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The cytokine interferon-β is a regulator of cell
replication and function, including invasion and
induction of angiogenesis. The goal of this study was
to determine whether the expression of interferon-β
by cells in the epidermis correlated with terminal
differentiation. In situ hybridization analysis and
immunohistochemical staining of formalin-fixed, par-
affin-embedded specimens of normal human and
murine epidermis and human and murine skin tumors
of epithelial origin revealed that only differentiated,
nondividing cells of the epidermis expressed inter-
feron-β protein. Keratinocyte cultures established
from the epidermis of 3 d old mice were maintained

The interferons (IFN) are a heterogeneous family of
secreted proteins with the capacity to exert pleiotropic
effects on cell functions and render cells resistant to
infection by microorganisms (Isaacs and Lindenmann,
1957; De Maeyer-Guignard and De Maeyer, 1985;

Tamm et al, 1987; Gresser, 1990; Kalvakolanu and Borden, 1996).
Type I IFN-α and IFN-β, formerly classified as leukocyte and
fibroblast IFN, respectively, bind to the same cell surface receptor
(Branca and Baglioni, 1981) IFN-α and IFN-β induce a similar
pattern of cellular responses, yet certain reactions can be stimulated
only by IFN-β, presumably by the phosphorylation of a receptor-
associated protein that is uniquely responsive to IFN-β (Abramovich
et al, 1994; Uze et al, 1995). In response to viral infection, epithelial
cells and fibroblasts secrete IFN-β into the organ microenvironment,
where it can reach high concentrations (Dianzani, 1992). Although
IFN are thought of as inducible proteins, their presence has been
detected in different human tissues in the absence of any obvious
inducer (Tovey, 1988). IFN-β was discovered several decades ago
based on its anti-viral activity (Isaacs and Lindenmann, 1957).
Subsequent investigations, however, demonstrated that IFN-β func-
tions as an autocrine growth inhibitor during hematopoietic cell
differentiation by binding to cell surface receptors and switching
on the expression of members of the IFN-inducible gene family
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under conditions permitting continuous cell division
or induction of differentiation. Continuously dividing
cells did not produce interferon-β whereas nondivid-
ing differentiated cells expressing keratin 1 did.
Growth-arrested, undifferentiated keratinocytes also
expressed interferon-β protein. Neutralizing inter-
feron-β in the culture medium inhibited differenti-
ation, but the addition of exogenous interferon-β
did not stimulate differentiation. These data indicate
that interferon-β is produced by growth-arrested,
terminally differentiated keratinocytes. Keywords:
angiogenesis/differentiation. J Invest Dermatol 112:802–
809, 1999

(Resnitzky et al, 1986). Treatment with exogenous IFN-β or
IFN-α has been shown to produce cytostasis and promote terminal
differentiation of epidermal cells (Nickoloff et al, 1984; Yaar et al,
1985; Stadler et al, 1986). IFN-β production has been associated
with differentiation in several cell systems including pluripotent
P19 embryonal carcinoma cells (Belhumeur et al, 1993), human
U937 leukemia cells (Yarden et al, 1984), and Friend erythro-
leukemia cells (Friedman-Einat et al, 1982).

Recently, we reported that differentiated epithelial cells lining
organs exposed to environmental stimuli constitutively express
IFN-β (Bielenberg et al, 1998a). We have also found that expression
of IFN-β protein is inversely correlated with angiogenesis in
cutaneous infantile hemangiomas and that the eventual involution
of these extremely angiogenic tumors coincides with increased
expression of IFN-β in the epidermis overlying these lesions
(Bielenberg et al, 1999). Hyperplasia and cutaneous angiogenesis
induced by ultraviolet (UV) irradiation also correlate with a loss of
IFN-β protein expression in the epidermis of mice (Bielenberg
et al, 1998b). Because IFN-β can regulate such diverse homeostatic
processes as cellular proliferation (Clemens and McNurlan, 1985;
Heyns et al, 1985), differentiation (Clemens and McNurlan, 1985;
Rossi, 1985), immunity (Lengyel, 1982; De Maeyer-Guignard and
De Maeyer, 1985; Gresser et al, 1991), and angiogenesis (Sidky and
Borden, 1987; Dvorak and Gresser, 1989; Singh et al, 1995), we
wished to determine its constitutive expression in epithelial cells
and whether its production was correlated with their differentiation.
We therefore examined the expression of IFN-β in normal human
and murine epidermis as well as in human and murine skin tumors
of epithelial origin. To test our hypothesis that expression of IFN-β
is associated with terminal differentiation, we used primary cultures
of epidermal cells whose differentiation can be induced by changing
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Figure 1. Localization of IFN-β protein and differentiation-associated antigens in normal epidermis and squamous cell carcinomas (SCC).
In normal murine or human epidermis, IFN-β protein is expressed in the suprabasal layers. Loricrin is expressed in the outer granular and cornified layers.
K14 is expressed in all epidermal layers in the skin of mice and in basal cells in the human skin. Dividing murine (well differentiated) and human SCC
cells all express K14 but have decreased expression of loricrin and IFN-β protein. Scale bars: 50 µM.

