
Theoretical Computer Science 12 (1980) 193-228
@ North-Holland Publishing Company

'IWOWERATION THEOREMSFOR
THE LL(k) LAl’WXJAGES”

John C. BEA’ITY
Dept. of Computer Science, Univ. of Waterloo, WaterCoo, Ontario N2L 3G1, Canada, and
Graphics Group, Lawrence Livermore Laboratory, Liwmore, California 945.50, USA

Communicated by M. Harrison
Received August 1978
Revised August 1979

Am The structure of derivation trees over an LL(k) grammar is explored

and a property of these trees obtained which is shown to characterize the LL(k)

grammars. This characterization, called the LL(k) Left Part Theorem, makes it

possible to establish a pair of iteration theorems for the LL(k) languages. These

theorems provide a general and powerful method of showing that a language is

not LL(AG) when that is the case. They thus provide for the first time a flexible

tool with which to explore *,he structure of the LL(k) languages and with which

to discriminate between the LL(k) and LR(k) language classes.

Examples are given of La(k) languages which, for various reasons, fal.1 to be

LL(k). Easy and rigorous proofs to .this effect are given using our LL(k) iteration

theorems. In particular, it is proven that the dangling-ELSE construct allowed in

PL/I and Pascal cannot be generated by any LL(k) grammar. We also give a new

and straightforward proof based on the LL(k) Left Part -Theorem that -every LL(k)

grammar is LR(k).

1. xutroduotioP

The classical pumping lemma [3] and Ogden’s lemma [ZO] are among

the most powerful tools we possess for proving that languages are not

context-free. Hence one goal of recent research has been to obtain

analogous theorems for subclasses of the context-free languages. Thus

Ogden [19] gives an iteration theorem for the deterministic context-free

languages, Harrison and Have1 have established an iteration theorem for

* Research supported by the U. S. Earth Resources and Development Administration

under Contract No. W-7405-End-48 and by the National Research Council of Canada

under grant A-3022.

194 J.C. Beatty

the family of strict deterministic languages [1 l] which is also extendible

to the deterministic context-free languages, an6 Boasson has established

an iteration theorem for the one-counter languages [6]* More recently

King has obtained iteration theorems for the simple deterministic

languages and the strict deterministic languages of degree n [13]. Such

results help elucidate the structure of languages belonging to these

families, and provide us with a convenient means of distinguishing

between context-free languages which are and are not of a given class.

We establish here a property of LL(lc) derivation trees which is

analogous to the left part properties of strict deterministic grammars

Cl13 and left part grammars [ls). We show that our property

characterizes the LL(k) grammars and use it to establish two iteration

theorems for the LL(lc) languages. These theorems, in turn, enable us to

prove simply and rigorously that a variety of LR(k) languages are not

LL(k). In particular, the ALGOL-60 dangling IF-THENI,ELSE construct

allowed in Pascal and PL/I cannot be

We are also able to give a new and

LL(k) grammar is LR(k).

generated by an LL(k) grammar.

straightforward proof that every

The present paper is organized as follows. In the remainder of this

section we recall various commonly known definitions and theorems

which we will need. In section 2 we will semi-formalize the notion of a

derivation tree, and in the spirit of [ll] will establish various useful

properties of such trees. Thus equipped we will proceed in section 3 to

prove a left part theorem for LL(k) grammars which enables us to

establish our iteration theorems in section 4. Finally, in section 5 we

present some applications of our work.

A contest-free grammar (cfg) G is a 4-tuple (N,C,P,S). N is a finite,

non-e,npty set of nonterminals, or variables, denoted by upper case

Roman characters such as A and B. C is a finite, non-empty set of

terminals, denoted by lower case Roman characters from the beginning

of the alphabet, such as a and b. The vocabulary of G, written V, is

I\i U C. P is a finite subset of NxV*; an element (A,a) of P is called a

pro&&ion or rule and is written A --) o(. S is a special variable called

the start or goal symbol. For any variable A we call A + A a A-rule,

where ~1 is the empty string, and say that G is A-free iff G contains no

A-rules.

We write a + /3 (o derives /3 in o:ze step) iff there exists a variable A

E N and strings yl, y2, 6 E V* such that o = Y,AY,, B = Qy, and

Two iteration theorems for the U(k) languages 195

A --) c5 is in P. If Y1 E C* then we may write a =$L 8; =$ and *E are the

transitive closures of + and =SL, while +* and =$ are their reflexive

transitive closures. If a +* /3 then we say that a derives 8. If (r $ @

then the derivation is leftmost. By 9 we mean a derivation of exactly n

steps, for any n 3 0, while 3 denotes a leftmost derivation of exactly n

steps. The relations +R, +i and +z, etc., are similarly defined. If we

use a Greek letter such as 7~ (for example: +r) which is constrained to

belong to P* then ‘TT represents the sequence of rules (possibly 9~11) by

which the derivation proceeds.

We will say that an occurrence of the symbol X E C is exposed at

the (n+ l)e step of the leftmost derivation

S 3 WAY =$L w8r

if X appears somewhere in By and there are no variables anywhere to

the left of X in @y.

The contest-free language (cfl) &!e(G) g enerated by G is exactly the

set of terminal strings which can ‘t\e derived from the start symbol S.

Similarly, if a E V* then Y(a) is the set of terminal strings which can

be derived from a. The left sentential forms of G are exactly those

strings of terminals and nonterminals which can be generated from S by

a leftmost derivation.

G is said to be unambiguous if no string in 2?(G) has more than one

distinct leftmost derivation. Otherwise G is said to be ambiguous.

A variable A of G is said to be reduced iff A derives at least one

terminal string and itself appears in some string of terminals and

nonterminals which can be derived from S. G is said to be reduced iff

either the variables of G are all reduced or P = $.

A variable A of G is said to be left recursive iff A $A/!3 for some

string /3 E V*. G is left recursive iff some variable A of G is left

recursive.

If w is a string and k a non-negative integer then w/X: is the first

k symbols of w if Iwl> k and is w itself if Iwl< k, where Iwl is the length

of w. More generally, for ti cig G = (N,C,P,S) we define

j!b!d&3) = { w E f (
(Iwl d k and /3

(Iwl = k and /3

for any /3 E Vs. /&r&k is extended

** w) or

** wy for some y E C+) }

to sets in the usual way.

196 L.C. Beatty

Next we review pertinent facts about LL(k) grammars.

-8toa 1.1. A cfg G = (N,C,P,S) is LL(k) iff for any A E N; w, x, y E

c+; 8. 8’. y E v*; and any two derivations

S +; WAY =$L w/3y +; wx

S +; wA,y +L w/3’y +; wy

, for which x/k = y/k we necessarily have /3 = 18’. A language is LL(k) ifff it

is generated by an LL(k) grammar.

The following results are well-known or easily proven [s]. They will

be used subsequently and are stated here for convenience.

Theorem l.% [ZZ] No LL(k) grammar is ambiguous.

m-m 1.8. [22] No LL(k) grammar is left recursive.

m-m 1.4. Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff for

any A E N; w, x, y E Z*; /3, 8’. y, Y* E V*; and any two derivations

S +; wAy =+L w/Q +; wx

S +; WAY’ + w@‘y +; wy

for which x/k = y/k we necessarily have fl = @‘.

Theorem 1.4 allows the right context y of A in the two derivations of

definition 1.1 to differ. Definition 1.1 is taken from Aho and Ullman [Z];

theorem 1.4 is actually the LL(k) definition used by Rosenkrantz and

Stearns [22].

Theorem 1.S. [2] Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff

given any AE N, w E C*, and y E V* such that S $wAy, we have

&i7”stk(BY) n /+#‘Y) = pl

for every distinct pair of rules A + @ and A + 8’ in P.

Thoorom l.& Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff

given

(1) w g Fk(C’)
(2) x E c+

(3) A E N

then there exists at most one rule A + /3 in P such that

(4) S +* xAwZ

(5) A + /3 +* w1

(6) (w,w,)/k = w

for any wl, w2 E C*.

Two iteration theorems for the U(k) languages 197

This was the definition of LL(k) grammars used by Lewis and Stearns

Cl51 .

The following special version of the LL(k) definition will be useful in

section 3.

Theo-m 1.7. Let G = (N,C,P,S) be a reduced cfg. G is an LL(k) grammar

iff for any A E N; w, x, y E C*; & 8’. y E V*; and any two derivations

for which x/k = y/k we necessarily have /3 = @‘. (Notice that wAy is

derived in n steps in both derivations.)

