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Am The structure of derivation trees over an LL(k) grammar is explored 

and a property of these trees obtained which is shown to characterize the LL(k) 

grammars. This characterization, called the LL(k) Left Part Theorem, makes it 

possible to establish a pair of iteration theorems for the LL(k) languages. These 

theorems provide a general and powerful method of showing that a language is 

not LL(AG) when that is the case. They thus provide for the first time a flexible 

tool with which to explore *,he structure of the LL(k) languages and with which 

to discriminate between the LL(k) and LR(k) language classes. 

Examples are given of La(k) languages which, for various reasons, fal.1 to be 

LL(k). Easy and rigorous proofs to .this effect are given using our LL(k) iteration 

theorems. In particular, it is proven that the dangling-ELSE construct allowed in 

PL/I and Pascal cannot be generated by any LL(k) grammar. We also give a new 

and straightforward proof based on the LL(k) Left Part -Theorem that -every LL(k) 

grammar is LR(k). 

1. xutroduotioP 

The classical pumping lemma [3] and Ogden’s lemma [ZO] are among 

the most powerful tools we possess for proving that languages are not 

context-free. Hence one goal of recent research has been to obtain 

analogous theorems for subclasses of the context-free languages. Thus 

Ogden [19] gives an iteration theorem for the deterministic context-free 

languages, Harrison and Have1 have established an iteration theorem for 
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the family of strict deterministic languages [ 1 l] which is also extendible 

to the deterministic context-free languages, an6 Boasson has established 

an iteration theorem for the one-counter languages [6]* More recently 

King has obtained iteration theorems for the simple deterministic 

languages and the strict deterministic languages of degree n [13]. Such 

results help elucidate the structure of languages belonging to these 

families, and provide us with a convenient means of distinguishing 

between context-free languages which are and are not of a given class. 

We establish here a property of LL(lc) derivation trees which is 

analogous to the left part properties of strict deterministic grammars 

Cl13 and left part grammars [ls). We show that our property 

characterizes the LL(k) grammars and use it to establish two iteration 

theorems for the LL(lc) languages. These theorems, in turn, enable us to 

prove simply and rigorously that a variety of LR(k) languages are not 

LL(k). In particular, the ALGOL-60 dangling IF-THENI,ELSE construct 

allowed in Pascal and PL/I cannot be 

We are also able to give a new and 

LL(k) grammar is LR(k). 

generated by an LL(k) grammar. 

straightforward proof that every 

The present paper is organized as follows. In the remainder of this 

section we recall various commonly known definitions and theorems 

which we will need. In section 2 we will semi-formalize the notion of a 

derivation tree, and in the spirit of [ll] will establish various useful 

properties of such trees. Thus equipped we will proceed in section 3 to 

prove a left part theorem for LL(k) grammars which enables us to 

establish our iteration theorems in section 4. Finally, in section 5 we 

present some applications of our work. 

A contest-free grammar (cfg) G is a 4-tuple (N,C,P,S). N is a finite, 

non-e,npty set of nonterminals, or variables, denoted by upper case 

Roman characters such as A and B. C is a finite, non-empty set of 

terminals, denoted by lower case Roman characters from the beginning 

of the alphabet, such as a and b. The vocabulary of G, written V, is 

I\i U C. P is a finite subset of NxV*; an element (A,a) of P is called a 

pro&&ion or rule and is written A --) o(. S is a special variable called 

the start or goal symbol. For any variable A we call A + A a A-rule, 

where ~1 is the empty string, and say that G is A-free iff G contains no 

A-rules. 

We write a + /3 (o derives /3 in o:ze step) iff there exists a variable A 

E N and strings yl, y2, 6 E V* such that o = Y,AY,, B = Qy, and 
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A --) c5 is in P. If Y1 E C* then we may write a =$L 8; =$ and *E are the 

transitive closures of + and =SL, while +* and =$ are their reflexive 

transitive closures. If a +* /3 then we say that a derives 8. If (r $ @ 

then the derivation is leftmost. By 9 we mean a derivation of exactly n 

steps, for any n 3 0, while 3 denotes a leftmost derivation of exactly n 

steps. The relations +R, +i and +z, etc., are similarly defined. If we 

use a Greek letter such as 7~ (for example: +r) which is constrained to 

belong to P* then ‘TT represents the sequence of rules (possibly 9~11) by 

which the derivation proceeds. 

We will say that an occurrence of the symbol X E C is exposed at 

the (n+ l)e step of the leftmost derivation 

S 3 WAY =$L w8r 

if X appears somewhere in By and there are no variables anywhere to 

the left of X in @y. 

The contest-free language (cfl) &!e( G) g enerated by G is exactly the 

set of terminal strings which can ‘t\e derived from the start symbol S. 

Similarly, if a E V* then Y(a ) is the set of terminal strings which can 

be derived from a. The left sentential forms of G are exactly those 

strings of terminals and nonterminals which can be generated from S by 

a leftmost derivation. 

G is said to be unambiguous if no string in 2?(G) has more than one 

distinct leftmost derivation. Otherwise G is said to be ambiguous. 

A variable A of G is said to be reduced iff A derives at least one 

terminal string and itself appears in some string of terminals and 

nonterminals which can be derived from S. G is said to be reduced iff 

either the variables of G are all reduced or P = $. 

A variable A of G is said to be left recursive iff A $A/!3 for some 

string /3 E V*. G is left recursive iff some variable A of G is left 

recursive. 

If w is a string and k a non-negative integer then w/X: is the first 

k symbols of w if Iwl> k and is w itself if Iwl< k, where Iwl is the length 

of w. More generally, for ti cig G = (N,C,P,S) we define 

j!b!d&3) = { w E f ( 
(Iwl d k and /3 

(Iwl = k and /3 

for any /3 E Vs. /&r&k is extended 

** w) or 

** wy for some y E C+) } 

to sets in the usual way. 



196 L.C. Beatty 

Next we review pertinent facts about LL(k) grammars. 

-8toa 1.1. A cfg G = (N,C,P,S) is LL(k) iff for any A E N; w, x, y E 

c+; 8. 8’. y E v*; and any two derivations 

S +; WAY =$L w/3y +; wx 

S +; wA,y +L w/3’y +; wy 

, for which x/k = y/k we necessarily have /3 = 18’. A language is LL(k) ifff it 

is generated by an LL(k) grammar. 

The following results are well-known or easily proven [s]. They will 

be used subsequently and are stated here for convenience. 

Theorem l.% [ZZ] No LL(k) grammar is ambiguous. 

m-m 1.8. [22] No LL(k) grammar is left recursive. 

m-m 1.4. Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff for 

any A E N; w, x, y E Z*; /3, 8’. y, Y* E V*; and any two derivations 

S +; wAy =+L w/Q +; wx 

S +; WAY’ + w@‘y +; wy 

for which x/k = y/k we necessarily have fl = @‘. 

Theorem 1.4 allows the right context y of A in the two derivations of 

definition 1.1 to differ. Definition 1.1 is taken from Aho and Ullman [Z]; 

theorem 1.4 is actually the LL(k) definition used by Rosenkrantz and 

Stearns [22]. 

Theorem 1.S. [2] Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff 

given any AE N, w E C*, and y E V* such that S $wAy, we have 

&i7”stk(BY) n /+#‘Y) = pl 

for every distinct pair of rules A + @ and A + 8’ in P. 

Thoorom l.& Let G = (N,C,P,S) be a cfg. G is an LL(k) grammar iff 

given 

(1) w g Fk(C’) 
(2) x E c+ 

(3) A E N 

then there exists at most one rule A + /3 in P such that 

(4) S +* xAwZ 

(5) A + /3 +* w1 

(6) (w,w,)/k = w 

for any wl, w2 E C*. 
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This was the definition of LL(k) grammars used by Lewis and Stearns 

Cl51 . 

The following special version of the LL(k) definition will be useful in 

section 3. 

Theo-m 1.7. Let G = (N,C,P,S) be a reduced cfg. G is an LL(k) grammar 

iff for any A E N; w, x, y E C*; & 8’. y E V*; and any two derivations 

for which x/k = y/k we necessarily have /3 = @‘. (Notice that wAy is 

derived in n steps in both derivations.) 