the calcium concentration in the culture medium (Hennings et al,
1980; Yuspa et al, 1989). The data show that only keratinocytes
that undergo terminal differentiation, identified by the expression of
differentiation-associated antigens (K1 and loricrin) and a cornified
envelope (Roop et al, 1987; Yuspa et al, 1989) or keratinocytes
whose growth is arrested by cytostatic agents, express IFN-β.

MATERIALS AND METHODS

Keratinocyte cultures Primary murine keratinocytes isolated from 3 d
old BALB/C mice (Hennings et al, 1980) were plated at a density of
5 3 106 cells per 60 mm dish (Corning Glass Works, Corning, NY) or
3 3 106 cells per ProbeOn slide (Fisher Scientific, Houston, TX)
and maintained in Eagle’s minimum essential medium (Bio-Whittaker,
Walkersville, MD) containing 8% chelated fetal bovine serum (Intergen,
Purchase, NY), 0.05 mM Ca21, and 20 U penicillin–streptomycin (Gibco,
Grand Island, NY) per ml. Differentiation of the keratinocytes was induced
by incubation in medium containing 0.12 mM Ca21 (Roop et al, 1987).
To inhibit proliferation, the keratinocyte cultures were treated with medium
containing 1 ng TGF-β (R&D Systems, Minneapolis) per ml or 100 µM
cytosine-B-D-arabinofuranoside (ara-C; Sigma, St. Louis, MO) (Weinberg
et al, 1995). To identify dividing cells, the cultures were treated for 18 h
with 50 µM BrdU (Sigma). In other experiments, keratinocytes grown in
medium containing 0.05 mM Ca21 or 0.12 mM Ca21 were treated with
102–104 U recombinant murine IFN-β (Access Biomedical, San Diego,
CA) per ml. To neutralize the effect of IFN on differentiation, keratinocytes
were incubated with 10–100 neutralizing units per ml murine or human
IFN-β antibody 1 h prior to and during elevation of the calcium
concentration from 0.05 mM to 0.12 mM.

Tissue specimens Ten formalin-fixed, paraffin-embedded archival
surgical specimens of human squamous cell carcinomas and normal skin
from patients treated at The University of Texas M.D. Anderson Cancer
Center were chosen at random. Samples of skin were collected from
transgenic mice expressing the human papillomavirus type 16 early region
genes under the control of the human K-14 promoter (K14-HPV16) back-

crossed into the FVB/n genetic background. The epidermis of these mice
undergoes progression from normal epidermis to hyperplasia, high-grade
dysplasia and, finally, invasive squamous carcinoma (Arbeit et al, 1994;
Coussens et al, 1996). Skin samples from K14-HPV16 mice at various
stages of disease progression were fixed in 3.75% paraformaldehyde and
embedded in paraffin at the University of California, San Francisco, CA.

Antibodies Rabbit anti-mouse K1, K14, and loricrin antibodies as well
as guinea-pig anti-mouse K1 antibody were the generous gift of Dr. Dennis
Roop (Baylor College of Medicine, Houston, TX). These antibodies are
now available from Berkeley Antibody (Richmond, CA). Affinity-purified
polyclonal rabbit anti-mouse IFN-β and monospecific polyclonal rabbit
anti-human IFN-β antibodies were purchased from Access Biomedical;
monoclonal mouse anti-proliferating cell nuclear antigen (PCNA) antibody,
clone PC10, was purchased from Dako (Carpinteria, CA); monoclonal
mouse anti-BrdU antibody (IgG1), clone B44, was purchased from Becton
Dickinson (San Jose, CA); rabbit anti-actin antibody was purchased from
Sigma; peroxidase-conjugated F(ab9)2 goat anti-rabbit IgG F(ab9)2, Texas
Red-conjugated F(ab9)2 goat anti-rabbit IgG F(ab9)2, and aminomethyl
Coumarin acetate-conjugated F(ab9)2 goat anti-guinea-pig IgG F(ab9)2
were purchased from Jackson Research Laboratories (West Grove, PA);
peroxidase-conjugated rat anti-mouse IgG2a was purchased from Serotec,
Harlan Bioproducts for Science (Indianapolis, IN); and peroxidase-conjug-
ated rat anti-mouse IgG1 was purchased from PharMingen (San Diego, CA).