Prooit A proof in the lorward direction is trivial. To establish the

reverse direction, suppose that G is not LL(k), but that the existence of

two such derivations necessarily forces @ = @‘. Since G is not LL(lc) it

follows from theorem 1.5 that there exist strings A E N; w E C*; /3, /3’,

y E v*; such that S +TwAy and

&;““tk(@Y) n Wk(B’Y) * pl (1)

for some distinct pair of rules A + /3 and A -j 8’ ir P. Let x and y’ be

strings in 2?(@y) and 3!?(/3’y), respectively, such that x/k = y/k and

slrppose that S derives WAY leftmost in n steps. Then

S 3 wAy +L w/3y $ wx

S =$ wAy =$L wp’y +; wy

where x/k = y/k. By hypothesis we must have /3 = fi’$ which is a

contradiction. Hence G must be ILL(k). m

Theorem 1.8. Let G = (N,C,P,S) be a reduced LL(k) grammar. Let

G, = (N,C,P,A) be the grammar formed from G by changing the start

symbol from S to A, for any variable A of G. Then G, is also an LL(k)

grammar.

oi: Suppose that G, were not LL(k). Then for some x, yl, y2 E C*;

@, 8’. y G V*; I! E N: there must exist two derivations

in G, witfi y ,/k = y2/k and @ * 8’. But this is also a derivation in G.

Since G is reduced, there also exists in G a derivation sequence

S $ wA6 for some w E C* and c5 E V*. We obtain the following

198 J. C. Beat@

derivations in G:

S +; wA6 $ wxB@ +, wx@-yd +; ~952

S $ wA6 +; wxByd =$L wx/3’y6 +; w?q$z

where z is any string derived from 6, Recall that y/k = y2/k- If 1yJ (k

or lyZi < k the&e must have y1 t: y2, in which case (y&/k = (y&/k. If

both y, and yz are of length k or greater then again (yIz)/k = &z)/k.

Since G is LL(k), we must therefore have /? = /3’, which is a contradic-

tion. Therefore G, must also be LL(lc). m

We also need to introduce LR(k) grammars. We use the definition

suggested by Geller and Harrison [lo).

Defiaitfon 1.8. A cfg G = (N,C,P,S) is L&(k) for some k 2 0 iff S +i S is

impossible in G ani1 for any w, w’, x E X2*; or, a’. & p’ E V*; A, A’ E N;

and derivations

S +; aAw ++R a/%’

S +z a’A’x +R a’$‘x = Cq3w’

if w/k = w’/k then (A+&lafl() = (A’+/3’,1&/3’1),

2. Treea

Following Harrison and Have1 [ll] we semi-formally develop the

ilotion of trees, particularly derivation trees, and their properties. Our

presentation is a compromise between the demands of rigor and a

desire not to sacrifice entirely comprehensibility and intuition. To this

end we will occasionally make informal use of pictures.

For our purposes a tree 7’ is a directed acyclic graph defined by a

pair of sets (?&8), where ‘1p is a set of n&es and 8 is a set of edges

(x,y) E %d& in which all nodes save one (the root node of T, written

A(?‘)) have exactly one entering edge; the root node has no entering

edges. For example, the tree in figure 1 is defined by

The edges (x+y) in 8 define the immediate descendency relation I-; x is

a parent of ~7 and y is a child of x. In figure 1 we have x0 r x1 but not

xt r x2. The reflexive transitjive closure r* of r is called the

descendancy relation. There is a path from node x to node y iff x r* y.
Thus in figure 1 there is a path from x0 to x3 since x0 r* xgs but no

path from x3 to x1. If A(?‘) ri y then y is said to be at depth i in T.

The height of ‘3’ is the length of a longest path in T; it is thus equal to

the depth of a deepest node.

Two iteration theorems for the !._.I&) languages 199

A node x is intera& iff there exists a node y such that x r y.

Otherwise x is a leaf, and has no children.

We will need a left to right ordering of the nodes in a tree. For this

reason we assume that 6 is actually a sequence of edges so that we

may define an additional relation n on the nodes of a tree in the

following way. If the P edges leaving an arbitrary node x are listed in 6

in the order (x,yl), .* l , (x,y,) then y1 n y2 n l . 9 n y, anol the edges

will be drawn left to right according to this ordering, as in figure 2.

Furthermore, if p r y and there does not exist any node x such that

x n y then p 5 y (y is a kftmost child of p). The relation 5; is defined

similarly. Finally, we write x L y iff (x,y) E (G-l)’ n (F)‘, so that x L y iff

there are no nodes between x and y. The reflexive transitive closure

L* of L then defines the notion of left to right order in 7’. (The

relations r and L are identical to the relations represented by these

symbols in Harrison and Have1 [111.) If we list the leaves l,, 0.9 , dr of

3’ in left to right order, which is to say that

1, L & L .a’ L lr

then we obtain the left to right sequence of nodes

A(T) = (1,. 42% l *’ * dr)

Let us adopt the convention that if we list the nodes in a subtree T’

of T then edges between those nodes in 3’ are implicitly the edges of T’

Fig. 1. Fig. 2.

(the induced subtree). Then for any internal node x of the tree 7’ the

set { yEY 1 x= y or x r y) defines the elementary subtrez of Y with

root z. Also, if x is a node of 7’ then we define TX to be the largest

induced subtree of T whose root is x. More precisely,

rx = { y~r I xr*y)
Since our trees represent context-free derivations we will want each

node to represent a grammar symbol or, perhaps, A. Furthermore, it is

often desirable to distinguish between a node and the, symbol it .

200 J.C. Beatty

represent, Q since several nodes may represent the same grammar symbol.

Hence we define a labeled tree to be a tree T = (u,8) together with a

Labeling function h from ‘zp into a finite set 9 of labels such that

‘zp n g = $. The labeling function A is then extended to sequences of

nodes in the obvious way; for a sequence (x0, l a* ,x,) of nodes we have

x(x,, l l ,’ ,x,) = X(x,) . . . A(x,). Our labels will always be drawn from som.e

set VA = V W {A}, where V is the vocabulary of some cfg. Of particular

interest are the root label and frontier of T:

d(T) = U MT))

P() T = M k(s))

Let G = (N,C,P,S) be a context-free grammar, and let T be a labeled

tree for which the labels are symbols from VK ‘3’ is said to be a

grammatical tree iff /$3’) E C* and either

T is a trivial tree consisting of a single labeled node

or

for every internal node x in 7’. if yl. 9 9 l , yr are all of X’S

children in left to right order then h(x) --) h(yl) l . . h(y,) is a rule

of G and X(yi) = A is allowed only if 1 = i = r.

Leaves which are labeled with terminals are referred to as terminal

nodes. Leaves which are labeled with A are called A-nodes. Observe that

a node x is internal iff h(x) E N. A grammatical tree T is said to be a

derivation tree iff d(T) = S.

Figure 3, for example, displays a grammatical tree over the

context- free grammar S + aSbS 1 A. Occasionally we will omit the names

of nodes in a grammatical tree, leaving only the labels, in which case

the tree of figure 3 would appear as in figure 4.

The sentential forms which appear in a derivation are embedded in a

natural way in the grammatical tree representing that derivation. We

represent this embedding by means of cross sections (CS’s) and

canonical cross sections, which we define inductively for a tree ‘s by the

foilowing:

(1) 77 = (x0), where x0 = h(r), is a cross section at level 0.

(2) Let 7j = (x1, l == ,xk, l .0 ,xm) be a cross secion of level 4 and let

xk be an internal node of T. If yl, l .a ,yt are all the children

of Xk in left to right order then ,

is a cross section of level I+ 1.

Two iteration theorems for the U(k) languages 201

(x0) is also said to be a left cananical cross section (LCCS) of X If q is

an LCCS of T and xk, the node which is replaced, is the leftmost

internal node of q, then 77’ is also a left canonical cross section of ‘S.

Right camnical CTOSS sections (RCCS’s) are defined analogously. For

readability we may sometimes write (x1 x2 l l l x,) instead of

(x1,x2, l ,Xm).

For example, in the grammatical tree of figure 3 (x1 x5 x3 x4) is

an LCCS, (x1 x2 xg x6) is a CS but not an ICCS and (x, :<cp x0 x4)

is neither an LCCS nor a CS.

The following properties of cross sections are intuitive. Consequently

we state them without proof, though in an order convenient for rigorous

development. lvIore detail may be found in [s].

BIot 1u.l. Let 7-j = (x1,-* ,x,,) be a cross section of some tree 7’. Then

xi L xi+l, 1 diem.

Fig. 3. A grammatical tree in which

we distinguish nodes and labels.

Fig. 4. A

nodes and

S b S

A A

grammatical tree in which

labels are not distinguished.

Feat PI& No node of any tree 7’ appears more than once in any one

cross section of T.

FIot a.8. [1 l] No two distinct LCCS’s of a grammatical trcz can he of

the same level.

Faot 8.4. The level associated with any cross section 1s unique.

F& B.S. Let 7” be a tree and let n be il node in T. Then n appears in

at ieast one LCCS (respectively CS) cf Y. Moreover, we may assume that

there are no internal noldes to the left (respectively to the left and

right) of n in this cross section.

Fu 8.6. Let ?’ be a tree. Then ku.~&r31) is an LCCS of T.

202 J.C. Betmy

Next we delineate the relationship between cross sections and

sentential forms. First we describe how to pass from cross sections to

derivations.