Prooit A proof in the lorward direction is trivial. To establish the 

reverse direction, suppose that G is not LL(k), but that the existence of 

two such derivations necessarily forces @ = @‘. Since G is not LL(lc) it 

follows from theorem 1.5 that there exist strings A E N; w E C*; /3, /3’, 

y E v*; such that S +TwAy and 

&;““tk(@Y) n Wk(B’Y) * pl (1) 

for some distinct pair of rules A + /3 and A -j 8’ ir P. Let x and y’ be 

strings in 2?(@y) and 3!?(/3’y), respectively, such that x/k = y/k and 

slrppose that S derives WAY leftmost in n steps. Then 

S 3 wAy +L w/3y $ wx 

S =$ wAy =$L wp’y +; wy 

where x/k = y/k. By hypothesis we must have /3 = fi’$ which is a 

contradiction. Hence G must be ILL(k). m 

Theorem 1.8. Let G = (N,C,P,S) be a reduced LL(k) grammar. Let 

G, = (N,C,P,A) be the grammar formed from G by changing the start 

symbol from S to A, for any variable A of G. Then G, is also an LL(k) 

grammar. 

oi: Suppose that G, were not LL(k). Then for some x, yl, y2 E C*; 

@, 8’. y G V*; I! E N: there must exist two derivations 

in G, witfi y ,/k = y2/k and @ * 8’. But this is also a derivation in G. 

Since G is reduced, there also exists in G a derivation sequence 

S $ wA6 for some w E C* and c5 E V*. We obtain the following 
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derivations in G: 

S +; wA6 $ wxB@ +, wx@-yd +; ~952 

S $ wA6 +; wxByd =$L wx/3’y6 +; w?q$z 

where z is any string derived from 6, Recall that y/k = y2/k- If 1yJ ( k 

or lyZi < k the&e must have y1 t: y2, in which case (y&/k = (y&/k. If 

both y, and yz are of length k or greater then again (yIz)/k = &z)/k. 

Since G is LL(k), we must therefore have /? = /3’, which is a contradic- 

tion. Therefore G, must also be LL(lc). m 

We also need to introduce LR(k) grammars. We use the definition 

suggested by Geller and Harrison [lo). 

Defiaitfon 1.8. A cfg G = (N,C,P,S) is L&(k) for some k 2 0 iff S +i S is 

impossible in G ani1 for any w, w’, x E X2*; or, a’. & p’ E V*; A, A’ E N; 

and derivations 

S +; aAw ++R a/%’ 

S +z a’A’x +R a’$‘x = Cq3w’ 

if w/k = w’/k then (A+&lafl() = (A’+/3’,1&/3’1), 

2. Treea 

Following Harrison and Have1 [ll] we semi-formally develop the 

ilotion of trees, particularly derivation trees, and their properties. Our 

presentation is a compromise between the demands of rigor and a 

desire not to sacrifice entirely comprehensibility and intuition. To this 

end we will occasionally make informal use of pictures. 

For our purposes a tree 7’ is a directed acyclic graph defined by a 

pair of sets (?&8), where ‘1p is a set of n&es and 8 is a set of edges 

(x,y) E %d& in which all nodes save one (the root node of T, written 

A(?‘)) have exactly one entering edge; the root node has no entering 

edges. For example, the tree in figure 1 is defined by 

The edges (x+y) in 8 define the immediate descendency relation I-; x is 

a parent of ~7 and y is a child of x. In figure 1 we have x0 r x1 but not 

xt r x2. The reflexive transitjive closure r* of r is called the 

descendancy relation. There is a path from node x to node y iff x r* y. 
Thus in figure 1 there is a path from x0 to x3 since x0 r* xgs but no 

path from x3 to x1. If A(?‘) ri y then y is said to be at depth i in T. 

The height of ‘3’ is the length of a longest path in T; it is thus equal to 

the depth of a deepest node. 
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A node x is intera& iff there exists a node y such that x r y. 

Otherwise x is a leaf, and has no children. 

We will need a left to right ordering of the nodes in a tree. For this 

reason we assume that 6 is actually a sequence of edges so that we 

may define an additional relation n on the nodes of a tree in the 

following way. If the P edges leaving an arbitrary node x are listed in 6 

in the order (x,yl), .* l , (x,y,) then y1 n y2 n l . 9 n y, anol the edges 

will be drawn left to right according to this ordering, as in figure 2. 

Furthermore, if p r y and there does not exist any node x such that 

x n y then p 5 y (y is a kftmost child of p). The relation 5; is defined 

similarly. Finally, we write x L y iff (x,y) E (G-l)’ n (F)‘, so that x L y iff 

there are no nodes between x and y. The reflexive transitive closure 

L* of L then defines the notion of left to right order in 7’. (The 

relations r and L are identical to the relations represented by these 

symbols in Harrison and Have1 [ 111.) If we list the leaves l,, 0.9 , dr of 

3’ in left to right order, which is to say that 

1, L & L .a’ L lr 

then we obtain the left to right sequence of nodes 

A(T) = ( 1,. 42% l *’ * dr ) 

Let us adopt the convention that if we list the nodes in a subtree T’ 

of T then edges between those nodes in 3’ are implicitly the edges of T’ 

Fig. 1. Fig. 2. 

(the induced subtree). Then for any internal node x of the tree 7’ the 

set { yEY 1 x= y or x r y ) defines the elementary subtrez of Y with 

root z. Also, if x is a node of 7’ then we define TX to be the largest 

induced subtree of T whose root is x. More precisely, 

rx = { y~r I xr*y) 
Since our trees represent context-free derivations we will want each 

node to represent a grammar symbol or, perhaps, A. Furthermore, it is 

often desirable to distinguish between a node and the, symbol it . 
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represent, Q since several nodes may represent the same grammar symbol. 

Hence we define a labeled tree to be a tree T = (u,8) together with a 

Labeling function h from ‘zp into a finite set 9 of labels such that 

‘zp n g = $. The labeling function A is then extended to sequences of 

nodes in the obvious way; for a sequence (x0, l a* ,x,) of nodes we have 

x(x,, l l ,’ ,x,) = X(x,) . . . A(x,). Our labels will always be drawn from som.e 

set VA = V W {A}, where V is the vocabulary of some cfg. Of particular 

interest are the root label and frontier of T: 

d(T) = U MT) ) 

P( ) T = M k(s) ) 

Let G = (N,C,P,S) be a context-free grammar, and let T be a labeled 

tree for which the labels are symbols from VK ‘3’ is said to be a 

grammatical tree iff /$3’) E C* and either 

T is a trivial tree consisting of a single labeled node 

or 

for every internal node x in 7’. if yl. 9 9 l , yr are all of X’S 

children in left to right order then h(x) --) h(yl) l . . h(y,) is a rule 

of G and X(yi) = A is allowed only if 1 = i = r. 

Leaves which are labeled with terminals are referred to as terminal 

nodes. Leaves which are labeled with A are called A-nodes. Observe that 

a node x is internal iff h(x) E N. A grammatical tree T is said to be a 

derivation tree iff d(T) = S. 

Figure 3, for example, displays a grammatical tree over the 

context- free grammar S + aSbS 1 A. Occasionally we will omit the names 

of nodes in a grammatical tree, leaving only the labels, in which case 

the tree of figure 3 would appear as in figure 4. 

The sentential forms which appear in a derivation are embedded in a 

natural way in the grammatical tree representing that derivation. We 

represent this embedding by means of cross sections (CS’s) and 

canonical cross sections, which we define inductively for a tree ‘s by the 

foilowing: 

(1) 77 = (x0), where x0 = h(r), is a cross section at level 0. 

(2) Let 7j = (x1, l == ,xk, l .0 ,xm) be a cross secion of level 4 and let 

xk be an internal node of T. If yl, l .a ,yt are all the children 

of Xk in left to right order then , 

is a cross section of level I+ 1. 
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(x0) is also said to be a left cananical cross section (LCCS) of X If q is 

an LCCS of T and xk, the node which is replaced, is the leftmost 

internal node of q, then 77’ is also a left canonical cross section of ‘S. 

Right camnical CTOSS sections (RCCS’s) are defined analogously. For 

readability we may sometimes write ( x1 x2 l l l x, ) instead of 

( x1,x2, l ,Xm). 

For example, in the grammatical tree of figure 3 ( x1 x5 x3 x4 ) is 

an LCCS, ( x1 x2 xg x6 ) is a CS but not an ICCS and ( x, :<cp x0 x4 ) 

is neither an LCCS nor a CS. 

The following properties of cross sections are intuitive. Consequently 

we state them without proof, though in an order convenient for rigorous 

development. lvIore detail may be found in [s]. 

BIot 1u.l. Let 7-j = (x1,-* ,x,,) be a cross section of some tree 7’. Then 

xi L xi+l, 1 diem. 

Fig. 3. A grammatical tree in which 

we distinguish nodes and labels. 

Fig. 4. A 

nodes and 

S b S 

A A 

grammatical tree in which 

labels are not distinguished. 

Feat PI& No node of any tree 7’ appears more than once in any one 

cross section of T. 

FIot a.8. [ 1 l] No two distinct LCCS’s of a grammatical trcz can he of 

the same level. 