Immunocytochemistry Acetone-fixed, phosphate-buffered saline
(PBS)-washed, tissue culture slides were placed in a humidified chamber
and incubated with a solution of 3% H2O2 in methanol solution for 12 min
at room temperature to block endogenous peroxidases. The slides were
washed three times with PBS (pH 7.5), blocked for 20 min at room
temperature in PBS supplemented with 1% normal goat serum and 5%
normal horse serum (protein blocking solution), and incubated with primary
antibody overnight at 4°C. The slides were then rinsed three times with
PBS, incubated for 10 min in protein blocking solution, and incubated for
1 h at room temperature in the corresponding peroxidase-conjugated
secondary antibody. Next, the slides were washed and incubated with
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Figure 2. Expression of IFN-β mRNA and protein in differentiated
keratinocytes. Primary cultures of keratinocytes were grown in medium
containing 0.05 mM Ca21 (undifferentiated) or 0.12 mM Ca21

(differentiated). By immunocytochemistry (ICC), both undifferentiated and
differentiated keratinocytes expressed K14 protein, but only differentiated
keratinocytes expressed IFN-β and K1 proteins. ISH analysis revealed
higher levels of IFN-β mRNA in differentiated keratinocytes than in
undifferentiated keratinocytes. All keratinocytes had intact mRNA as
shown by poly d(T)20 staining. Scale bars: 50 µM.

stable diaminobenzidine (DAB; Research Genetics, Huntsville, AL). Stain-
ing (brown precipitate) was monitored under a bright field microscope,
and washing with distilled water stopped the reaction. For single antibody
labeling experiments, the slides were counterstained with Gill’s 3 hematoxy-
lin (Sigma) and mounted with Universal Mount (Research Genetics). For
double antibody labeling experiments to detect BrdU, the slides were
washed with PBS after DAB, treated with 1% Triton X-100 in PBS for
8 min, and rinsed again with PBS. The slides were then incubated with
2 M HCl in PBS at 37°C for 30 min and rinsed with PBS. Next, samples
were treated with protein blocking solution for 10 min at room temperature
and incubated overnight at 4°C with primary antibody (anti-BrdU). The
slides were then washed with PBS, blocked with protein blocking solution,
and incubated with peroxidase-conjugated secondary antibody (rat anti-
mouse IgG1) for 1 h at room temperature. The slides were finally incubated
in a second chromogen, 3-amino-9-ethylcarbazole (BioGenex, San Ramon,
CA) for 5–10 min, washed, counterstained, and mounted as described
above. A positive reaction is seen as red nuclear staining. The concentration
of primary and secondary antibodies was determined previously and single
antibody labeling of samples was included as a control. Samples exposed
to secondary antibody alone showed no specific staining.

Immunohistochemistry Paraffin-embedded tissues were cut into 5 µm
sections, mounted on positively charged Superfrost slides (Fisher Scientific),
and allowed to dry overnight at room temperature. Sections were deparaf-
finized in xylene followed by a graded series of alcohols and rehydrated in
PBS (pH 7.5). Sections were then incubated with pepsin (Biomeda, Foster
City, CA) for 30 min at 37°C and treated as above for immunocytochemical

Figure 3. Kinetics of keratinocyte differentiation and expression of
IFN-β protein. Primary keratinocytes grown on glass slides were incubated
in medium containing 0.12 mM Ca21 for 4–48 h. The slides were fixed
and stained with antibodies against IFN-β or K1. The average percentage
of cells expressing IFN-β or K1 proteins at each time point was determined
by counting 15 random 1003 fields. Control cells were grown in 0.05 mM
Ca21-containing medium.

analysis. DAB chromogen was used in single antibody labeling experiments.
Samples used for double antibody labeling experiments were microwaved
5 min for citrate buffer ‘‘antigen retrieval’’ (Shi et al, 1991) in place of
pepsin treatment. The samples were incubated with the second primary
antibody followed by peroxidase-conjugated secondary antibody (anti-
PCNA; rat anti-mouse IgG2a) and treated with True Blue chromogenic
substrate (Kirkegaard & Perry Laboratories, Gaithersburg, MD). Slides were
briefly washed with distilled water and mounted with Permount (Fisher
Scientific). A positive reaction is seen as blue nuclear staining.