FnoB t.7. Let G = (N,C,P,S) be a cfg and let 7’ be a grammatical

over G. If q is a cross section of 7 at level 1 then d(7) d X(T)).

We have a stronger result for canonical cross sections.

F@ t.8. Let G = (N,C,P,S) be a cfg and let 3’ be a grammatical

over G. If Q and 7 are LCCS’s of level 4 and d+i, for any 1 and i

then X(q) +ih(?~‘). If q and 7’ are instead RCCS’s then h(q) =& A(q’).

tree

tree

3 0.

This result does not hold for cross sections in general. in figure 5.

the cross seclion

tl = (Xl % Xl3 X-7 %3 X3 X4)

is at level 3 and the cross section

77 ‘= (xxxxx 1 5 6 7 14 x3 x9 X15 x11 x16)

is at level 6, but h(q) = aabSbS cannot possibly derive h(q’) = aaSbbab,

the S in aaSbbab already having been erased in aabSbS.

IFrot 1.0. [l l] Let r be a derivation tree over some unambiguous cfg

and let q and 0 be two LCCS’s (or RCCS’s) in T. If I\(n) = h(8) then

77 = .e.

We pass from derivations to cross sections via the next two results.

%kt 8.10. Let G = (N,C,P,S) be a cfg and let A =$ a +* w, where A is a

variable, a E V* and w is a string of terminals. Then there exists a

grammatical tree T containing a cross section 77 of level i such that

TWQ iteration theorems for the IL(k) languages 203

#I’) = A, /k(r) = w and X(q) = a. Moreover, if the derivation is leftmost

or rightmost then Q is respectively a left or right canonical cross

section cf Y.

If we are dealing with an unambiguous grammar then we can prove

a stronger result.

W'rtst Sail. Let G = (N,C,P,S) be an unambiguous cfg and ?’ a

grammatical tree over G. If &!(I’) & cx +*/k(‘?‘), where 01 E V*, then there

exists a cross section q at level i in ‘3’ such that h(q) = a. Moreover, if

the derivation is leftmost or rightmost then q is respectively a left or

right canonical cross section of 7’.

In eveloping our arguments we will need to disassemble and

reassemble derivation trees and cross sections in a highly specialized

manner. Hence we next define the tree fragments about which we will

be speaking.

D~Wtia,n t.f% Let ‘3’ be a grammatical tree such that l/k(T)1 = m. Let,

Y,9-*** Y_n be a complete left to right sequence of the terminal nodes of

7’. If n iZies in the range 1 < n < m then

Crly = { XET 1 xL*r*y,) I

my = En&” U { xE?’ 1 3 b E 7 s.t. &(‘3’) T*b T*y, and bnfx }

C”k’ = (%’ = (g,(d) and for n > m, Cnk’ = %’ = 3’. Cnk’ is called a left

[n]-purr of @I’ and fnk’ is called a left {n.}-part of Y. Thus if p is the

root-lea: path to the ng terminal node (counting from the left), then

Cnk consists of those nodes which are on or left of p, while (“k’

consists of those nodes of 7’ which are left of p, or on p, or are right

of p an;3 have a parent on p. For example, in figures ‘7 and 8 we see in

bold thi? left [4]-part and left {4)-part of the tree in figure 6. (Our

left []-parts correspond to the left parts defined by Harrison and Have1

Cl 134
Next we establish those properties of left parts which will be needed

later.

Theomrm %l& [ll] Let iv be an RCCS of the grammatical tree T and

let n be a positive integer. The restriction of q to Lnk is an RCCS of

W.

. Let 71 be an LCCS of the grammatical tree 7’ at level 4

and let n be a positive integer. If q contains an internai node of ink

then ‘p) is an LCCS of level. 4 in (n)r as well. (Refer to figures 9 and 10.)

204 J.C. Beatty

Rooit The proof proceeds by means of X-I induction on 1.

Basis (I = 0): Let x0 = A(5). We must have q = (x0), since this is the

only LCCS of ‘3’ having level 0. But then -q is, by definition, an LCCS of

++T for every n 3 1.

Induction Step: We assume that the theorem is true for LCCS’s of

9” having level d or less an.d extend the theorem to LCCS’s of 3’ having

level I+ 1. Let q be such an LCCS of level l+l in T and let 8 be the

LCCS of level I in Y from which it is obtained. Let

8 = (21 l *. Zg_l xg Zg+l l ** zr)

77 = (x1 l ** zg_1 x1 ‘.’ x, Zg+l. l ** z,)

so that zg is the leftmost internal node of 8 with respect to ‘3?

The leftmost internal node of q with respect to 7’ is an internal node of

(n)r as well since by hypothesis q contains at least one internal node of

+>r , and by definition internal nodes of T which are left of such a

node must be internal nodes of x*k’ also. It follows that if one of

<exp>
/ \

<next*
I

c 1.
I <exp>

1 c <next>
I

r

/!‘A;
<exp> <exp>

I

i If

\ \
<next>

Ii I
<next>

I I , I I

exp

*next>

4 id <next>

I i *exp>)

4

I

I

I

+ *exp>

l *exp>

(<exp* , <exp*)

h

id l - id (id A , id A) - - -

Fig* 6. The derivation tree ‘3’ for id*idl:id id), over the indicated grammar. - _.-‘_

<exp*

<next>

id + id - - (id A , ih A) - -

Pig. 7. The left part c4k’ of 7’.

‘exps
I” \

<next>

<next>
\Y

<exp*
: . . *.

j’ <next>

id + id - - (id A , id A - -

Fig. 8. The left part {4k’ of ‘s.

Two iteration theorems for the LL(k) languages 205

\ the n!!! terminal node \ the I$!! terminal

Fig. 9, illustrating theorem 2.14. The LCCS 77 of 7’ contains

node (circled above) which is internal to (nk’. Consequently

is an LCCS of (n)cS.

a

77

.a...............

the ,th terminal node +hn n!!! terminal node . . .

Fig. 10. The nodes of r) which belong to {*k’ are circled above

right. None is an internal node of (nk’, and it is evident that

7) is not an LCCS of (nEp.

x1, l == , x, is the leftmost internal node of 7 in T then its parent zg

belongs by definition to %‘. If the leftmost internal node of q in T is

instead one of z~+~, 9. l , z, then since zg is left of that node i, 8 zg

again must be an internal node of OT. In either case 8 is an WCS of

T at level 4 which contains the internal node zg of (*k’. It follows from

the induction hypothesis that 8 is an LCCS of (*k’ at level 1. By

definition, then, r) is an LCCS of %’ having level d+l, as desired.

If q does not contain an internal node of (*lT then it need not be

an LCCS of (*k’. Such a situation is depicted in figure 10.

TMBQDIH)PII %16. [l l] Let 3” be a grammatical tree with respect to some

cfg G, let n be a positive integer, and let s = @(T)l. Let q = (x1 l -xk) be

an RCCS in cmk and let yr, l ** , ys be all the leaves of T which are right

of Xk; accordingly we assume x&y& $5 - Ly,_ The~l the sequence

8 (X1-Xk y,-y,) =

is an RCCS of S.

206 J.C. Beatty

wmm a.i@. Let 7 be a grammatical tree and n a positive integer. If

7~ is an LCCS of fnk’ then 7 is an LCCS of ?’ as well.

M The proof is by induction on the level I of q.

Basis (I= 0): It must be the case that 7 is the root node, which is an

LCCS of T by definition.

Induction Step: Assume that the theorem holds for all LCCS’s of level 1

or less. Let 8 be an LCCS of (“k’ at level d+l and let 77 be the LCCS of

+% at leve 1 I from which it is formed. By the induction hypothesis 7 is

an LCCS of 7’. By definition, then, 8 is an LCCS of 7’. l

We will need the following special case of theorem 2.16.

wm a.17. Let T a derivation tree and let n be a positive integer.

Then kz~&k) is an LCCS of 7.

Proofi According to fact 2.6 t&~@k) is an LCCS of (nk It then

follows from theorem 2.16 that k~&k’) is an LCCS of 7 as well. l

Finally, we will need to define what it means for trees, or parts of

trees, to be equal.

DdhMon MS. Two labeled trees @Y’ and 7’ are said to be structurally

isomorphic, written 7 * Y’, iff there exists a bijection T + 9” : x --) x’ .

between the nodes of 3’ and 9” such that

l x r y iff X' r yfl
e x n y iff x’ n y*

(Note that we use the same symbols r and n to represent the

descendancy and left-right relations in both trees.) Intuitively, T and 3’

are identical except for labeling. If the structural isomorphism preserves

labeling (h(x) = h(x’)) then we say that the trees are isomtwphic and

write 7 = Y.

88 A X&t Par8 Theorem

Our goal is to establish iteration theorems for the LL(k) languages.

Our first such theorem will be founded on an argument about derivation

trees, and in particular on a characterization of derkation trees over

LL(k) grammars, which is our immediate goal. Our starting point is the

following result, which is analogous to Geller’s Extended LR(k) Theorem

PI .

