k=1

akbk(x).

From the three-term recurrence relation (1) it now follows that

bk∗ϕn

En Zn
=

[
1 + Fn

Zn−1

]
ϕn−1bk∗ − 1 + Fn A(αn−1,αn−1)

En−1
ϕn−2

bk∗
Zn−2∗

. (3)

It is easily verified that the right-hand side of (3) is in Sn−1 for k = 1, . . . ,n − 2. While for k = n − 1 we have that
[

1 + Fn

Zn−1

]
ϕn−1bn−1∗ = [

1 + Fn A(αn−1,αn−1)
]
ϕn−1bn−1∗ + Fnϕn−1bn−2∗

and ϕn−2bn−1∗/Zn−2∗ = A(αn−2,αn−1)ϕn−2bn−1∗ + ϕn−2bn−2∗ . Consequently,

[
1 + Fn A(αn−1,αn−1)

]−1
bn−1∗ϕn/En Zn = (

ϕn−1 − A(αn−2,αn−1)ϕn−2/En−1
)
bn−1∗ − ϕn−2bn−2∗/En−1 + kn−1,

where kn−1 = Fn[1 + Fn A(αn−1,αn−1)]−1ϕn−1bn−2∗ ∈ Sn−1. Suppose that ϕn−1 = κn−1bn−1 + κ ′
n−1bn−2 + fn−3, where

κn−1, κ
′
n−1 ∈ C, κn−1 �= 0 and fn−3 ∈ Ln−3. Then we get that

(
ϕn−1 − A(αn−2,αn−1)ϕn−2/En−1

)
bn−1∗ = (

ϕn−1 − A(αn−2,αn−1)ϕn−2/En−1
)[ϕn−1∗ − κ ′

n−1bn−2∗ − fn−3∗]/κn−1

= [
ϕn−1ϕn−1∗ − κ ′

n−1 A(αn−1,αn−2)ϕn−2bn−2∗/En−1 − hn−1
]
/κn−1,

where

hn−1 = ϕn−1
(
κ ′

n−1bn−2∗ + fn−3∗
) + A(αn−2,αn−1)ϕn−2(ϕn−1∗ − fn−3∗)/En−1 ∈ Sn−1.

Hence, with h′
n−1 = (κn−1kn−1 − hn−1) ∈ Sn−1 we have that

[
1 + Fn A(αn−1,αn−1)

]−1
bn−1∗ϕn/En Zn = {

ϕn−1ϕn−1∗ − ϕn−2bn−2∗
[
κn−1 + κ ′

n−1 A(αn−1,αn−2)
]
/En−1 + h′

n−1

}
/κn−1.

Finally, suppose that ϕn−2 = κn−2bn−2 + ln−3, where κn−2 �= 0 and ln−3 ∈ Ln−3. Then it follows from [5, Theorem 3.2.4] that
[κn−1 + κ ′

n−1 A(αn−1,αn−2)]/En−1 = κn−2, so that

[
1 + Fn A(αn−1,αn−1)

]−1
bn−1∗ϕn/En Zn = [

ϕn−1ϕn−1∗ − ϕn−2ϕn−2∗ + g′
n−1

]
/κn−1,

where g′
n−1 = (h′

n−1 +ϕn−2ln−3∗) ∈ Sn−1, and (ϕn−1ϕn−1∗ −ϕn−2ϕn−2∗) ∈ Sn−1 as well due to the induction hypotheses. �
Theorem 5. Under the assumptions given by (A1)–(A4) it holds for j = 0, . . . ,n that ϕ jϕ j∗ /∈ Sn.

Proof. First, consider the case that αn ∈ R \ {0}, and suppose that ϕnϕn∗ = pn pn∗/πnπn∗ ∈ Sn = (Sn−1 + ϕn · Ln−1∗ + ϕn∗ ·
Ln−1). We then have that there exist a polynomial rn−1 ∈ Pn−1 and function hn−1 ∈ Sn−1 so that

hn−1(x) + pn(x)rn−1(x) + pn∗(x)rn−1∗(x)

πn−1(x)πn∗(x)
= pn(x)pn∗(x)

πn(x)πn∗(x)
.