Immunofluorescence Acetone-fixed, PBS-washed, tissue culture slides
were treated as described above for immunohistochemical analysis except
that on the second day, the slides were incubated for 1 h at room
temperature with a Texas Red-conjugated secondary antibody and kept in
a light-protected chamber. The slides were then washed with PBS, blocked
with protein blocking solution, and incubated overnight at 4°C with
another primary antibody. On the third day, the slides were washed with
PBS, blocked with protein blocking solution, and incubated for 1 h at
room temperature with an aminomethyl Coumarin acetate-conjugated
secondary antibody. The slides were washed with PBS and mounted using
a 9:1 glycerol/PBS solution containing 2.1% propyl gallate. The reactions
were confirmed by fluorescent microscopy. Control slides exposed to one
or both secondary antibodies did not show fluorescent staining.

Oligonucleotide probes Two oligonucleotide probes were designed to
be complementary to the IFN-mRNA transcript. The sequences of
the 21-mer probes for IFN-were 59CGT-CCT-TTC-TTG-GAG-CTG-
GAG-39 and 59CAC-TGT-CTG-CTG-GTG-GAG-TTC-39 (both 57.1%
GC content). The specificity of the oligonucleotide sequences was first
determined by a GenEMBL database search using the Genetics Computer
Group sequence analysis program (GCG, Madison, WI), based on the
FastA algorithm; the sequences showed 100% homology with the target
IFN-β gene and minimal homology with nonspecific mammalian gene
sequences (Pearson and Lipman, 1988). A poly d(T)20 oligonucleotide was
used to verify the integrity of the mRNA in each sample (Bucana et al,
1993; Radinsky et al, 1993). All DNA probes were synthesized with six
biotin molecules (hyperbiotinylated) at the 39 end via direct coupling using
standard phosphoramidite chemistry [TAG-BBB-(TGA)-BBB] (Research
Genetics) (Caruthers et al, 1982). The lyophilized probes were reconstituted
to a 1 µg per µl stock solution in 10 mM Tris (pH 7.6) and 1 mM EDTA.
Each probe was titrated using a known positive tissue or cell line to
determine the optimal working dilution. The two IFN-β probes were
used together, each at a working dilution of 1:200 in Probe Diluent
(Research Genetics); and a dilution of 1:1000 was used for the poly
d(T)20 probe.
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Figure 4. (A–C) Expression of IFN-β protein in nondividing, differentiated mouse keratinocytes. Double-labeling immunofluorescence analysis
shows that differentiated keratinocytes coexpress IFN-β (Texas Red) and K1 (aminomethyl Coumarin acetate) proteins [(A) phase contrast; (B) IFN-β;
(C) K1]. Double-labeling immunohistochemical analysis of human epidermis (D) shows that the nondividing, suprabasal epidermal cells express IFN-β
protein (brown), whereas dividing, basal epidermal cells are PCNA-positive (blue). Keratinocytes in suprabasal layers (E) express the differentiation marker
K1 (brown) but not PCNA. Primary mouse keratinocytes grown in vitro in 0.12 mM Ca21-containing medium and treated with BrdU also demonstrate
that IFN-β (F) and K1 (G) proteins are not expressed by dividing cells (BrdU1, red stain). Scale bars: 50 µM.

In situ hybridization (ISH) This was performed as described previously
with minor modifications (Bucana et al, 1993; Radinsky et al, 1993). ISH
was carried out according to the Microprobe manual staining system (Fisher
Scientific, Pittsburgh, PA). Primary keratinocytes grown on sterile, silane-
treated ProbeOn slides were fixed in 4% paraformaldehyde in RNase-free
PBS for 20 min. The slides were placed in a Microprobe slide holder,
washed twice with RNase-free Tris-buffered saline (TBS) [50 mM Tris–
HCl, 150 mM NaCl (pH 7.6)], and incubated in 1% Triton X-100 for
5 min at room temperature. The slides were then washed three times with
RNase-free TBS and treated with 0.2 M HCl for 3 min at 100°C.
Hybridization of the biotinylated probe was carried out sequentially for
3 min at 100°C, 4 min at room temperature, and 45 min at 45°C. The
samples were washed three times with 2 3 standard saline citrate (0.3 M
NaCl and 30 mM sodium citrate) for 2 min at 45°C and incubated with
alkaline phosphatase-labeled avidin (Dako) for 30 min at 45°C. The slides
were rinsed twice with TBS, treated with alkaline phosphatase enhancer
(Biomeda) for 1 min, and finally incubated with the Fast Red chromogenic
substrate (Research Genetics) for 30 min at 45°C. Slides were washed
several times with distilled water and mounted with Universal Mount.
ISH with the IFN-β and poly d(T)20 probes was performed on each sample
at the same time to eliminate reagent variability within samples. A positive
reaction in this assay stains red. The control for endogenous alkaline
phosphatase used chromogen in the absence of any oligonucleotide probes.
To check the specificity of the hybridization signal, the following controls
were used: (i) RNase pretreatment of cells; (ii) substitution of the anti-