Two iteration theorems for the IL(k) languages 204

meormm 8.1. (The Extended LL(k) Theorem). Let G = (N,C,P,S) be an

LL(k) grammar. For any A E N; w, x, y E C*; and y E V*, if

(1) S +; WAY *; wx

(2) S *; WY

(3) x/k = Y/k

then

(4) S +; wAy +; wy

Pzreoit Assume for the sake of contradiction that (1) (2) and (3) hold,

but not (4). Since the leftmost derivations of wx and wy have the initial

left sentential form S in common, and (4) does not hold, derivations (1)

and (2) diverge before reaching WAY. Let uB6 be the last left sentential

form they have in common (where u E C*, B E-: N, and d G V’). Then

for some o E P* and v E C* such that w = uv we have

for distinct rules B + @I and B + & of G. Since x/k = y/k, we must have

(vx)/k = (vy)/k. It follows that @I = & since G is LL(k), contradicting the

assumption that uB6 is the last common sentential form, so that (4)

must hold. Q

This theorem describes a property of derivation trees as well as of

derivations. Let wx and wy be strings in the language generated by an

LL(k) grammar G and suppose that x/k = y/k. Then the portions of the

derivation trees TWX and Ywy for wx and wy which have been filled in at

the time the last symbol of w is exposed in leftmost derivations of wx

and wy will be the same. Our left part theorem is a somewhat stronger

formalization of this intuition. It is convenient to begin with the

following preliminary result.

Loopma 8d. Let G = (N,C,P,S) be a reduced LL(k) grammar and let

3 and 9” be two grammatical trees over G such that &(?‘) = d(Y) = B,

where B is a variable, terminal or A. Let n be a non-naegative integer. If

for some variable A and terminal strings u, v and v’ Isuch that A $uBv

and A =$* uBv’ we have &(?‘)v]/(n+k) = @(Y)v’]/(n+k) then

(n+ ‘)r = Wl)~~*

t The proof proceeds by means of an induction cn the height h of

the higher of the two trees T’ and 7”. Let T&(T) = x0 and T&(Y) = x6.

208 J.C. Beany

Basis (h= 0): Both ‘3’ and Y’ consist of a single node. Suppose that

A&) = h(xh). Trivially we have r = Y, whence @+‘)?Y = (n+1)‘3”.

h&,&ion Step: Assume that the lemma is true for trees of height 6 A,

and call this assumption hypothesis H. We shall extend H to trees of _’
height < &i-l).

’ Without loss of generality assume that Y has height &+ 1. Then x0 is an

internal node of 3’ so that B E N. Since X(x,) = A(xb) and /F(Y) E C*

(3” is a grammatical tree) x6 must be an internal node of Y.

Let T be the tree

and let ‘3” be the tree

Our

for

hypothesis is that

A +* uBv

A =$* uBv’

x(x,) = A(x$ = B

wT)v]/(n+k) = &(T’)v’]/(n+k)

some variable A and some u, v, v’ E $.

0Um A0 The elementary subtrees rooted in x0 and x6 are isomorphic.

That is,
l s = s’

a MXil = A(x;), lria

af of Claim A: By definition (x1, . . l , xs) is a CS of r and

(x;, l -• , xi,) is a CS of ?“. Hence by fact 2.7

A(x0) = B + A(xI-x,) +* w1 . . . w s

x(x;) = B + 5(x; l x;) =+* ~‘1 l da w;,

Since G, is U(k) (theorem 1.8) and

(WI l -* w,v)/(ntk) = (w; a.0 w$v’)/(n+k)

Two iteration theorems for the LL(k) languages 209

it follows from theorem 1.6 that

h(x1 a** XJ = h(x; *mm x;;.)

and the claim is established. 0

cmm 8. If for some 16 s we have

(a) Ti = T;, 14icl

(b) Iw1 l m*wJ = Iw; ‘**will = m < n

then for n’ = n-m we have (n’+ 11~~ = (n’+ 0q

3preoa ot ClUm 8: Observe that Td and ?‘i have height Q h. If we can

satisfy the conditions of hypothesis H then we will immediately obtain

the desired result. If 4 = s = 1 and h(xl) = A then the claim follows

trivially. We may therefore assume that x1 is not a A-node. From Claim

A we know that X(x,) = A(xi). Let C = A(xl). Since x1 Ssr not a A-node we

have C E V.

By assumption there exist derivations

A +* uBv

A +* uBv’

Since 9’ and T,’ are grammatical trees there exist derivations

(facts 2.5 and 2.7) so that

A +* uwl l =*w&w~+~ .**w v s

A +* uw; l m* wi_,cwi,l l l l wiv’

Since wi = w& 1 d i <I, we may write

z = w1 l *.w&l = w; .*a “i-l1

A =?;e UZCW~+~ .‘. w,v

A +* UZCW~,~
l ma w?’

It follows from (b) that n’ = n-m is a non-negative integek-q Since

(9
. ..w.v)/(n+k) = (w; a.*wiv’)/(n+k)

(2)

(3)

and wi = WI, 1 < i < 4, we must have

(w& 9.9 w,v)/(n’+k) = (wiam* w;v’)/(n’+k)

or

&(r~)Wl+~ l ** w,v]/(n’tk) = Ltv(cJli)wi+l l ** wiv’]/(n’+k) (4)

In view of (Z), (3). (4), and the fact that Td and Ti have height ai most

/L we may invoke H to conclude that {n’+l)T1 = (n’+l)CSi, as desired. o

210 J.C. Beatty

W 0. If for some I C s no tree among S,, 0.9, Td contains the (n->l~

terminal node of S and no tree among 9’;, l 9. , Ti contains the (n+ 1 \st

terminal node of S’ then S. =
/

Y’ for each k in the range 1 G~sI.

Proof of Plasm .a: The argument is an induction on &.

Basis (j = 0): Vacuous.

Induction Step (/ b 1): Assume that the claim is true for indices

1, a** , (p 1). Then condition (a) of Claim B is satisfied for 4 =i. Since

neither ?” nor ‘3’: contain the (n+l)- st terminal node of 9’ and
k

respectively, we have

Iw1
. . . w

p-d = iw; l ** w: k-11 = m S n - Iw.1
I

and, for n’ = n-m,

so that condition (b) of Claim B is satisfied and we may conclude

(n’+lk = (n’+lk“ In fact from (5) and (6) it follows that fn’+lk = Y. . .

that n’+l 3”. P 3 k - $, whence ‘3’.
I I

k
= T; 0

T’S

(5)
(6)

that

and

Now let r be the least index such that at least one of 7, and 3’;

contains the (n+ 1)s terminal node of 7’ and Y, or (s+l) if no such

index exists. It follows from Claims B and C that there are

isomorphisms fi establishing ri = ‘3’& 1 6 i < r, and (if r d s) an

isomorphism fr establishing (n’%‘r = (n’+l)?‘;, where m = Iwl l .0 wr_& =

iw; . . . w’ r_ll and n’ = n-m. Now (n+1)3’ is the shaded portion of

and (n+lk’P is the shaded portion of

Two iteration theorems for the IA,(k) languages

If we define the mapping f by

211

’ f(x*) =

2 qq =

. f(P) =

. f(p) =

xi,
x;. r+l bi4s

fi(p), 1 d i < r, if p is a node of Yi

f,(p) if p is a node of fn”’ %‘r and r d s

then it follows easily from Claim A and the above argument that f is a

label-preserving structural isomorphism between c”+l)r and fn+l)Y, so

that fn+l)‘3’ = (n+1)9’H and the proof is complete. m

Lemma 3.2 is actually the forward direction of the Left P’art

Theorem, which we are now prepared to prove.

Theo-m 8.80 (The LL(k) Left Part Theorem) A reduced cfg G is LL(k) iff

the following condition holds for all n B 0: if T and Y’ are grammatical

trees over G such that

(1) 7&(T) = &i?(Y)

(2) /W)/(n+k) = jW’)/(n+k)
then (n+l), = (n+l)rjl@.

Roof l : Lemma 3.2 suffices to ec;tablish the forward direction. Suppose

that G = (N,C,P,S) is a reduced LL(i:) grammar and that ?’ and T’ are

any two grammatical trees over G suc5 that

(1) d(r) = &Y(Y)

(2) /%W(n+k) = b(Y)/(n+k)

Fig.
left

k- X h-4

11, illustrating the Left Part Theorem for LL languages. The

{Ixl+ 11-P t ar s of derivation trees for xyl and xy2 are shown
shaded. These left parts are the portions of the respective trees
which have been filled in at the time all of x(y,/l) and x(y&)
have been exposed. If the grammar is LL(k) and yl/k = y2/k
then these left parts are necessarily identical.