Faot 8.4. The level associated with any cross section 1s unique. 

F& B.S. Let 7” be a tree and let n be il node in T. Then n appears in 

at ieast one LCCS (respectively CS) cf Y. Moreover, we may assume that 

there are no internal noldes to the left (respectively to the left and 

right) of n in this cross section. 

Fu 8.6. Let ?’ be a tree. Then ku.~&r31) is an LCCS of T. 
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Next we delineate the relationship between cross sections and 

sentential forms. First we describe how to pass from cross sections to 

derivations. 

FnoB t.7. Let G = (N,C,P,S) be a cfg and let 7’ be a grammatical 

over G. If q is a cross section of 7 at level 1 then d(7) d X(T)). 

We have a stronger result for canonical cross sections. 

F@ t.8. Let G = (N,C,P,S) be a cfg and let 3’ be a grammatical 

over G. If Q and 7 are LCCS’s of level 4 and d+i, for any 1 and i 

then X(q) +ih(?~‘). If q and 7’ are instead RCCS’s then h(q) =& A(q’). 

tree 

tree 

3 0. 

This result does not hold for cross sections in general. in figure 5. 

the cross seclion 

tl = ( Xl % Xl3 X-7 %3 X3 X4 ) 

is at level 3 and the cross section 

77 ‘= (xxxxx 1 5 6 7 14 x3 x9 X15 x11 x16 ) 

is at level 6, but h(q) = aabSbS cannot possibly derive h(q’) = aaSbbab, 

the S in aaSbbab already having been erased in aabSbS. 

IFrot 1.0. [l l] Let r be a derivation tree over some unambiguous cfg 

and let q and 0 be two LCCS’s (or RCCS’s) in T. If I\(n) = h(8) then 

77 = .e. 

We pass from derivations to cross sections via the next two results. 

%kt 8.10. Let G = (N,C,P,S) be a cfg and let A =$ a +* w, where A is a 

variable, a E V* and w is a string of terminals. Then there exists a 

grammatical tree T containing a cross section 77 of level i such that 
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#I’) = A, /k(r) = w and X(q) = a. Moreover, if the derivation is leftmost 

or rightmost then Q is respectively a left or right canonical cross 

section cf Y. 

If we are dealing with an unambiguous grammar then we can prove 

a stronger result. 

W'rtst Sail. Let G = (N,C,P,S) be an unambiguous cfg and ?’ a 

grammatical tree over G. If &!(I’) & cx +*/k(‘?‘), where 01 E V*, then there 

exists a cross section q at level i in ‘3’ such that h(q) = a. Moreover, if 

the derivation is leftmost or rightmost then q is respectively a left or 

right canonical cross section of 7’. 

In eveloping our arguments we will need to disassemble and 

reassemble derivation trees and cross sections in a highly specialized 

manner. Hence we next define the tree fragments about which we will 

be speaking. 

D~Wtia,n t.f% Let ‘3’ be a grammatical tree such that l/k(T)1 = m. Let, 

Y,9-*** Y_n be a complete left to right sequence of the terminal nodes of 

7’. If n iZies in the range 1 < n < m then 

Crly = { XET 1 xL*r*y, ) I 

my = En&” U { xE?’ 1 3 b E 7 s.t. &(‘3’) T*b T*y, and bnfx } 

C”k’ = (%’ = (g,(d) and for n > m, Cnk’ = %’ = 3’. Cnk’ is called a left 

[n]-purr of @I’ and fnk’ is called a left {n.}-part of Y. Thus if p is the 

root-lea: path to the ng terminal node (counting from the left), then 

Cnk consists of those nodes which are on or left of p, while (“k’ 

consists of those nodes of 7’ which are left of p, or on p, or are right 

of p an;3 have a parent on p. For example, in figures ‘7 and 8 we see in 

bold thi? left [4]-part and left {4)-part of the tree in figure 6. (Our 

left []-parts correspond to the left parts defined by Harrison and Have1 

Cl 134 
Next we establish those properties of left parts which will be needed 

later. 

Theomrm %l& [ll] Let iv be an RCCS of the grammatical tree T and 

let n be a positive integer. The restriction of q to Lnk is an RCCS of 

W. 

. Let 71 be an LCCS of the grammatical tree 7’ at level 4 

and let n be a positive integer. If q contains an internai node of ink 

then ‘p) is an LCCS of level. 4 in (n)r as well. (Refer to figures 9 and 10.) 
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Rooit The proof proceeds by means of X-I induction on 1. 

Basis (I = 0): Let x0 = A(5). We must have q = (x0), since this is the 

only LCCS of ‘3’ having level 0. But then -q is, by definition, an LCCS of 

++T for every n 3 1. 

Induction Step: We assume that the theorem is true for LCCS’s of 

9” having level d or less an.d extend the theorem to LCCS’s of 3’ having 

level I+ 1. Let q be such an LCCS of level l+l in T and let 8 be the 

LCCS of level I in Y from which it is obtained. Let 

8 = ( 21 l *. Zg_l xg Zg+l l ** zr ) 

77 = ( x1 l ** zg_1 x1 ‘.’ x, Zg+l. l ** z, ) 

so that zg is the leftmost internal node of 8 with respect to ‘3? 

The leftmost internal node of q with respect to 7’ is an internal node of 

(n)r as well since by hypothesis q contains at least one internal node of 

+>r , and by definition internal nodes of T which are left of such a 

node must be internal nodes of x*k’ also. It follows that if one of 

<exp> 
/ \ 

<next* 
I 

c 1. 
I <exp> 

1 c <next> 
I 

r 

/!‘A; 
<exp> <exp> 

I 

i If 

\ \ 
<next> 

Ii I 
<next> 

I I , I I 

*exp* 

*next> 

4 id <next> 

I i *exp> ) 

4 

I 

I 

I 

+ *exp> 

l *exp> 

( <exp* , <exp* ) 

h 

id l - id ( id A , id A ) - - - 

Fig* 6. The derivation tree ‘3’ for id*idl:id id), over the indicated grammar. - _.-‘_ 

<exp* 

<next> 

id + id - - ( id A , ih A ) - - 

Pig. 7. The left part c4k’ of 7’. 

‘exps 
I” \ 

<next> 

<next> 
\Y 

<exp* 
: . . *. 

j’ <next> 

id + id - - ( id A , id A - - 

Fig. 8. The left part {4k’ of ‘s. 
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\ the n!!! terminal node \ the I$!! terminal 

Fig. 9, illustrating theorem 2.14. The LCCS 77 of 7’ contains 

node (circled above) which is internal to (nk’. Consequently 

is an LCCS of (n)cS. 

a 

77 

. . . ..a............... . . . . . . . . . . . 

the ,th terminal node +hn n!!! terminal node . . . 

Fig. 10. The nodes of r) which belong to {*k’ are circled above 

right. None is an internal node of (nk’, and it is evident that 

7) is not an LCCS of (nEp. 

x1, l == , x, is the leftmost internal node of 7 in T then its parent zg 

belongs by definition to %‘. If the leftmost internal node of q in T is 

instead one of z~+~, 9. l , z, then since zg is left of that node i, 8 zg 

again must be an internal node of OT. In either case 8 is an WCS of 

T at level 4 which contains the internal node zg of (*k’. It follows from 

the induction hypothesis that 8 is an LCCS of (*k’ at level 1. By 

definition, then, r) is an LCCS of %’ having level d+l, as desired. 

If q does not contain an internal node of (*lT then it need not be 

an LCCS of (*k’. Such a situation is depicted in figure 10. 

TMBQDIH)PII %16. [l l] Let 3” be a grammatical tree with respect to some 

cfg G, let n be a positive integer, and let s = @(T)l. Let q = (x1 l -xk) be 

an RCCS in cmk and let yr, l ** , ys be all the leaves of T which are right 

of Xk; accordingly we assume x&y& $5 - Ly,_ The~l the sequence 

8 ( X1-Xk y,-y, ) = 

is an RCCS of S. 
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wmm a.i@. Let 7 be a grammatical tree and n a positive integer. If 

7~ is an LCCS of fnk’ then 7 is an LCCS of ?’ as well. 

M The proof is by induction on the level I of q. 

Basis (I= 0): It must be the case that 7 is the root node, which is an 

LCCS of T by definition. 

Induction Step: Assume that the theorem holds for all LCCS’s of level 1 

or less. Let 8 be an LCCS of (“k’ at level d+l and let 77 be the LCCS of 

+% at leve 1 I from which it is formed. By the induction hypothesis 7 is 

an LCCS of 7’. By definition, then, 8 is an LCCS of 7’. l 

We will need the following special case of theorem 2.16. 

wm a.17. Let T a derivation tree and let n be a positive integer. 