sense probe with a biotin-labeled sense probe; and (iii) competition assay
with unlabeled anti-sense probes. A markedly decreased or absent signal
was obtained after each of these procedures.

Western blotting Primary keratinocytes were washed with PBS con-
taining 5 mM EDTA and 1 mM sodium-o-vanadate. Cells were scraped
into lysis buffer [1% Triton X-100, 20 mM Tris–HCl (pH 8.0), 137 mM
NaCl, 10% glycerol (vol/vol), 2 mM EDTA, 1 mM phenylmethylsulfonyl
fluoride, 20 µM leupeptin and 0.15 U per ml aprotinin] and centrifuged
to collect soluble protein. Proteins (20 µg per lane) were diluted with
sample buffer [62.5 mM Tris–HCl (pH 6.8), 2.3% sodium dodecyl sulfate,
100 mM dithiothreitol, and 0.05% bromophenol blue], boiled, and separated
on 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The
proteins were then transferred on to 0.45 µm nitrocellulose membranes.
The filters were blocked with 3% bovine serum albumin in TBS [20 mM
Tris–HCl (pH 7.5) and 150 mM NaCl], probed with antibodies against
K1, K14, loricrin, or actin (1 µg per ml) diluted in TBS containing 0.1%
Tween 20, incubated with horseradish peroxidase linked whole donkey
anti-rabbit secondary antibody (Amersham, Arlington Heights, IL), and
visualized by the enhanced chemiluminescence western blotting detection
system (Amersham).

RESULTS

In the first set of experiments, we used immunohistochemistry to
analyze the expression of IFN-β, loricrin, and keratin 14 (K14)
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Figure 5. Expression of IFN-β protein in undifferentiated, growth-
arrested mouse keratinocytes. Primary mouse keratinocytes grown
in vitro in nondifferentiating medium (0.05 mM Ca21) do not express
either IFN-β or K1 (immunocytochemistry). Keratinocytes whose growth
was arrested with ara-C or TGF-β express IFN-β but not K1 proteins.
Keratinocytes grown in differentiating medium (0.12 mM Ca21) used as
a positive control express both IFN-β and K1 proteins.

protein in normal mouse and human skin and in epidermal
squamous carcinomas from K14-HPV16 transgenic mice and
human squamous cell carcinomas. In normal, quiescent tissues,
negative regulators of cell proliferation and angiogenesis are usually
dominant (Marks and Fürstenberger, 1993; Fidler and Ellis, 1994;
Iruela-Arispe and Dvorak, 1997). Indeed, the suprabasal layers of
nontransgenic mice and human epidermis expressed high levels of
IFN-β protein, whereas murine well-differentiated squamous cell
carcinoma and human moderately differentiated squamous cell
carcinoma did not (Fig 1). The normal epidermis expressed loricrin
in the outer granular and cornified layers, whereas the squamous
cell carcinomas did not. All specimens (normal and neoplastic
epithelial cells) expressed K14 protein (Fig 1).

Expression of IFN-β protein in the suprabasal layers of the
epidermis suggested that its expression was associated with cellular
differentiation. To test this hypothesis, we established primary
cultures of keratinocytes from the epidermis of 3 d old mice
(Hennings et al, 1980). The cells were plated on glass slides and
incubated for 2–3 d in medium containing 0.05 mM Ca21. The
cultures were then washed and incubated for 24 h in medium
containing 0.05 mM Ca21 or 0.12 mM Ca21, fixed, and analyzed
by immunocytochemistry and ISH for expression of IFN-β protein
and mRNA and differentiation antigens. In medium containing
0.05 mM Ca21, the cells continued to proliferate, remained
undifferentiated, and did not express IFN-β or keratin 1 (K1)