212 J.C. Beatty

Let A = &j(T) = &(T’) = B and u = v = v’ = A. For the derivations A ** UBV

end A +* uBv’ we use the trivial derivation A +*A. Since V = v’ = A,

wT)v]/b+k) = r&7’(T’)v’]/b+k)

follows immediately from (2). We have now satisfied the hypothesis of

lemma 3.2, and may therefore conclude that {“+‘)T = (n+l)T’, as desired.,

Pro& 4: Let G = (N,C,P,S) be a reduced cfg with the property that if

T and T’ are any two grammatical trees over G such that

(1) 7&(T) = &(T’)

(2) b(T)/(n+k) :=/%T’)/(n+k)

then in’13T = (n+13T’. We intend to show that G must necessarily be an

U(k) grammar. For suppose that G is not LL(L). In view of theorem 1.7

there must exist a pair of derivations

S 4, uA/3 *L ua@ *z uv

S &‘ uA/3 *L ua’@ $ uv’

such that v/k = v’/k and a $ a’. Let T and ‘3” be derivation trees over

G for uv and uv’, respectively, and let n = lu\ so that

(uv)/(n+k) = (uv’)/(n+k). Since T&(T) = S = &!(T’), b(T) = uv, and

&(T) = uv’ there exists by assumption an isomorphism f establishing

(n+l)T = (n+OT~_ Let

7) (Z1”‘Zg “‘2,) =

77 ‘= (z;*.*z;..*z;,)

be the unique LCCS’s at level 1 in T and T’ (fact 2.3) having the label

uA/3. in which zg and z;, are the leftmost internal nodes (so that they

are labeled with A). Since n = lul and u = h(zl, 9 l 9 , z~_~) the (n+l)s’

terminal node of T is either one of the nodes z~+~, l a l , z, or is

descended from one of the nodes zg, - . l , z,. Similarly the (n+l)e

terminal node of T’ is either one of the nodes z’ g,+l, l l l , z;. or is

descended from one of the nodes zi,, l ** , z$. Accordingly 77 and T)’ each

contain an internal node of in+l)T and {“+l)T’ - zg and z;,, respectively.

According to theorem 2.14 it follows that 71 and 77’ are LCCS’s of {n+l)T

and in+‘)?‘* at level 1. Since f is an isomorphism it must be the case

that f(v) is an LCCS of {““)T* at level ‘1. But rl’ is also an LCCS of

jn+l)TJ having level 1. Since there can be at most one sue-h LCCS (fact

2.3) we must have f(7)) = T’. It’ follows that g = g’ and f(z,) = z’,. Since

zg
and z’ g are internal nodes of Cn+*)T and {n+l)T’, their children must

belong to inel)T and {“+‘)T’, respectively, so that the elementary

subtrees rooted in z
g

and z’ g, are isomorphic. That is to say, if XI,*.., x,

Two iteration theorems for the LL(k) languages 213

are the children of zg and xi, l *a , xg, are the children of z’ g, then s = s’

and

A(x1 “‘X,) = h(x; l *x;,)

But

A(X1”‘X,) = a

A(x; . ..f.) = a’

so that a = LX’, which we assumed was not the case. Consequently G

must be LL(k). n

4. Iteration T&oremo

Armed with the Left Part Theorem our intent is to establish some

pumping properties of the LL(k) languages. Roughly speaking, we will

invoke the argument used in establishing Ogden’s lemma to obtain the

usual decomposition of the derivation tree for a string w belonging to

an LL(k) language L in which we have distinguished a sufficient number

of positions. This induces the usual factorization of w as **~Iw2w3w4w5. By

looking at derivation trees for w and for any other string wIw2u in L

such that (w3w4w5)/k = u/k, and applying the Left Part I’heorem

appropriately, we will obtain our first itera.tion theorem. WC will need

the following definitions.

DefiaMan 4.1. Let w E C*

w1
. ..w

n = w, where wi E C* for

said to be a factorization of w.

DefiaiUoi;r 4-P. Let w E C*. Suppose that w = alaz l . - ‘a,, where e,ach ai

E C. Any index i, 1 S i d n, is called a position in w. For examp!e, the

symbol occupying position 3 of the string aacbda is c. Next let x be

any set of positions in a terminal string w. Any factorization

p = (w$$w:J,wq,wg) of w induces a natural “partition” X/cp of X into:

and let n be a positive integer. If

1 c i d n, ther the sequence (wl, -*-,w~) is

where

Thus xi selects out of x those positions which appear in wi. We ca!l the

elements of K distinguished positions (or dp’s). The following notation

will also be convenient.

214 JX’. Beatty

DefiaWm 4.S Let ui E C’, I B i d r, for some alphabet C. Then

fi() % = U1U2’.’ u&l,
i=l

We are now ready to proceed.

w-m 4.4. (The First LL Iteration Theorem) Let L be an LL(AG)

language. There exists an integer p such that given a string w in L and

p or more

V

X/V

where

(1) w2

(2) a:

distinguished positions x in w we may write

b:

(3) a:

b:

Either wl, w2 and w3 each c,ontain dp‘s (x,, x2, & $ $),

or w3, w4 and w5 each contain dp’s (,7& x4, x5 $ $),

and w2w13w4 contains at most p dp’s (I~2U~@‘41 d p).

Let n = \wIw21 and suppose that w’ is any string in L such

that w’/(n+k) = w/(n+k). Then there is a factorization

(wI,wz,w&w~,w~) of w’ such that

(ii) w1w;w; fi &)w!j
i=l

(iii) w1wiw3 fi (“i)w;
i=l

(iv) WlW;lW; ~ (Ui)W;

i=l

are in L for all r b 0 and for all strings fi() % in which

‘i
= W4 or Ui = Wi, 1 S i 6 r. i=l

Furthermore, if fi($) is a catenation of words Ei. E (w&w2

such that i=l

%fjlC”i) = fi (‘j)
i=l

then Ui = ti, 1 <i 6 r.

Prod . Let G = (N,C,P,S) be an arbitrary reduced LL(k) grammar

generating L. The methods used by Ogden [ZO] (or see Harrison and

Have1 11 I]) suffice to establish the existence of an integer p such that

for any string w in L in which p 07 more positions X are distinguished
5

Two iteration theorems for the U(k) languages 215

there is a factorization q = (w1,w2,w3,w4,w5) of w such that (2) holds and

for some variable A E N for which AJ+w,Aw, we have

’ for all non-negative integers r. Since no LL(k) grammar is left recursive

(1) holds. To complete our proof we must show that ‘p satisfies (3) as

well.

Let n = lwlwzl and consider any string w’ in L such that

w’/(n+k) = w/(nck). Let 7’ and T’ be the derivation trees for w and w’,

respectively. Since w/(n+k)) = w’/(n+k) we may invoke the Left Part

Theorem to obtain fn%’ = ‘{n%“. (Refer to figure 12.)

Consider T. Let x and y be the internal nodes of ‘$ corresponding to

the A’s in WEANS and wIwZAw4wS. We know that w3 $ A since x8 $ pl .

“1 w2 “3 w4 w5

W

Fig. 12a: 3’.

w1 w2 % % %
\ U A

W’

Fig. 12b: T’.

Fig. 12. Derivation trees for w and w’, in which the left

(Iwlw21+ lI?-parts are shaded. As a result of the fact that G is

LL(k) and (w1w2w3w4w5)/(lw1w2(+k) = (wiw2wjw~wj)/(lwiw21+k) the
left (IwIw2(+l)-parts are isomorphic. In particular, the two node>

labeled A in (n+lk must appear in the same positicn in {n-k 1j-y.

Therefore the subtree rooted in y has a terminal node among its leaves.

The leftmost such terminal node n is labeled with wg/l and is contained

in (n+l)T; it is. in fact, the (n+l)- st terminal node of T. Since the nodes

x and y defined above lie on the root-leaf path to n they also belong

to (n+l)X (They appear in figure 12a labeled by A). Let f be the

isomorphism of the Left Part Theorem. It follows that

A = A(x) = X(f(x))

A = NY) = W(Y))

216 L.C. Batty

Let q and 0 now be the unique LCCS’s of T in which the leftmost

internal nodes are x and y, respectively (fact 2.5). We may write

rl (a1 = .**a, x d,*ead,) (7)

8 (al***ai b, = m**bb ; c1 r.. c c d,*e*dd) (8)

Since x and y are-both internal nodes of (*k, 7 and 0 are LCCS’s of

(,+l>, as well (theorem 2.14). Since C*+%’ = f*+%“‘, f(q) and f(B) are

LCCS’s of (n+%“, and hence of ‘3” (theorem 2.16). Again because

in+l)T = (*%‘* we may conclude h!r,st A(q) = A(f(q)) and A(6) = A(f(8)). In

particular,

wl = A(al -93,) = h(f(a1 l *a a,))

w2 = A(b, l a.b;) = A(f(b, l *m b;))

and for some a, @ E V*

a = A(Cl...C,) = A(f(c1 ..‘C,))

B = A(d, “odd) = A(f(d, 900 d;))

Now by invoking theorem 2.8 we obtain from T’ the derivations

S *T W, l a,)A(x)A(dl l *. dd) = w&3

A = A(x) *; A(b, l ** bb)h(y)A(cl l *a cc) = w2Aa

A = A(y) +; w3

a ** w4

B
k

*L w5
and from T’ the derivations

S =$ A(f(a1 l .0 a,))A(f(x))A(f(dl l *a d&) = wlAf3

A = A(f(x)) $ A(f(b, l bi))A(f(y))A(f(c, l ** c,)) = w2Aa

A = A(f(y)) +; wj -

a *; WI

s $ wj

for some terminal strings w& wi and wi such that wIw2w~w~w~ = W. By

suitably combining these derivations we can obtain any of the strings

specified in (3a). F’or example, to obtain strings of the form
r

(i) w&w3 n (u$ws
i:= 1

begin with (9), followed by r applications of (IO), followed by (It)*

followed by a suitable mixture of (12) and (I7), and finish with (73).