Then kz~&k) is an LCCS of 7. 

Proofi According to fact 2.6 t&~@k) is an LCCS of (nk It then 

follows from theorem 2.16 that k~&k’) is an LCCS of 7 as well. l 

Finally, we will need to define what it means for trees, or parts of 

trees, to be equal. 

DdhMon MS. Two labeled trees @Y’ and 7’ are said to be structurally 

isomorphic, written 7 * Y’, iff there exists a bijection T + 9” : x --) x’ . 

between the nodes of 3’ and 9” such that 

l x r y iff X' r yfl 
e x n y iff x’ n y* 

(Note that we use the same symbols r and n to represent the 

descendancy and left-right relations in both trees.) Intuitively, T and 3’ 

are identical except for labeling. If the structural isomorphism preserves 

labeling (h(x) = h(x’)) then we say that the trees are isomtwphic and 

write 7 = Y. 

88 A X&t Par8 Theorem 

Our goal is to establish iteration theorems for the LL(k) languages. 

Our first such theorem will be founded on an argument about derivation 

trees, and in particular on a characterization of derkation trees over 

LL(k) grammars, which is our immediate goal. Our starting point is the 

following result, which is analogous to Geller’s Extended LR(k) Theorem 

PI . 
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meormm 8.1. (The Extended LL(k) Theorem). Let G = (N,C,P,S) be an 

LL(k) grammar. For any A E N; w, x, y E C*; and y E V*, if 

(1) S +; WAY *; wx 

(2) S *; WY 

(3) x/k = Y/k 

then 

(4) S +; wAy +; wy 

Pzreoit Assume for the sake of contradiction that (1) (2) and (3) hold, 

but not (4). Since the leftmost derivations of wx and wy have the initial 

left sentential form S in common, and (4) does not hold, derivations (1) 

and (2) diverge before reaching WAY. Let uB6 be the last left sentential 

form they have in common (where u E C*, B E-: N, and d G V’). Then 

for some o E P* and v E C* such that w = uv we have 

for distinct rules B + @I and B + & of G. Since x/k = y/k, we must have 

(vx)/k = (vy)/k. It follows that @I = & since G is LL(k), contradicting the 

assumption that uB6 is the last common sentential form, so that (4) 

must hold. Q 

This theorem describes a property of derivation trees as well as of 

derivations. Let wx and wy be strings in the language generated by an 

LL(k) grammar G and suppose that x/k = y/k. Then the portions of the 

derivation trees TWX and Ywy for wx and wy which have been filled in at 

the time the last symbol of w is exposed in leftmost derivations of wx 

and wy will be the same. Our left part theorem is a somewhat stronger 

formalization of this intuition. It is convenient to begin with the 

following preliminary result. 

Loopma 8d. Let G = (N,C,P,S) be a reduced LL(k) grammar and let 

3 and 9” be two grammatical trees over G such that &(?‘) = d(Y) = B, 

where B is a variable, terminal or A. Let n be a non-naegative integer. If 

for some variable A and terminal strings u, v and v’ Isuch that A $uBv 

and A =$* uBv’ we have &(?‘)v]/(n+k) = @(Y)v’]/(n+k) then 

(n+ ‘)r = Wl)~~* 

t The proof proceeds by means of an induction cn the height h of 

the higher of the two trees T’ and 7”. Let T&(T) = x0 and T&(Y) = x6. 



208 J.C. Beany 

Basis (h= 0): Both ‘3’ and Y’ consist of a single node. Suppose that 

A&) = h(xh). Trivially we have r = Y, whence @+‘)?Y = (n+1)‘3”. 

h&,&ion Step: Assume that the lemma is true for trees of height 6 A, 

and call this assumption hypothesis H. We shall extend H to trees of _’ 
height < &i-l). 

’ Without loss of generality assume that Y has height &+ 1. Then x0 is an 

internal node of 3’ so that B E N. Since X(x,) = A(xb) and /F(Y) E C* 

(3” is a grammatical tree) x6 must be an internal node of Y. 

Let T be the tree 

and let ‘3” be the tree 

Our 

for 

hypothesis is that 

A +* uBv 

A =$* uBv’ 

x(x,) = A(x$ = B 

wT)v]/(n+k) = &(T’)v’]/(n+k) 

some variable A and some u, v, v’ E $. 

0Um A0 The elementary subtrees rooted in x0 and x6 are isomorphic. 

That is, 
l s = s’ 

a MXil = A(x;), lria 

af of Claim A: By definition (x1, . . l , xs) is a CS of r and 

(x;, l -• , xi,) is a CS of ?“. Hence by fact 2.7 

A( x0) = B + A(xI-x,) +* w1 . . . w s 

x(x;) = B + 5(x; l x;) =+* ~‘1 l da w;, 

Since G, is U(k) (theorem 1.8) and 

(WI l -* w,v)/(ntk) = (w; a.0 w$v’)/(n+k) 
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it follows from theorem 1.6 that 

h(x1 a** XJ = h(x; *mm x;;.) 

and the claim is established. 0 

cmm 8. If for some 16 s we have 

(a) Ti = T;, 14icl 

(b) Iw1 l m*wJ = Iw; ‘**will = m < n 

then for n’ = n-m we have (n’+ 11~~ = (n’+ 0q 

3preoa ot ClUm 8: Observe that Td and ?‘i have height Q h. If we can 

satisfy the conditions of hypothesis H then we will immediately obtain 

the desired result. If 4 = s = 1 and h(xl) = A then the claim follows 

trivially. We may therefore assume that x1 is not a A-node. From Claim 

A we know that X(x,) = A(xi). Let C = A(xl). Since x1 Ssr not a A-node we 

have C E V. 

By assumption there exist derivations 

A +* uBv 

A +* uBv’ 

Since 9’ and T,’ are grammatical trees there exist derivations 

(facts 2.5 and 2.7) so that 

A +* uwl l =*w&w~+~ .**w v s 

A +* uw; l m* wi_,cwi,l l l l wiv’ 

Since wi = w& 1 d i <I, we may write 

z = w1 l *.w&l = w; .*a “i-l1 

A =?;e UZCW~+~ .‘. w,v 

A +* UZCW~,~ 
l ma w?’ 

It follows from (b) that n’ = n-m is a non-negative integek-q Since 

(9 
. ..w.v)/(n+k) = (w; a.*wiv’)/(n+k) 

(2) 

(3) 

and wi = WI, 1 < i < 4, we must have 

( w& 9.9 w,v)/(n’+k) = (wiam* w;v’)/(n’+k) 

or 

&(r~)Wl+~ l ** w,v]/(n’tk) = Ltv(cJli)wi+l l ** wiv’]/(n’+k) (4) 

In view of (Z), (3). (4), and the fact that Td and Ti have height ai most 

/L we may invoke H to conclude that {n’+l)T1 = (n’+l)CSi, as desired. o 
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W 0. If for some I C s no tree among S,, 0.9, Td contains the (n->l~ 

terminal node of S and no tree among 9’;, l 9. , Ti contains the (n+ 1 \st 

terminal node of S’ then S. = 
/ 

Y’ for each k in the range 1 G~sI. 

Proof of Plasm .a: The argument is an induction on &. 

Basis (j = 0): Vacuous. 

Induction Step (/ b 1): Assume that the claim is true for indices 

1, a** , (p 1). Then condition (a) of Claim B is satisfied for 4 =i. Since 

neither ?” nor ‘3’: contain the (n+l)- st terminal node of 9’ and 
k 

respectively, we have 

Iw1 
. . . w 

p-d = iw; l ** w: k-11 = m S n - Iw.1 
I 

and, for n’ = n-m, 

so that condition (b) of Claim B is satisfied and we may conclude 

(n’+lk = (n’+lk“ In fact from (5) and (6) it follows that fn’+lk = Y. . . 

that n’+l 3”. P 3 k - $, whence ‘3’. 
I I 

k 
= T; 0 

T’S 

(5) 
(6) 

that 

and 

Now let r be the least index such that at least one of 7, and 3’; 

contains the (n+ 1)s terminal node of 7’ and Y, or (s+l) if no such 

index exists. It follows from Claims B and C that there are 

isomorphisms fi establishing ri = ‘3’& 1 6 i < r, and (if r d s) an 

isomorphism fr establishing (n’%‘r = (n’+l)?‘;, where m = Iwl l .0 wr_& = 

iw; . . . w’ r_ll and n’ = n-m. Now (n+1)3’ is the shaded portion of 

and (n+lk’P is the shaded portion of 
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If we define the mapping f by 
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’ f(x*) = 

2 qq = 

. f(P) = 

. f(p) = 

xi, 
x;. r+l bi4s 

fi(p), 1 d i < r, if p is a node of Yi 

f,(p) if p is a node of fn”’ %‘r and r d s 

then it follows easily from Claim A and the above argument that f is a 

label-preserving structural isomorphism between c”+l)r and fn+l)Y, so 

that fn+l)‘3’ = (n+1)9’H and the proof is complete. m 

Lemma 3.2 is actually the forward direction of the Left P’art 

Theorem, which we are now prepared to prove. 