Figure 6. Neutralization of IFN-β protein inhibits differentiation
of mouse keratinocytes. Western blot analysis demonstrates that
keratinocytes grown in medium containing 0.05 mM Ca21 and treated
with 0 (lane 1), 10 (lane 2), 50 (lane 3), or 100 (lane 4) neutralizing units
per ml of murine IFN-β antibody expressed little or no loricrin (A) or K1
(B) protein. In contrast, keratinocytes grown in medium containing
0.12 mM Ca21 (lane 5) expressed both loricrin (A) and K1 (B). Keratinocytes
incubated in medium containing 0.12 mM Ca21 and treated with 10 (lane
6), 50 (lane 7), or 100 (lane 8) neutralizing units per ml murine IFN-β
antibody did not differentiate, i.e., produce loricrin (A) or K1 (B) protein.
Control keratinocytes grown in medium containing 0.12 mM Ca21 media
and treated with 10 (lane 9), 50 (lane 10), or 100 (lane 11) neutralizing
units per ml human IFN-β antibody differentiated and produced loricrin
(A) and K1 (B) proteins. K14, a 55 kDa protein, was expressed by all cells
regardless of the culture condition and served as a loading control. (C)
Primary keratinocytes were plated on glass slides, incubated in medium
containing 0.12 mM Ca21, and treated with or without neutralizing
antibodies against IFN-β. Immunocytochemical analysis was used to detect
the number of K1-producing cells in each culture condition. Significantly
fewer cells underwent differentiation when treated with antibodies to
murine IFN-β. *p , 0.0001 by the Mann–Whitney nonparametric analysis
of variance test in comparison with no antibody treatment.

proteins (Fig 2). In contrast, after 24 h of incubation in medium
containing 0.12 mM Ca21, some of the cells began to differentiate,
i.e., expressed K1 and IFN-β proteins (Fig 2). K14 protein was
expressed by cells in either culture condition and was used as a
positive control in all experiments (Fig 2). Cells incubated in
medium with 0.05 mM Ca21 did not express IFN-β mRNA,
whereas some cells incubated with medium containing 0.12 mM
Ca21 did. Use of the poly d(T)20 probe verified mRNA integrity.

To determine whether IFN-β protein was expressed by ker-
atinocytes undergoing differentiation, we correlated the number of
cells expressing K1 protein and cells expressing IFN-β. At time zero,
murine keratinocytes were incubated in differentiating medium
(0.12 mM Ca21). At various times thereafter, the cultures were
fixed and stained for IFN-β or K1 proteins. The number of cells
expressing either IFN-β or K1 increased with incubation time in
differentiating medium (Fig 3). To determine whether the K1-
positive cells also expressed IFN-β, we used immunofluorescence



VOL. 112, NO. 5 MAY 1999 EXPRESSION OF IFN-β BY NONDIVIDING KERATINOCYTES 807

Figure 7. IFN-β treatment is insufficient for induction of
differentiation in primary murine keratinocytes. Western blot analysis
demonstrates that keratinocytes grown in medium containing 0.05 mM
Ca21 in the absence (lane 1) or presence of 1 3 104 U per ml exogenous
murine IFN-β (lane 2) did not express K1 or loricrin. Cells grown in
medium containing 0.12 mM Ca21 (lane 3) expressed K1 and loricrin
proteins, but the expression of these differentiation-specific markers was
not elevated by treatment of cells for 24 h with 102 (lane 4), 103 (lane 5),
or 104 (lane 6) U murine IFN-β per ml. Cells grown in medium with
0.05 mM Ca21 and treated with 1 ng TGF-β per ml (lane 7) did not
express K1 or loricrin. Actin, a ubiquitous 42 kDa protein expressed
by all keratinocytes regardless of the culture conditions, served as a
loading control.

analysis to detect both proteins. Figure 4 illustrates that all cells
expressing K1 also expressed IFN-β protein.

In the next set of studies, we determined whether cell division
inversely correlated with expression of IFN-β. As terminally
differentiated cells do not divide, we used immunohistochemistry
and immunocytochemistry to identify the expression of IFN-β in
dividing and nondividing keratinocytes under in vivo and in vitro
conditions. Sections of normal human skin were labeled with
antibodies against human IFN-β or antibodies against PCNA to
identify cells in the S-phase of the cell cycle (Coltrera and Gown,
1991; Wolf and Dittrich, 1992; Iatropoulos and Williams, 1996).
Proliferating cells were detected mainly in the basal layer of the
epidermis or the layer immediately above the basal layer (Fig 4).
The outer layers of the epidermis did not contain PCNA-positive
cells. In contrast, expression of IFN-β protein was localized to cells
in the suprabasal and granular layers (Fig 4D). As expected,
expression of K1 protein inversely correlated with cell division
in vivo (Fig 4E). To analyze further the coexpression of differenti-
ation markers and IFN-β we cultured primary murine keratinocytes
in medium containing 0.12 mM Ca21. Dividing cells were identi-
fied by treatment with 5-bromo-29-deoxyuridine (BrdU) followed
by staining with antibodies against BrdU (Coltrera and Gown,
1991; Wolf and Dittrich, 1992; Iatropoulos and Williams, 1996).
Double-labeling revealed that keratinocytes expressing IFN-β
(brown cytoplasm) did not stain with anti-BrdU antibodies (red
nuclei) (Fig 4F). Moreover, BrdU-positive cells (red nuclei) did
not stain with antibodies against K1 (brown cytoplasm) (Fig 4G).
Thus, expression of IFN-β or K1 did not colocalize with BrdU
expression, suggesting that only nondividing cells (presumably
differentiated as well) expressed IFN-β. Single immunolabeling was
performed to rule out steric hindrance or competition between
antibodies. Reciprocal experiments were also performed to verify
staining reactions.