(Season to taste.)

Next we establish (3b). If w4 = W; then (3b) follows trivially. Therefore
assume that w4 $ wi, so that (12) and (17) are distinct leftmost

Two iteration theorems for the U(k) languages 217

derivations, neither of which is a prefix of the other. For the sake of

simplicity we restrict our attention now to strings of type (i). Let R be

the set

Notice that a string in R uniquely specifies the leftmost derivation of a

type (i) word in L. In particular, let pi, 1 6 i d r, be defined by
. .

Pi =

Pi =

Then given

((9) 3 c

(12) if Ui = W4

(17) if Ui = W;

a string of type (i), which determines a sequence pi,

{UO)Y {(ll)) fi{p,, ((13))
i=l

is a leftmost derivation of the word. If there exist two catenations

i=l
and

i=l
and corresponding sequences pi and pi such that .-.

fi t”i) = fi (‘i)
i=l i=l

and for which Ui $ pi, for some i in the range 1 6 i d r, so that pi 4: pi,

then there are two distinct strings in R, representing two distinct

leftmost derivations of the same string in L. But then G is &sn

ambiguous grammar, which cannot be the case since G is LL(lc). Hence

(3b) follows for a string of type (i).

We can extend (3b) to strings of type (ii), (iii) and (iv) by analogous

arguments - the details are omitted. n

Before proceeding with a formal development of a second pumping

lemma for the LL(EG) languages, we sketch the intuition underlying our

argument. (Refer to figure 13.) Suppose that uv and uvy, Iv1 = k, are

strings in some language L generated by a A-free LL(k) grammar G.

Leftmost derivations of uv and uvy must proceed identically at least

until all of u has been exposed; that is the meaning of the E&ended

LL(k) Theorem. After exposing the rightmost terminal of u in a leftmost

derivation of either uv or uvy there can be no more than k variables

remaining in the left sentential form since G is A-free and Iv1 = k.

Judicious use of this fact, together with the Left Part Theorem and the

argument of the First Iteration Theorem, is sufficient for auf purposes.

We will need the following result, which is due to R,>senkrantz and

Stearns.

218 J.C. Beatty

TWorem 4.6. Given an LL(lc) grammar G = (N,C,P,S) we can construct .an

LL(k+ 1) grammar G’ = (N’,C,P’,S’) such that y(G’) = &‘(Gj and G’ is A-free

unless h E J!?(G), in which case G’ contains the single A-rule S’ -) A and

v =<oes not appear in the right-hand side of any rule in P’. CL

Proof. Using the arguments found in Rosenkrantz and Stearns [22],

pages 236-241 (or see Aho and Ullman [Z], pages 6740661), we may

obtain a A-free LL(k+l) grammar G” = (N”,C,P”,S”) generating g(G) - {A}.

If A jl$ Z?(G) then set G’ = G”.

Suppose, however, that y(G) contains A. Then we form a new grammar

G’ whose start symbol is S’ and whose rules are the rules of G”

together with S’ -* S” 1 A, where S’ is a new variable not in V”. It is

trivial to prove that G’ is also LL(k+l) and generates exactly g(G). l

Thooram 4.6. (The Second LL Iteration Theorem) Let L be an LL(k-1)

language, k 3 1. There exists an integer p such that for any two distinct

strings x and xy in L, if Ix) 3 k and p or more positions in y are

distinguished, then there is a factorization q = (w1,w2,w3,wq,w5) of xy

such that (1) - (3) of the First LL Iteration Xeorem hold and

lwll 3 1x1 - k.

Woof. In view of tb :orem 4.5 we may assume that L is generated by

some LL(k) gramma’ G = (N,C,P,S) which is A-free, except possibly for an

S + A rule, in which case S does not appear in any right-hand side.

For any variable A let G, = (N,C,P,A) be the cfg obtained from G by

changing the stal-t symbol to A, let pA be the constant obtained from

the First Iteration Theorem for the language J?(G,) (which is also LL(k) -

see theorem 1.6). and let

p’ = maXi pA I A E N }

P = kp’ + 1

Suppose that x and xy are strings belonging to L, where 1x12 k and p or

more positions are distinguished in y. Let us write x as uv, where

I4 = n and Iv1 = k, and let ?’ and Y be derivation trees for uv and WY.

(See figure 13.9 Let q = &zw@%) and 77’ = &w@‘+%‘).

Since x/(n+k) = (xy)/(n+k) = x, it follows from the Left Part Theorem
that in+l), = (n+13r’ * whence q and Q’ are isomorphic and h(q) = h(7)‘). It

follows from theorem 2.17 that 77 and q’ are LCCS’s of ‘3’ and T’,

respectively. Consequently we may write

Two iteration theorems for the IL(k) languages 219

for some .j in V* (fact 2.0). Since Iv1 = k 3 1 these derivations involve no

A-rules. It follows that 171 d k since IvI = k and y *TV.

Now write y as X X,
&

l *. X, (s d k). Let (q,+ ..a :zs) be the factorization of

vy such that Xi3,zi, 1 <i d s. Suppose that there are p’ or fewer dp’s in

each zi. Then there are at most sp’ d kp’ (p dp’s in vy, which is not the

t-u--+-v--I

X

Fig. 13~ ‘3’.

t-U+V+ --
X Y
Fig. 13b. Y.

Fig. 13. The solidly shaded areas indicate the leaves descended

from a particular internal node 0: Y which is a leaf of the

left (lul+l)-part of T’. The dashed lines mark the frontier of

the left (lul+l)-parts for each tree. This is the left sentential

form obtained at the time v/l is exposed.

case. Hence so-me particular zi contains more than p’>, px. dp’s. Now the

string zi belongs to the language A!?(G$. which (as we ioted above) is

an LL(k) language. Also, we have distinguished px. or more positions in

this string. It follows from the First Iteration Theorem that there is a

factorization (~+a~,a~,a~,a~) of zi such that (1) - (2) of theorem 4.4 hold

with respect to y(G
xi

) and for some variable B we have B $oZBo, and

in G, . From this it follows that the factorization
i

(uz1 l ** zi_lal*a*‘a3’04’0gzi+1 l ** zs)= (w1,w~,ws*w4,w5)

satisfies (1) - (2) with respect to L. Since u is necessarily a pref’ix of ?;I

it is clear that IwJ 3 1x1 - k. If we let

and consider any string

argument used to deduce

property (3) here, and the

w’ in L such that w’/(n+k) = w/(n+k), the

(3) in theorem 4.4 may be used to deduce

proof is complete.

220 J.C. Beatty

We begin by showing that every LL(k) grammar is LR(k). This is not a

new result; Brosgol [8] obtained a rigorous proof via LR(k) grammar

theory by embedding A-rules in the grammar, and Soisalon-Soininen has

reportedly also obtained a rigorous proof [23]. It is more often argued

intuitively from a consideration of LL(k) and LR(AG) derivation trees that

this result is obvious (see Aho and Ullman [2], for example). Using the

LL(k) Left Part Theorem we can now make the tree argument rigorous.

W-m 6.1. Every reduced LL(k) grammar is LR(k), k B 0.

Proofi Let G be an arbitrary LL(k) grammar. First of a!l, S +i S is

impossible since G is unambiguous.. Hence if G is not LR(k) then for

some w, w’, x fZ c*; a, a’, & /3’ E v*; A, A’ E N, there exist

derivations

S +; UAW =$R a@w

S +; a’A’x =$R a’@‘~ = tx@w’

such that w/k = w’/k and (A+,la@l) * (A’+‘,{c@‘l). If k = 0 then either

J!!(G) is empty, in which case there are no derivations at ah since G is

reduced, or g(G) is a singleton set, in which case we have o@w = cx@w

and consequently (A-+/3,&31) = (A’+@‘,la’p’l) since both sentential forms

must derive the same string and G is unambiguous. We need therefore

only consider the case in which k 3 1.