Theo-m 8.80 (The LL(k) Left Part Theorem) A reduced cfg G is LL(k) iff 

the following condition holds for all n B 0: if T and Y’ are grammatical 

trees over G such that 

(1) 7&(T) = &i?(Y) 

(2) /W)/(n+k) = jW’)/(n+k) 
then (n+l), = (n+l)rjl@. 

Roof l : Lemma 3.2 suffices to ec;tablish the forward direction. Suppose 

that G = (N,C,P,S) is a reduced LL(i:) grammar and that ?’ and T’ are 

any two grammatical trees over G suc5 that 

(1) d(r) = &Y(Y) 

(2) /%W(n+k) = b(Y)/(n+k) 

Fig. 
left 

k- X h-4 

11, illustrating the Left Part Theorem for LL languages. The 

{Ixl+ 11-P t ar s of derivation trees for xyl and xy2 are shown 
shaded. These left parts are the portions of the respective trees 
which have been filled in at the time all of x(y,/l) and x(y&) 
have been exposed. If the grammar is LL(k) and yl/k = y2/k 
then these left parts are necessarily identical. 
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Let A = &j(T) = &(T’) = B and u = v = v’ = A. For the derivations A ** UBV 

end A +* uBv’ we use the trivial derivation A +*A. Since V = v’ = A, 

wT)v]/b+k) = r&7’(T’)v’]/b+k) 

follows immediately from (2). We have now satisfied the hypothesis of 

lemma 3.2, and may therefore conclude that {“+‘)T = (n+l)T’, as desired., 

Pro& 4: Let G = (N,C,P,S) be a reduced cfg with the property that if 

T and T’ are any two grammatical trees over G such that 

(1) 7&(T) = &(T’) 

(2) b(T)/(n+k) :=/%T’)/(n+k) 

then in’13T = (n+13T’. We intend to show that G must necessarily be an 

U(k) grammar. For suppose that G is not LL(L). In view of theorem 1.7 

there must exist a pair of derivations 

S 4, uA/3 *L ua@ *z uv 

S &‘ uA/3 *L ua’@ $ uv’ 

such that v/k = v’/k and a $ a’. Let T and ‘3” be derivation trees over 

G for uv and uv’, respectively, and let n = lu\ so that 

(uv)/(n+k) = (uv’)/(n+k). Since T&(T) = S = &!(T’), b(T) = uv, and 

&(T) = uv’ there exists by assumption an isomorphism f establishing 

(n+l)T = (n+OT~_ Let 

7) ( Z1”‘Zg “‘2, ) = 

77 ‘= ( z;*.*z;..*z;, ) 

be the unique LCCS’s at level 1 in T and T’ (fact 2.3) having the label 

uA/3. in which zg and z;, are the leftmost internal nodes (so that they 

are labeled with A). Since n = lul and u = h(zl, 9 l 9 , z~_~) the (n+l)s’ 

terminal node of T is either one of the nodes z~+~, l a l , z, or is 

descended from one of the nodes zg, - . l , z,. Similarly the (n+l)e 

terminal node of T’ is either one of the nodes z’ g,+l, l l l , z;. or is 

descended from one of the nodes zi,, l ** , z$. Accordingly 77 and T)’ each 

contain an internal node of in+l)T and {“+l)T’ - zg and z;,, respectively. 

According to theorem 2.14 it follows that 71 and 77’ are LCCS’s of {n+l)T 

and in+‘)?‘* at level 1. Since f is an isomorphism it must be the case 

that f(v) is an LCCS of {““)T* at level ‘1. But rl’ is also an LCCS of 

jn+l)TJ having level 1. Since there can be at most one sue-h LCCS (fact 

2.3) we must have f(7)) = T’. It’ follows that g = g’ and f(z,) = z’,. Since 

zg 
and z’ g are internal nodes of Cn+*)T and {n+l)T’, their children must 

belong to inel)T and {“+‘)T’, respectively, so that the elementary 

subtrees rooted in z 
g 

and z’ g, are isomorphic. That is to say, if XI,*.., x, 
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are the children of zg and xi, l *a , xg, are the children of z’ g, then s = s’ 

and 

A( x1 “‘X, ) = h( x; l *x;, ) 

But 

A( X1”‘X, ) = a 

A( x; . ..f. ) = a’ 

so that a = LX’, which we assumed was not the case. Consequently G 

must be LL(k). n 

4. Iteration T&oremo 

Armed with the Left Part Theorem our intent is to establish some 

pumping properties of the LL(k) languages. Roughly speaking, we will 

invoke the argument used in establishing Ogden’s lemma to obtain the 

usual decomposition of the derivation tree for a string w belonging to 

an LL(k) language L in which we have distinguished a sufficient number 

of positions. This induces the usual factorization of w as **~Iw2w3w4w5. By 

looking at derivation trees for w and for any other string wIw2u in L 

such that (w3w4w5)/k = u/k, and applying the Left Part I’heorem 

appropriately, we will obtain our first itera.tion theorem. WC will need 

the following definitions. 

DefiaMan 4.1. Let w E C* 

w1 
. ..w 

n = w, where wi E C* for 

said to be a factorization of w. 

DefiaiUoi;r 4-P. Let w E C*. Suppose that w = alaz l . - ‘a,, where e,ach ai 

E C. Any index i, 1 S i d n, is called a position in w. For examp!e, the 

symbol occupying position 3 of the string aacbda is c. Next let x be 

any set of positions in a terminal string w. Any factorization 

p = (w$$w:J,wq,wg) of w induces a natural “partition” X/cp of X into: 

and let n be a positive integer. If 

1 c i d n, ther the sequence (wl, -*-,w~) is 

where 

Thus xi selects out of x those positions which appear in wi. We ca!l the 

elements of K distinguished positions (or dp’s). The following notation 

will also be convenient. 
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DefiaWm 4.S Let ui E C’, I B i d r, for some alphabet C. Then 

fi( ) % = U1U2’.’ u&l, 
i=l 

We are now ready to proceed. 

w-m 4.4. (The First LL Iteration Theorem) Let L be an LL(AG) 

language. There exists an integer p such that given a string w in L and 

p or more 

V 

X/V 

where 

(1) w2 

(2) a: 

distinguished positions x in w we may write 

b: 

(3) a: 

b: 

Either wl, w2 and w3 each c,ontain dp‘s (x,, x2, & $ $), 

or w3, w4 and w5 each contain dp’s (,7& x4, x5 $ $), 

and w2w13w4 contains at most p dp’s (I~2U~@‘41 d p). 

Let n = \wIw21 and suppose that w’ is any string in L such 

that w’/(n+k) = w/(n+k). Then there is a factorization 

(wI,wz,w&w~,w~) of w’ such that 

(ii) w1w;w; fi &)w!j 
i=l 

(iii) w1wiw3 fi (“i)w; 
i=l 

(iv) WlW;lW; ~ (Ui)W; 

i=l 

are in L for all r b 0 and for all strings fi( ) % in which 

‘i 
= W4 or Ui = Wi, 1 S i 6 r. i=l 

Furthermore, if fi($) is a catenation of words Ei. E (w&w2 

such that i=l 

%fjlC”i) = fi (‘j) 
i=l 

then Ui = ti, 1 <i 6 r. 

Prod . Let G = (N,C,P,S) be an arbitrary reduced LL(k) grammar 

generating L. The methods used by Ogden [ZO] (or see Harrison and 

Have1 11 I]) suffice to establish the existence of an integer p such that 

for any string w in L in which p 07 more positions X are distinguished 
5 
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there is a factorization q = (w1,w2,w3,w4,w5) of w such that (2) holds and 

for some variable A E N for which AJ+w,Aw, we have 

’ for all non-negative integers r. Since no LL(k) grammar is left recursive 

(1) holds. To complete our proof we must show that ‘p satisfies (3) as 

well. 

Let n = lwlwzl and consider any string w’ in L such that 

w’/(n+k) = w/(nck). Let 7’ and T’ be the derivation trees for w and w’, 

respectively. Since w/(n+k)) = w’/(n+k) we may invoke the Left Part 

Theorem to obtain fn%’ = ‘{n%“. (Refer to figure 12.) 

Consider T. Let x and y be the internal nodes of ‘$ corresponding to 

the A’s in WEANS and wIwZAw4wS. We know that w3 $ A since x8 $ pl . 