To determine whether expression of IFN-β was associated with
growth arrest or terminal differentiation of keratinocytes, we
incubated primary cultures of murine keratinocytes in medium
containing 0.05 mM Ca21 (negative control) or medium containing
0.12 mM Ca21 (positive control). To suppress cell division, the

keratinocytes growing in medium with 0.05 mM Ca21 were
treated with transforming growth factor-β (TGF-β) or ara-C.
Neither TGF-β nor ara-C induced differentiation of keratinocytes
(Fig 5), in agreement with previously published reports (Weinberg
et al, 1995). Growth-arrested keratinocytes did not express K1 but
did express IFN-β protein (Fig 5).

To determine whether expression of IFN-β protein was necessary
for differentiation of epidermal cells, we incubated primary ker-
atinocytes in the presence or absence of IFN-β antibodies, isolated
cytoplasmic proteins, and used western blot analysis to detect the
differentiation-specific markers K1 and loricrin (Fig 6). Ker-
atinocytes grown in medium containing 0.05 mM Ca21 did not
differentiate or produce IFN-β protein, and the addition of IFN-β
antibodies had no effect on the expression of differentiated antigens
(Fig 6A, B, lanes 1–4). About 10% of the keratinocytes grown in
medium with 0.12 mM Ca21 underwent differentiation as shown
by the expression of loricrin (Fig 6A, lane 5) and K1 proteins
(Fig 6B, lane 5). These differentiation antigens were absent or
below detection level when IFN-β protein was neutralized by the
addition of specific antibodies (Fig 6, lanes 6–8). Neutralizing
antibodies specific for human IFN-β (which do not cross-react
with murine IFN-β) did not inhibit differentiation of mouse
keratinocytes (Fig 6A, B, lanes 9–11). The biologic activity of the
anti-human IFN-β antibody was confirmed by its ability to
neutralize the cytostasis of human A375 melanoma cells exposed
to human IFN-β (data not shown). In Fig 6, parts (A) and (B)
represent two separate experiments in which cells were treated
independently with neutralizing antibodies. The loricrin blot (A)
and K1 blot (B) were each stripped and reprobed with antibodies
to K14, demonstrating protein expression and loading in each lane.

To estimate the number of cells undergoing differentiation within
a population, we cultured primary murine keratinocytes on glass
slides in medium with 0.12 mM Ca21 and human or murine
IFN-β antibodies. Using immunocytochemical techniques, the
cultures were stained with antibodies against K1, and the average
number of differentiated cells per slide was calculated from at least
15 random 100 3 fields (Fig 6C). The average percentage of
differentiated cells was 9% 6 2%. A similar number of differentiated
cells was found after treatment with human IFN-β antibodies
(11% 6 3%). The number of K1-positive cells was significantly
reduced by treatment with murine IFN-β antibodies (1% 6 1%).
When murine IFN-β was depleted from the medium containing
0.12 mM Ca21, the number of differentiated cells was reduced to
that found in nondifferentiating medium (0.05 mM Ca21) (compare
Fig 6C with 0 h time point in Fig 3).

To determine whether the presence of IFN-β in the culture
medium was sufficient to induce differentiation, we treated primary
murine keratinocytes for 24 h with recombinant murine IFN-β.
Exogenous IFN-β treatment did not induce the expression of the
differentiation-specific antigens K1 and loricrin in keratinocytes
incubated in nondifferentiating medium (0.05 mM Ca21). More-
over, exogenous murine IFN-β did not enhance expression of K1
or loricrin in cells growing in differentiating medium (Fig 7).
Whether a longer exposure to IFN-β would have induced differen-
tiation is unclear. In agreement with earlier experiments, TGF-β
(1 ng per ml) did not affect differentiation (Fig 7, lane 7).