Let z E Z$@), let ?’ be the derivation tree for zw, let Y be the

derivation tree for zw’, and let n = lzl. Since G is LL(k) and

(zw)/(n+k) = (zw”)/(n+k), we may apply the Left Part Theorem to obtain

(nir)3’ = (n+l)‘K Let f be the mapping which effects the isomorphism. Let

Q = (Ui* l .* I us) be the unique RCCS of ‘3’ having the label aAw (theorems

1.2 and 2.9). *Left ui be the node of 7) labeled by the A explicitly shown

in aAw, and let

be the RCCS formed from 77 by expanding ui, so that h(vI l vh) = @ and

h(8) = c@w. (Refer to figure Ma.) Let a = w/l (a E X&. Since w/k = w’/k

and k 3 1, we also have a = w’/l. Consider Cn+llT: /T7@+%) = za. Let

x = (Ul‘ l ” 9 ur) be the restriction of 73 to [n+llT and recall that

X(77) = ISAW. if a E C then i (r, since the first n terminals are derived

from aA, and ui belongs to Cn%, If a = A (because w = A) then

Two iteration theorems for the U(k) languages 221

Figure 14a. illustrating the proof of theorem 5.1. In 9 we show
7) and 8, the unique RCCS’s of 3’ labeled aAw and agw. In 7
we show RCCS’s t and (, the extensions of x’ and JV (see
figure 14b below) to Y from Cn+‘k. The isomorphism f maps
Cn+lJT onto Cn+lk.

z W

Figure 14b, illustrating the proof of theorem 5.1. In ‘3’ we show
the restrictions x and 1(/ of 7) and 0 to Cn+l)r. In Y we show
the isomorphic images x’ and J&’ of x and ?/ under f. Since
Cn+lk = [n*rk” we have h(x) = h(x’) = aAa and A(q) = A(@‘) = a@a.

Cn+%’ = T, so that r = s, x = q, and X(x) = cvAa = aAw = cuA. In either case

X(x) = aAa (i 6 r 8 s), so that ui appears in x. Next let

3 = (u1 .**u+l V1”.Vh Ui+f l ..u,)

be the restriction of 8 to cn+%‘, so that X(q) = @a.)I

of cn+@I’ (theorem 2.13), + being obtained in one

and @ are RCCS’s

step from x by

must also have

then

rewriting ui. Since m- ‘ly = (n%“c under f we
Cn+ll~ = Cn+ll~t Llnder f. If we let x’ = f(x) and JV = f(3)

A(x) = A(%‘) = aAa

W) = A(*‘) = @a

and in view of Lhe isomorphism x’ and q/’ must be RCCS’s of [n%“, 9’

being obtained in one step from x’ by rewriting f(u$. Now extend x’ to

form an RCCS c in ‘3” by appending to x’ (in left-to-right order) all of

the leaves of T’ which are right of f(u,) (theorem 2.15), SO that

222 J.C. Beatty

w = aAw”. Similarly extend $’ to obtain an RCCS < in 3” such that

A(<) = cq3w’. Since there are no internal nodes to the right of ui in 7).

there can be no internal nodes to the right of ui in x, and no internal

nodes to the right of f(ui) in x0. Since [is obtained from x’ by

appending leaves, f(ui) is also the rightmost internal node of 6. Hence <

is an RCCS of S’ which can be obtained from the RCCS [of Y in one

step by rewriting f(u$ We must have

d(T) =$ x(t) *ij A(<)

(fact 2.8). That is,

S +; aAw’ =$R cq3w

Since we alsc know that

S +z a’A’x %$ a’#Yx = ff/3wF

and that G is unambiguous (theorem 1.2) it must be the case that

a=CX ‘, /3 = #Y, and A = A’ so that (A-$,lc@l) = (A’+j3’,lc@‘l) which is a

contradiction. Hence G is, in fact, an LR(lc) grammar. l

It is necessary for the proof of theorem 5.1 that the grammar be

reduced. For suppose that (N,C,P,S) is a reduced LL(k) grammar. If we

add to G the rules S + A and A -+ A for some new variable A then it is

easy to see from the definitions that G is still LL(Ec) but not LR(k). On

the other hand, the presence in G of variables which cannot be derived

from the start symbol does not effect the proof.

We next consider a number of results which follow easily from our

iteration theorems. Theorems 5.2, 5.3, 5.4, 5.5 and 5.6 each illustrate a

different way in which possessing the LL(k) property restricts the form

of strings in a language; each of the proofs illustrates a different

in which the iteration theorems may be used. We consider

lanp!: ages which are LR(lc) since every LL(k) language is LR(k);

language is not even LR(Ec) then other tools already exist

demonstrating this which incidently demonstrate that the language

fails to be LL.

way
only

if a

for

also

Th~osre~ 6.6. The LR language L, = { a”b”, ancn
I

n 3 1 } is not LL.

PIooit (Figure 15.) Assume that L, & I,L(k) and let p be the constant

obtained for L, from the First Iteration Theorem. Consider the string

w= aPakbP+k in which the first p a’s are distinguished. From theorem

4.#4 we obtain tht usual factorization cp = (w1,w2,w3,w4,w5) of w. If w2 or

w4 contained both a’s and b’s then in w1w~w3w~w5 an a would follow a

b, which cannot happen. Hence w2, and similarly -VQ, must consist

Two iteration theorems for- the U(k) languages 223

L symbols

1 ak 1 bp+k

w4 E b+

Fig.15 An application of Theorem 4.4 to the language anbn + a%“.

entirely of a’s or of Ifs. Moreover, if w1w~w3w~w5 is to contain an equal

number of a’s and b’s then (since at leas’ one of w2 and w4 is t
non-null) we must have w2 E a+ and wq E b+. Also, w3 must begin with

at least k a’s since w4 does not contain any distinguished positions. Now

consider aP+kcP+k, which we can write as wlw2u for some u E aka*c+.

Note that u/k = (w3w4w5)/k = ak. It follows that for some wj, w;, and wj

we have u = wjwiw; and w,w~w~w~w,w~ E L,. But w4 E b+ and w$wiw& E

a%+. and there are no strings containing both b’s and c’s in L,. c

Theorem 6.8. The LR language L, = { anOb”, arrl b2” 1 n 3 1 } is not LL.

Proofi (Figure 16.) Assume that Lz _ is LL(k) and let p be the constant

obtained for L, from the First Iteration Theorem. Consider the string

w= apak 1 bz(p+k) in which the first p a’s are distinguished. From theorem

4.4 we obtain a factorization (c = (w1,w2,w3,w4,w5) of w. Since (p satisfies

theorem 4.4 we mutt have w2 E a+ and w4 E b+, Zlw,l = lw,,I, and w3

must begin with at least k a’s. Now consider aP+kObp+k, which may be

written as w1w2u for some u E aka’Ob*. Note that u/k = (w3wqw5)/k. It

follows from theorem 4.4 that for some wj, wi and wi we have

u = wjwiwj, lwzl = IwJ* and w,w~w;w~w,w& E L,. Let #a and #b be the

k symbols

“‘2 w4

Fig. 16. An application of Theorem 4.4 to the language anOb” t anlb2”.

224 - J.C. Beatty

number of a’s and b’s in this string. Then p+k+lw,) = #a < p+k+2)w,l = #b,

so that this &ring contains an illegal number of b’s (since wi contains

a 0) and cannot beiong to Lz. E

%!heo~~ 6.4. The LR language L3 = { andane, anfang
I

n 3 1 } is not LL.

Psoofi (Figure 17.) Assume that L3 & LL(k) and let p be the constant

obtained for L, from the First Iteration Theorem. Consider the string

W = aPakdaP+ke in which the first p a’s are distinguished. From theorem

4-4 we obtain a factorization q~ = (w1,w2,w3,w4,w5) of w such that w2 E

a+, w4 E a+ and w3 E a’da’. As usual we also have (w3w4w5)/k = ak. Now

consider a P+kfaP+kg, which we may write as w1w2u for some u. It is

necessarily the case that u/k = (w3w4w5)/k. It follows from theorem 4.4

*hat for some wj, * wi and wj we have u = wjwiwj, wj E a*fa*, wj ends in

g and wiw&w& is in L, for every n 3 0. But these strings have the

form a+da+g, and therefore cannot belong to L,. l

Theorem 6.6. The LR language L, = { drnbrn+” 1 m a 1, 0 d n z m) is not

LL.

pioofi: Assume that L4 & LL(k) and let p be the constant obtained for

L4 from the First Iteration Theorem. Without loss of generality assume

that p 3 k. Consider the string aPbP in which the a’s are distinguished.

From theorem 4.4 we obtain a factorization cp = (w1,w2,w3,w4,w5) of aPbP

such that w1w!jw3w~wS is in L, for every n 3 0, from which it follows

easily that w2 must consist entirely of a’s and w4 entirely of b’s.

Furthermore, lwzl 4 Iw,l, for otherwise we could obtain strings with more

a’s than b’s for a suitably large value of n. In particular, wlw3w5 is in

L4. Let i = Iwzj; we know that i B 1. If w4 contains more than i b’s then

w1w3w5 will contain more a’s thar b’s, which is not allowed. Therefore

Iw,l = Iw,l; we have w2 = ai and w, = bi.

k symbols

Fig. 17. An application of Theorem 4.4 to the language
andane + anfang. If this language is LL then it must con-
tain the strings w~Jv!$~w~&~~~ E a+da+g, which it does
not.