“1 w2 “3 w4 w5 

W 

Fig. 12a: 3’. 

w1 w2 % % % 
\ U A 

W’ 

Fig. 12b: T’. 

Fig. 12. Derivation trees for w and w’, in which the left 

(Iwlw21+ lI?-parts are shaded. As a result of the fact that G is 

LL(k) and (w1w2w3w4w5)/(lw1w2(+k) = (wiw2wjw~wj)/(lwiw21+k) the 
left (IwIw2(+l)-parts are isomorphic. In particular, the two node> 

labeled A in ( n+lk must appear in the same positicn in {n-k 1j-y. 

Therefore the subtree rooted in y has a terminal node among its leaves. 

The leftmost such terminal node n is labeled with wg/l and is contained 

in (n+l)T; it is. in fact, the (n+l)- st terminal node of T. Since the nodes 

x and y defined above lie on the root-leaf path to n they also belong 

to (n+l)X (They appear in figure 12a labeled by A). Let f be the 

isomorphism of the Left Part Theorem. It follows that 

A = A(x) = X(f(x)) 

A = NY) = W(Y)) 
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Let q and 0 now be the unique LCCS’s of T in which the leftmost 

internal nodes are x and y, respectively (fact 2.5). We may write 

rl (a1 = .**a, x d,*ead, ) (7) 

8 ( al***ai b, = m**bb ; c1 r.. c c d,*e*dd ) (8) 

Since x and y are-both internal nodes of (*k, 7 and 0 are LCCS’s of 

(,+l>, as well (theorem 2.14). Since C*+%’ = f*+%“‘, f(q) and f(B) are 

LCCS’s of (n+%“, and hence of ‘3” (theorem 2.16). Again because 

in+l)T = (*%‘* we may conclude h!r,st A(q) = A(f(q)) and A( 6) = A(f(8)). In 

particular, 

wl = A( al -93, ) = h(f( a1 l *a a, )) 

w2 = A( b, l a.b; ) = A(f( b, l *m b; )) 

and for some a, @ E V* 

a = A( Cl...C, ) = A(f( c1 ..‘C, )) 

B = A( d, “odd ) = A(f( d, 900 d; )) 

Now by invoking theorem 2.8 we obtain from T’ the derivations 

S *T W, l a,)A(x)A(dl l *. dd) = w&3 

A = A(x) *; A(b, l ** bb)h(y)A(cl l *a cc) = w2Aa 

A = A(y) +; w3 

a ** w4 

B 
k 

*L w5 
and from T’ the derivations 

S =$ A(f(a1 l .0 a,))A(f(x))A(f(dl l *a d&) = wlAf3 

A = A(f(x)) $ A(f( b, l bi))A(f(y))A(f(c, l ** c,)) = w2Aa 

A = A(f(y)) +; wj - 

a *; WI 

s $ wj 

for some terminal strings w& wi and wi such that wIw2w~w~w~ = W. By 

suitably combining these derivations we can obtain any of the strings 

specified in (3a). F’or example, to obtain strings of the form 
r 

(i) w&w3 n (u$ws 
i:= 1 

begin with (9), followed by r applications of ( IO), followed by ( It)* 

followed by a suitable mixture of ( 12) and ( I7), and finish with ( 73). 

(Season to taste.) 

Next we establish (3b). If w4 = W; then (3b) follows trivially. Therefore 
assume that w4 $ wi, so that (12) and (17) are distinct leftmost 
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derivations, neither of which is a prefix of the other. For the sake of 

simplicity we restrict our attention now to strings of type (i). Let R be 

the set 

Notice that a string in R uniquely specifies the leftmost derivation of a 

type (i) word in L. In particular, let pi, 1 6 i d r, be defined by 
. . 

Pi = 

Pi = 

Then given 

((9) 3 c 

(12) if Ui = W4 

(17) if Ui = W; 

a string of type (i), which determines a sequence pi, 

{UO)Y {(ll)) fi{p,, ((13)) 
i=l 

is a leftmost derivation of the word. If there exist two catenations 

i=l 
and 

i=l 
and corresponding sequences pi and pi such that .-. 

fi t”i) = fi (‘i) 
i=l i=l 

and for which Ui $ pi, for some i in the range 1 6 i d r, so that pi 4: pi, 

then there are two distinct strings in R, representing two distinct 

leftmost derivations of the same string in L. But then G is &sn 

ambiguous grammar, which cannot be the case since G is LL(lc). Hence 

(3b) follows for a string of type (i). 

We can extend (3b) to strings of type (ii), (iii) and (iv) by analogous 

arguments - the details are omitted. n 

Before proceeding with a formal development of a second pumping 

lemma for the LL(EG) languages, we sketch the intuition underlying our 

argument. (Refer to figure 13.) Suppose that uv and uvy, Iv1 = k, are 

strings in some language L generated by a A-free LL(k) grammar G. 

Leftmost derivations of uv and uvy must proceed identically at least 

until all of u has been exposed; that is the meaning of the E&ended 

LL(k) Theorem. After exposing the rightmost terminal of u in a leftmost 

derivation of either uv or uvy there can be no more than k variables 

remaining in the left sentential form since G is A-free and Iv1 = k. 

Judicious use of this fact, together with the Left Part Theorem and the 

argument of the First Iteration Theorem, is sufficient for auf purposes. 

We will need the following result, which is due to R,>senkrantz and 

Stearns. 
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TWorem 4.6. Given an LL(lc) grammar G = (N,C,P,S) we can construct .an 

LL(k+ 1) grammar G’ = (N’,C,P’,S’) such that y(G’) = &‘(Gj and G’ is A-free 

unless h E J!?(G), in which case G’ contains the single A-rule S’ -) A and 

v =<oes not appear in the right-hand side of any rule in P’. CL 

Proof. Using the arguments found in Rosenkrantz and Stearns [22], 

pages 236-241 (or see Aho and Ullman [Z], pages 6740661), we may 

obtain a A-free LL(k+l) grammar G” = (N”,C,P”,S”) generating g(G) - {A}. 

If A jl$ Z?(G) then set G’ = G”. 

Suppose, however, that y(G) contains A. Then we form a new grammar 

G’ whose start symbol is S’ and whose rules are the rules of G” 

together with S’ -* S” 1 A, where S’ is a new variable not in V”. It is 

trivial to prove that G’ is also LL(k+l) and generates exactly g(G). l 

Thooram 4.6. (The Second LL Iteration Theorem) Let L be an LL(k-1) 

language, k 3 1. There exists an integer p such that for any two distinct 

strings x and xy in L, if Ix) 3 k and p or more positions in y are 

distinguished, then there is a factorization q = (w1,w2,w3,wq,w5) of xy 

such that (1) - (3) of the First LL Iteration Xeorem hold and 

lwll 3 1x1 - k. 

Woof. In view of tb :orem 4.5 we may assume that L is generated by 

some LL(k) gramma’ G = (N,C,P,S) which is A-free, except possibly for an 

S + A rule, in which case S does not appear in any right-hand side. 

For any variable A let G, = (N,C,P,A) be the cfg obtained from G by 

changing the stal-t symbol to A, let pA be the constant obtained from 

the First Iteration Theorem for the language J?(G,) (which is also LL(k) - 

see theorem 1.6). and let 

p’ = maXi pA I A E N } 

P = kp’ + 1 

Suppose that x and xy are strings belonging to L, where 1x12 k and p or 

more positions are distinguished in y. Let us write x as uv, where 

I4 = n and Iv1 = k, and let ?’ and Y be derivation trees for uv and WY. 

(See figure 13.9 Let q = &zw@%) and 77’ = &w@‘+%‘). 

Since x/(n+k) = (xy)/(n+k) = x, it follows from the Left Part Theorem 
that in+l), = (n+13r’ * whence q and Q’ are isomorphic and h(q) = h(7)‘). It 

follows from theorem 2.17 that 77 and q’ are LCCS’s of ‘3’ and T’, 

respectively. Consequently we may write 
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for some .j in V* (fact 2.0). Since Iv1 = k 3 1 these derivations involve no 

A-rules. It follows that 171 d k since IvI = k and y *TV. 

Now write y as X X, 
& 

l *. X, (s d k). Let (q,+ ..a :zs) be the factorization of 

vy such that Xi3,zi, 1 <i d s. Suppose that there are p’ or fewer dp’s in 

each zi. Then there are at most sp’ d kp’ ( p dp’s in vy, which is not the 

t-u--+-v--I 

X 

Fig. 13~ ‘3’. 

t-U+V+ -- 
X Y 
Fig. 13b. Y. 