DISCUSSION

These results demonstrate that differentiated or nondividing murine
and human epidermal cells express IFN-β in vivo and in vitro. The
pattern of IFN-β protein expression was similar in both murine
and human skin. Keratinocytes in the basal layer did not produce
IFN-β, whereas those in the suprabasal layers did. The expression
of IFN-β directly correlated with expression of the differentiation
markers K1 (Roop et al, 1987) and loricrin (Bickenbach et al, 1995)
and inversely correlated with PCNA (Coltrera and Gown, 1991;
Wolf and Dittrich, 1992) and BrdU (Gray, 1985; Iatropoulos and
Williams, 1996) staining. Murine keratinocytes whose growth was
arrested by TGF-β or ara-C did not express the differentiation
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markers but did express IFN-β, suggesting that the production of
IFN-β by terminally differentiated cells was associated with cessation
of proliferation.

IFN-β is a multifunctional regulatory cytokine that can directly
inhibit proliferation of tumor cells of different histologic origins
(Borden et al, 1984; Sica et al, 1989; Fukuzawa and Horikoshi,
1992; Johns et al, 1992; Gorlach et al, 1994). Recent studies indicate
that IFN-β can also downregulate the expression of angiogenic
molecules such as interleukin-8 (Oliveira et al, 1992, 1994; Singh
et al, 1996), basic fibroblast growth factor (Singh et al, 1995; Dinney
et al, 1998), and matrix metalloproteinases (Fabra et al, 1992; Gohji
et al, 1994) that are necessary for tumor growth and metastasis
(Fidler, 1995). The expression of IFN-β by tumor cells could
restrict their proliferation and growth and, indeed, neither human
nor transgenic mouse squamous cell carcinomas expressed significant
levels of IFN-β.

The extent of angiogenesis is determined by the balance between
positive and negative regulating molecules (Malhotra et al, 1989;
Liotta et al, 1991; Fidler and Ellis, 1994; Iruela-Arispe and Dvorak,
1997). We have found that exposure of mice to UV irradiation
induces epidermal hyperplasia in association with an increase in
expression of positive angiogenic molecules basic fibroblast growth
factor and a decrease in expression of negative angiogenic molecules
(IFN-β) in epidermal keratinocytes (Bielenberg et al, 1998b).
This imbalance favors cutaneous angiogenesis. As the hyperplasia
subsides, IFN-β protein expression is restored, and cutaneous
vascularization returns to normal (Bielenberg et al, 1996).

In this study, murine and human squamous cell carcinomas did
not express significant levels of IFN-β protein, in agreement with
earlier findings that cutaneous infantile hemangioma and cutaneous
melanoma express positive angiogenic factors but not IFN-β
(Bielenberg et al, 1998b; Wineland et al, 1998). The expression of
IFN-β by differentiated normal epithelial cells may explain how
these cells could suppress the early stages of neoplastic regression
in stratified epithelium (Javaherian et al, 1998). The lack of IFN-β
expression by dividing cells may also explain why IFN-β protein
or RNA expression are difficult to detect in vitro (Fujisawa
et al, 1997).

The expression of IFN-β by keratinocytes was directly correlated
with growth arrest, which is associated with terminal differentiation
(Friedman et al, 1982; Yarden et al, 1984; Resnitzky et al, 1986;
Belhumeur et al, 1993). We base this conclusion on the results of
in vitro studies showing that differentiated keratinocytes no longer
divided and expressed IFN-β. Nondifferentiated keratinocytes
whose growth was arrested by TGF-β or cytarabine (Weinberg
et al, 1995), however, also produced IFN-β. Similar to the case in
M1 myeloid cells (Resnitzky et al, 1986) or embryonal carcinoma
cells (Belhumeur et al, 1993), neutralizing IFN-β in the culture
supernatants (by using specific antibodies) inhibited terminal differ-
entiation.

In summary, we show that nondividing, terminally differentiated
epidermal cells (keratinocytes) produce IFN-β. Although the prim-
ary role of IFN-β in the outer epidermal layers is probably to
defend against viral, bacterial, and parasitic infections (Dianzani,
1992; Bielenberg et al, 1998a), IFN-β is also an integral part of a
complex cytokine network within the skin. The production of
IFN-β by nondividing cells may inhibit unregulated cutaneous
angiogenesis, which is associated with progressive growth of neo-
plasms (Fidler and Ellis, 1994; Fidler et al, 1998).
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