Two iteration theorems for the IL(k) languages 225

NOW consider the string aPb2P. Since w1w2 E a+ and p B k it must be the

case that aPbP/(lwlw21+k) = aPb2P/((w1wzl+k). Hence there is a

factorization (w1,w2,wj.W;,w~) of aPb2P such that w~w!&w~~w; is in L4 for

every n 3 0, so that w; E b? In particular wlwjw& belongs to L4’ Let &,

be the number of a’s in wlw$wj. Define #b similarly, and let i = Iw$

Since we must have #b d 2#8 we must have (2p--) d 2(p-i). It follows that

k B 2i > i. Hence w4 * w;. But wqwi = wiw4 = b%., which is a violation of

condition (3b) of theorem 4.4. Hence L4 cannot be LL. a

Theorem 6.6. The LR language L, = { ambn 1 m 3 n 3 0 } as not LL.

Prooit (Figure 18.) Suppose that L, @ LL(k-1) for some k and let p be

the constant obtained by applying the Second Iteration Theorem to L,.

Consider the two strings ap+kbk and aP’mkb?‘+k, and distinguish the final p

b’s in the latter string. According to the Second Iteration Theorem

aP*kbP+k has a factorization (aP’kw1,w2,w~,wq,w5) such that

l aP+kwlw%3w$+vS E L, for every n >/ 0

From this we can deduce that w2w4 E b+ so that for a sufficiently large

value of n we can obtain a string with more b’s than a’s - a string

which cannot belong to L,. l

Note that it is possible to prove theorem 5.6 using the First Iteration

Theorem and the technique applied in theorem 5.5.

9 W4”
Fig. 16. An applicatian of Theorem 4.6 to the language
ambn , m 3 n 3 0. Because a p+kbp+k is suf f icien tky longer

than ap+kbk a pumping must occur among the b’s.

Using L5 we easily obtain th.e following result.

.1. The LL languages are not closed under right quotient with

a regular set.

226 J.C. Beatty

Roof: It is easy to see that the language a”b” is an LL language, and

b* is obviously a regular set. However

anbn / b* = (ambn 1 mgnn0 }

is not an LL language, as we have just seen. l

The Second Iteration Theorem is by its very nature not applicable to

LL languages which are prefix-free, that is, to languages L for which

x E L and xy E L imply y = A. Thus theorem 4.6 cculd not be used to

prove any of theorems 5.2, 5.3 and 5.4. It is not known, however,

whether there are languages which satisfy the First Iteration Theorem

but which the Second Iteration Theorem can show are not LL, nor is it

known whether one can always establish that a language fails to be LL

via theorem 4.4 when that is the case.

L, and L, are from Rosenkrantz and Stearns [22]. L, is taken from

van Leeuwen [14]. L, is taken from Bordier and Saya [?I. L5 abstracts

the fatal difficulty, insofar as LL(k) grammars are concerned, with the

infamous dangling-ELSE introduced by the original ALGOL report [16]

(and eliminated in the revised report [I?]). Constructs such as

IF <bexp> THEN IF abexp> THEN <stmt> ELSE <stmt>

in which the ELSE-clause might plausibly belong to either IF-THEN are

allowed in PL/l [Zl] and Pascal [123. The ambiguity is eustomari\y

resolved by associating an ELSE with the last previous unmatched THEN.

It is c’laimed without proof by Aho, Johnson and Ullman [I] that such

constructs are not LL; applying the argument of theorem 5.6 allows us

to establish this rigorously. A direct proof such as ours is necessary

since the family of LL languages is not closed under homomorphisms or

gsm mappings [22].

Theorem 6.8. The dangling IF-THEN-ELSE construct

any LL language.

does not appear in

Since thi s construct is, however, easily handled by a recursive descent

compiler operating without backup, it fo!\ows that the LL(k) languages

form -a proper subset of the family of languages which can be compiled

by this technique, and are therefore noi a perfect model of this family.

Theorems 4.4 and 4.6 provide a powerful and reasonably general

technique for establishing that languages are not. LL(k) when that is the

Two iteration theorems for the LL(k) languages 227

case. Previous results of this kind ([Y], [14] and [22]) have generally

been based on more complicated and less satisfying ad hoc arguments.

We leave open the question of whether satisfying the conditions of

theorem 4.4 is sufficient to ensure that a language is LL(k), although we

do not believe that to be the case. The task of characterizing a family

of languages by means of an iteration theorem appears, in general, to

be a difficult one. Although a number of iteration theorems ha_ been

established for several language classes, in only one case is the result

known to be sufficient as well as necessary [24].

Finally, our arguments illustrate the advantages to be obtained from

the careful analysis of derivation trees.

A stronger version of theorem 4.4 is presented here than was

reported in [4], and the author is indebted to Bill Ogden, who also

suggested the proof of theorem 5.5, for the improvement. Theorem 4.6

was inspired by an observation of Jan van Leeuwen’s [141. The

suggestions and observations of Kellogg Booth and especially Professcr

Michael Harrison are keenly appreciated. The author is also very grateful

for Kimberly King’s meticulous and invaluable refereeing.

[l] A. V. Aho, S. C. Johnson and J. D. Ullman. Deterministic parsing of ambiguous grammars.

C. ACM 16 (1975) 441.~452.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translating, and Compiltig, Vols. 1

and II (Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973).

[3] Y. Bar-Hillel, M. Perlea and E. Shamir, On formal properties of simple phrase structure

brammars, Zeitschrift _I% Phonetik. Sprachwissenschaft und Kommwxikationqfewchung

1.2 (1961) 143-172. Also available in Language and Information by Y. Bar-Hillel

(Addison-Wesley, Reading, Mass., 1964).
[4] J. 1:. Beatty, Iteration tileorems for LL(k) languages, Proceedings of the Ninth Annual

Syr,lposium on Theory of Computing, Boulder, Colorado (1977) 122-131.

[5] J. C. Beatty, Iteration theorems for the LL(k) languages, Ph.D. Thesis, University of

Calif .xnia. Berkeley. lCaliornia (1977). Available as UCHL-52379 from the Technical

Information Department, Lawrence Livermore Laboratory, Livermore. California.

[S] L. Bo,rsson, Two iteration theorems for some families of ianguages. J. Cornput. System
Sci. 7 (1973) 563-596.

[7] J. Bordier and H. Saya, A necessary and sufficient. cantliti,:m for 3 power language to

be LL(kf. Compzlter Journal 16 (1973) 351-356.

[s] B. hi. B~osgol. Deterministic translation grammars. Ph. D. Thesis, Harvard University

(1974).

228 J. C. Bearty

[9) M. M. Celler, Compact parsers for deterministic languages, Ph. D. Thesis, University of

California, Berkeley, California (1974).
[101 hf. M. Geller and M. A. Harrison, On LR(k) grammars and languages, Theoretical Computer

Science 4 (1977) 245-276.

[1 l] M. A. Harrison and 1. M. Havei, On the parsing of deterministic languages, J. ACM 21
(1974) 525-548.

cl21 K. Jensen and N. Wirth, PASCAL User Manual and Report, Lecture notes in computer
science 18 (Springer-Verlag lrI74).

[13] K. N. King, Iteration Theorems’ for Families of Strict Deterministic Languages, Technical

Report UCB-CS-KK-78-O 1, Un versity of California, Berkeley, California (1978).
‘14) J. van Leeuwen, An elementary L proof that a certain context-free language is not LL(k),

and a generalization, notes (1972).

[ts] P. M. Lewis II and R. E. Stearns, Syntax-directed transduction, J. ACM 15 (1968)
465-488.

[16] P. Naur (ed.), Report on the algorithmic language ALGOL 60, C. ACM 3 (1960) 299-314.
117) P. Naur (ed.), Revised report on the algorithmic language ALGOL 60, C. ACM 6 (1963)

l-17.

[16] A. Nijholt, A left part theorem for grammatical trees, Discrete Mathematics 25 (1979)
51-63.

[191 W. F, Ogden, Intercalation th.eorems for pushdown store and stack languages, Ph.D.
Thesis, Stanford University, California (1968).

[ZO] W. Ogden, A helpful result for proving inherent ambiguity, Mathematical Systems Theory
2 (1966) 191-194.

[Zl) PI,/! language specifications, IBM document GY33-6603-2 (1970).
[ZZ] D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic top-down grammars,

fn.onnation and Control 17 (1970) 226-256.

[23] E, Soisalon-Soinen, Characterization of LL(k) languages by restricted LR(k) grammars,
Ph. 0.. Thesis, University of Helsinki.

[24] D. S. Wise, A strong pumping lemma for context-free languages, Theoretical Computer
Science 3 (1976) 359-369.