Fig. 13. The solidly shaded areas indicate the leaves descended 

from a particular internal node 0: Y which is a leaf of the 

left (lul+l)-part of T’. The dashed lines mark the frontier of 

the left (lul+l)-parts for each tree. This is the left sentential 

form obtained at the time v/l is exposed. 

case. Hence so-me particular zi contains more than p’>, px. dp’s. Now the 

string zi belongs to the language A!?(G$. which (as we ioted above) is 

an LL(k) language. Also, we have distinguished px. or more positions in 

this string. It follows from the First Iteration Theorem that there is a 

factorization (~+a~,a~,a~,a~) of zi such that (1) - (2) of theorem 4.4 hold 

with respect to y(G 
xi 

) and for some variable B we have B $oZBo, and 

in G, . From this it follows that the factorization 
i 

( uz1 l ** zi_lal*a*‘a3’04’0gzi+1 l ** zs)= (w1,w~,ws*w4,w5) 

satisfies ( 1) - (2) with respect to L. Since u is necessarily a pref’ix of ?;I 

it is clear that IwJ 3 1x1 - k. If we let 

and consider any string 

argument used to deduce 

property (3) here, and the 

w’ in L such that w’/(n+k) = w/(n+k), the 

(3) in theorem 4.4 may be used to deduce 

proof is complete. 
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We begin by showing that every LL(k) grammar is LR(k). This is not a 

new result; Brosgol [8] obtained a rigorous proof via LR(k) grammar 

theory by embedding A-rules in the grammar, and Soisalon-Soininen has 

reportedly also obtained a rigorous proof [23]. It is more often argued 

intuitively from a consideration of LL(k) and LR(AG) derivation trees that 

this result is obvious (see Aho and Ullman [2], for example). Using the 

LL(k) Left Part Theorem we can now make the tree argument rigorous. 

W-m 6.1. Every reduced LL(k) grammar is LR(k), k B 0. 

Proofi Let G be an arbitrary LL(k) grammar. First of a!l, S +i S is 

impossible since G is unambiguous.. Hence if G is not LR(k) then for 

some w, w’, x fZ c*; a, a’, & /3’ E v*; A, A’ E N, there exist 

derivations 

S +; UAW =$R a@w 

S +; a’A’x =$R a’@‘~ = tx@w’ 

such that w/k = w’/k and (A+,la@l) * (A’+‘,{c@‘l). If k = 0 then either 

J!!(G) is empty, in which case there are no derivations at ah since G is 

reduced, or g(G) is a singleton set, in which case we have o@w = cx@w 

and consequently (A-+/3,&31) = (A’+@‘,la’p’l) since both sentential forms 

must derive the same string and G is unambiguous. We need therefore 

only consider the case in which k 3 1. 

Let z E Z$@), let ?’ be the derivation tree for zw, let Y be the 

derivation tree for zw’, and let n = lzl. Since G is LL(k) and 

(zw)/(n+k) = (zw”)/(n+k), we may apply the Left Part Theorem to obtain 

(nir)3’ = (n+l)‘K Let f be the mapping which effects the isomorphism. Let 

Q = (Ui* l .* I us) be the unique RCCS of ‘3’ having the label aAw (theorems 

1.2 and 2.9). *Left ui be the node of 7) labeled by the A explicitly shown 

in aAw, and let 

be the RCCS formed from 77 by expanding ui, so that h(vI l vh) = @ and 

h(8) = c@w. (Refer to figure Ma.) Let a = w/l (a E X&. Since w/k = w’/k 

and k 3 1, we also have a = w’/l. Consider Cn+llT: /T7@+%) = za. Let 

x = (Ul‘ l ” 9 ur) be the restriction of 73 to [n+llT and recall that 

X(77) = ISAW. if a E C then i ( r, since the first n terminals are derived 

from aA, and ui belongs to Cn%, If a = A (because w = A) then 
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Figure 14a. illustrating the proof of theorem 5.1. In 9 we show 
7) and 8, the unique RCCS’s of 3’ labeled aAw and agw. In 7 
we show RCCS’s t and (, the extensions of x’ and JV (see 
figure 14b below) to Y from Cn+‘k. The isomorphism f maps 
Cn+lJT onto Cn+lk. 

z W 

Figure 14b, illustrating the proof of theorem 5.1. In ‘3’ we show 
the restrictions x and 1(/ of 7) and 0 to Cn+l)r. In Y we show 
the isomorphic images x’ and J&’ of x and ?/ under f. Since 
Cn+lk = [n*rk” we have h(x) = h(x’) = aAa and A(q) = A(@‘) = a@a. 

Cn+%’ = T, so that r = s, x = q, and X(x) = cvAa = aAw = cuA. In either case 

X(x) = aAa (i 6 r 8 s), so that ui appears in x. Next let 

3 = ( u1 .**u+l V1”.Vh Ui+f l ..u, ) 

be the restriction of 8 to cn+%‘, so that X(q) = @a. )I 

of cn+@I’ (theorem 2.13), + being obtained in one 

and @ are RCCS’s 

step from x by 

must also have 

then 

rewriting ui. Since m- ‘ly = (n%“c under f we 
Cn+ll~ = Cn+ll~t Llnder f. If we let x’ = f(x) and JV = f(3) 

A(x) = A(%‘) = aAa 

W) = A(*‘) = @a 

and in view of Lhe isomorphism x’ and q/’ must be RCCS’s of [n%“, 9’ 

being obtained in one step from x’ by rewriting f(u$. Now extend x’ to 

form an RCCS c in ‘3” by appending to x’ (in left-to-right order) all of 

the leaves of T’ which are right of f(u,) (theorem 2.15), SO that 
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w = aAw”. Similarly extend $’ to obtain an RCCS < in 3” such that 

A(<) = cq3w’. Since there are no internal nodes to the right of ui in 7). 

there can be no internal nodes to the right of ui in x, and no internal 

nodes to the right of f(ui) in x0. Since [ is obtained from x’ by 

appending leaves, f(ui) is also the rightmost internal node of 6. Hence < 

is an RCCS of S’ which can be obtained from the RCCS [ of Y in one 

step by rewriting f(u$ We must have 

d(T) =$ x(t) *ij A(<) 

(fact 2.8). That is, 

S +; aAw’ =$R cq3w 

Since we alsc know that 

S +z a’A’x %$ a’#Yx = ff/3wF 

and that G is unambiguous (theorem 1.2) it must be the case that 

a=CX ‘, /3 = #Y, and A = A’ so that (A-$,lc@l) = (A’+j3’,lc@‘l) which is a 

contradiction. Hence G is, in fact, an LR(lc) grammar. l 

It is necessary for the proof of theorem 5.1 that the grammar be 

reduced. For suppose that (N,C,P,S) is a reduced LL(k) grammar. If we 

add to G the rules S + A and A -+ A for some new variable A then it is 

easy to see from the definitions that G is still LL(Ec) but not LR(k). On 

the other hand, the presence in G of variables which cannot be derived 

from the start symbol does not effect the proof. 

We next consider a number of results which follow easily from our 

iteration theorems. Theorems 5.2, 5.3, 5.4, 5.5 and 5.6 each illustrate a 

different way in which possessing the LL(k) property restricts the form 

of strings in a language; each of the proofs illustrates a different 

in which the iteration theorems may be used. We consider 

lanp!: ages which are LR(lc) since every LL(k) language is LR(k); 

language is not even LR(Ec) then other tools already exist 

demonstrating this which incidently demonstrate that the language 

fails to be LL. 

way 
only 

if a 

for 

also 

Th~osre~ 6.6. The LR language L, = { a”b”, ancn 
I 

n 3 1 } is not LL. 

PIooit (Figure 15.) Assume that L, & I,L(k) and let p be the constant 

obtained for L, from the First Iteration Theorem. Consider the string 

w= aPakbP+k in which the first p a’s are distinguished. From theorem 

4.#4 we obtain tht usual factorization cp = (w1,w2,w3,w4,w5) of w. If w2 or 

w4 contained both a’s and b’s then in w1w~w3w~w5 an a would follow a 

b, which cannot happen. Hence w2, and similarly -VQ, must consist 
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L symbols 

1 ak 1 bp+k 

w4 E b+ 

Fig.15 An application of Theorem 4.4 to the language anbn + a%“. 

entirely of a’s or of Ifs. Moreover, if w1w~w3w~w5 is to contain an equal 

number of a’s and b’s then (since at leas’ one of w2 and w4 is t 
non-null) we must have w2 E a+ and wq E b+. Also, w3 must begin with 

at least k a’s since w4 does not contain any distinguished positions. Now 

consider aP+kcP+k, which we can write as wlw2u for some u E aka*c+. 