Or, equivalently,

πn(x)πn∗(x)hn−1(x) + πn\(n−1)(x)
[

pn(x)rn−1(x) + pn∗(x)rn−1∗(x)
] = pn(x)pn∗(x).

Taking x = αn , it then follows that pn(αn) = 0, contradicting our assumption given by (A3). Consequently, ϕnϕn∗ /∈ Sn , and
from Theorem 3 it then follows that ϕ jϕ j∗ /∈ Sn for j = 0, . . . ,n.

Finally, consider the case that αn /∈ R, and suppose that ϕn−1ϕn−1∗ = pn−1 pn−1∗
πn−1πn−1∗ ∈ Sn = (Sn−1 + ϕn · Ln−1∗ + ϕn∗ · Ln−1).

We then have that there exist a polynomial rn−1 ∈ Pn−1 and function hn−1 ∈ Sn−1 so that

hn−1(x) + pn(x)rn−1(x)

πn(x)πn−1∗(x)
+ pn∗(x)rn−1∗(x)

πn∗(x)πn−1(x)
= pn−1(x)pn−1∗(x)

πn−1(x)πn−1∗(x)
.

Or, equivalently,

πn(x)πn∗(x)hn−1(x) + πn∗\(n−1)∗(x)pn(x)rn−1(x) + πn\(n−1)(x)pn∗(x)rn−1∗(x)

= πn\(n−1)(x)πn∗\(n−1)∗(x)pn−1(x)pn−1∗(x).
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Taking x = αn or x = αn , it then follows that πn∗\(n−1)∗(αn)pn(αn)rn−1(αn) = 0, respectively πn\(n−1)(αn)pn∗(αn)rn−1∗(αn) =
0. Consequently, rn−1(αn) = rn−1∗(αn) = 0 due to our assumption given by (A3). Hence, there exists a function gn−2 ∈ Ln−2
so that

pn(x)rn−1(x)/πn(x)πn−1∗(x) + pn∗(x)rn−1∗(x)/πn∗(x)πn−1(x)

= Zn−1∗(x)gn−2∗(x)ϕn(x)/Zn(x) + Zn−1(x)gn−2(x)ϕn∗(x)/Zn∗(x).

From Lemma 4 it now follows that (hn−1 + pnrn−1/πnπn−1∗ + pn∗rn−1∗/πn∗πn−1) ∈ Sn−1, while it follows from the induction
hypotheses that ϕn−1ϕn−1∗ /∈ Sn−1. Hence, ϕn−1ϕn−1∗ /∈ Sn , and from Theorem 3 it then follows that ϕ jϕ j∗ /∈ Sn for j =
0, . . . ,n. �

Thus, we now have proved the following theorem.

Theorem 6. Under the assumptions given by (A1)–(A4) it holds that φ = ∑
akϕkϕk∗ ∈ S∞ iff

∑
ak = 0.

Finally we have the following Favard type theorem. The proof is the same as the proof of [4, Theorem 11.9.4], and hence,
we omit it. (For the reformulation of assumption (A4), we refer to [6, p. 13].)

Theorem 7 (Favard). Let {ϕn} be a sequence of rational functions, and assume that the assumptions given by (A1)–(A3) are satisfied,
together with the assumption that

(A4) �{Fn} = �{αn}
|αn|2 · 1

|En |2 − �{αn−2}
|αn−2|2 · 1

|En−1|2 , if αn−1 ∈ R \ {0}, respectively

�{Fn}2 + (�{Fn} − iZn−1(αn−1)
)2 = [

iZn−1(αn−1)
]2 |En−1|2

|En|2 · �n

�n−1
,

if αn−1 /∈ R, n = 1,2, . . . , where �n = |En|2 − 4 �{αn}
|αn|2 · �{αn−1}

|αn−1|2 > 0, with E0 ∈ C \ {0}.

Then there exists a functional M on L∞ · L∞∗ so that 〈 f , g〉 = M{ f g∗} defines a HPD inner product on L∞ for which the ϕn form an
orthonormal system.
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