Note that u/k = (w3w4w5)/k = ak. It follows that for some wj, w;, and wj 

we have u = wjwiw; and w,w~w~w~w,w~ E L,. But w4 E b+ and w$wiw& E 

a%+. and there are no strings containing both b’s and c’s in L,. c 

Theorem 6.8. The LR language L, = { anOb”, arrl b2” 1 n 3 1 } is not LL. 

Proofi (Figure 16.) Assume that Lz _ is LL(k) and let p be the constant 

obtained for L, from the First Iteration Theorem. Consider the string 

w= apak 1 bz(p+k) in which the first p a’s are distinguished. From theorem 

4.4 we obtain a factorization (c = (w1,w2,w3,w4,w5) of w. Since (p satisfies 

theorem 4.4 we mutt have w2 E a+ and w4 E b+, Zlw,l = lw,,I, and w3 

must begin with at least k a’s. Now consider aP+kObp+k, which may be 

written as w1w2u for some u E aka’Ob*. Note that u/k = (w3wqw5)/k. It 

follows from theorem 4.4 that for some wj, wi and wi we have 

u = wjwiwj, lwzl = IwJ* and w,w~w;w~w,w& E L,. Let #a and #b be the 

k symbols 

“‘2 w4 

Fig. 16. An application of Theorem 4.4 to the language anOb” t anlb2”. 
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number of a’s and b’s in this string. Then p+k+lw,) = #a < p+k+2)w,l = #b, 

so that this &ring contains an illegal number of b’s (since wi contains 

a 0) and cannot beiong to Lz. E 

%!heo~~ 6.4. The LR language L3 = { andane, anfang 
I 

n 3 1 } is not LL. 

Psoofi (Figure 17.) Assume that L3 & LL(k) and let p be the constant 

obtained for L, from the First Iteration Theorem. Consider the string 

W = aPakdaP+ke in which the first p a’s are distinguished. From theorem 

4-4 we obtain a factorization q~ = (w1,w2,w3,w4,w5) of w such that w2 E 

a+, w4 E a+ and w3 E a’da’. As usual we also have (w3w4w5)/k = ak. Now 

consider a P+kfaP+kg, which we may write as w1w2u for some u. It is 

necessarily the case that u/k = (w3w4w5)/k. It follows from theorem 4.4 

*hat for some wj, * wi and wj we have u = wjwiwj, wj E a*fa*, wj ends in 

g and wiw&w& is in L, for every n 3 0. But these strings have the 

form a+da+g, and therefore cannot belong to L,. l 

Theorem 6.6. The LR language L, = { drnbrn+” 1 m a 1, 0 d n z m ) is not 

LL. 

pioofi: Assume that L4 & LL(k) and let p be the constant obtained for 

L4 from the First Iteration Theorem. Without loss of generality assume 

that p 3 k. Consider the string aPbP in which the a’s are distinguished. 

From theorem 4.4 we obtain a factorization cp = (w1,w2,w3,w4,w5) of aPbP 

such that w1w!jw3w~wS is in L, for every n 3 0, from which it follows 

easily that w2 must consist entirely of a’s and w4 entirely of b’s. 

Furthermore, lwzl 4 Iw,l, for otherwise we could obtain strings with more 

a’s than b’s for a suitably large value of n. In particular, wlw3w5 is in 

L4. Let i = Iwzj; we know that i B 1. If w4 contains more than i b’s then 

w1w3w5 will contain more a’s thar b’s, which is not allowed. Therefore 

Iw,l = Iw,l; we have w2 = ai and w, = bi. 

k symbols 

Fig. 17. An application of Theorem 4.4 to the language 
andane + anfang. If this language is LL then it must con- 
tain the strings w~Jv!$~w~&~~~ E a+da+g, which it does 
not. 
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NOW consider the string aPb2P. Since w1w2 E a+ and p B k it must be the 

case that aPbP/(lwlw21+k) = aPb2P/((w1wzl+k). Hence there is a 

factorization (w1,w2,wj.W;,w~) of aPb2P such that w~w!&w~~w; is in L4 for 

every n 3 0, so that w; E b? In particular wlwjw& belongs to L4’ Let &, 

be the number of a’s in wlw$wj. Define #b similarly, and let i = Iw$ 

Since we must have #b d 2#8 we must have (2p--) d 2(p-i). It follows that 

k B 2i > i. Hence w4 * w;. But wqwi = wiw4 = b%., which is a violation of 

condition (3b) of theorem 4.4. Hence L4 cannot be LL. a 

Theorem 6.6. The LR language L, = { ambn 1 m 3 n 3 0 } as not LL. 

Prooit (Figure 18.) Suppose that L, @ LL(k-1) for some k and let p be 

the constant obtained by applying the Second Iteration Theorem to L,. 

Consider the two strings ap+kbk and aP’mkb?‘+k, and distinguish the final p 

b’s in the latter string. According to the Second Iteration Theorem 

aP*kbP+k has a factorization (aP’kw1,w2,w~,wq,w5) such that 

l aP+kwlw%3w$+vS E L, for every n >/ 0 

From this we can deduce that w2w4 E b+ so that for a sufficiently large 

value of n we can obtain a string with more b’s than a’s - a string 

which cannot belong to L,. l 

Note that it is possible to prove theorem 5.6 using the First Iteration 

Theorem and the technique applied in theorem 5.5. 

9 W4” 
Fig. 16. An applicatian of Theorem 4.6 to the language 
ambn , m 3 n 3 0. Because a p+kbp+k is suf f icien tky longer 

than ap+kbk a pumping must occur among the b’s. 

Using L5 we easily obtain th.e following result. 

.1. The LL languages are not closed under right quotient with 

a regular set. 
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Roof: It is easy to see that the language a”b” is an LL language, and 

b* is obviously a regular set. However 

anbn / b* = ( ambn 1 mgnn0 } 

is not an LL language, as we have just seen. l 

The Second Iteration Theorem is by its very nature not applicable to 

LL languages which are prefix-free, that is, to languages L for which 

x E L and xy E L imply y = A. Thus theorem 4.6 cculd not be used to 

prove any of theorems 5.2, 5.3 and 5.4. It is not known, however, 

whether there are languages which satisfy the First Iteration Theorem 

but which the Second Iteration Theorem can show are not LL, nor is it 

known whether one can always establish that a language fails to be LL 

via theorem 4.4 when that is the case. 

L, and L, are from Rosenkrantz and Stearns [22]. L, is taken from 

van Leeuwen [14]. L, is taken from Bordier and Saya [?I. L5 abstracts 

the fatal difficulty, insofar as LL(k) grammars are concerned, with the 

infamous dangling-ELSE introduced by the original ALGOL report [16] 

(and eliminated in the revised report [I?]). Constructs such as 

IF <bexp> THEN IF abexp> THEN <stmt> ELSE <stmt> 

in which the ELSE-clause might plausibly belong to either IF-THEN are 

allowed in PL/l [Zl] and Pascal [ 123. The ambiguity is eustomari\y 

resolved by associating an ELSE with the last previous unmatched THEN. 

It is c’laimed without proof by Aho, Johnson and Ullman [I] that such 

constructs are not LL; applying the argument of theorem 5.6 allows us 

to establish this rigorously. A direct proof such as ours is necessary 

since the family of LL languages is not closed under homomorphisms or 

gsm mappings [22]. 

Theorem 6.8. The dangling IF-THEN-ELSE construct 

any LL language. 

does not appear in 

Since thi s construct is, however, easily handled by a recursive descent 

compiler operating without backup, it fo!\ows that the LL(k) languages 

form -a proper subset of the family of languages which can be compiled 

by this technique, and are therefore noi a perfect model of this family. 

Theorems 4.4 and 4.6 provide a powerful and reasonably general 

technique for establishing that languages are not. LL(k) when that is the 
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case. Previous results of this kind ([Y], [14] and [22]) have generally 

been based on more complicated and less satisfying ad hoc arguments. 

We leave open the question of whether satisfying the conditions of 

theorem 4.4 is sufficient to ensure that a language is LL(k), although we 

do not believe that to be the case. The task of characterizing a family 

of languages by means of an iteration theorem appears, in general, to 

be a difficult one. Although a number of iteration theorems ha\_ been 

established for several language classes, in only one case is the result 

known to be sufficient as well as necessary [24]. 

Finally, our arguments illustrate the advantages to be obtained from 

the careful analysis of derivation trees. 

A stronger version of theorem 4.4 is presented here than was 

reported in [4], and the author is indebted to Bill Ogden, who also 

suggested the proof of theorem 5.5, for the improvement. Theorem 4.6 

was inspired by an observation of Jan van Leeuwen’s [ 141. The 

suggestions and observations of Kellogg Booth and especially Professcr 

Michael Harrison are keenly appreciated. The author is also very grateful 

for Kimberly King’s meticulous and invaluable refereeing. 
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