TWO ITERATION THEOREMS FOR THE LL(k) LANGUAGES*

John C. BEATTY
Dept. of Computer Science, Univ. of Waterloo, Waterloo, Ontario N2L 3G1, Canada, and Graphics Group, Lawrence Livermore Laboratory, Livermore, California 94550, USA

Communicated by M. Harrison

Received August 1978
Revised August 1979

Abstract

Abatract. The structure of derivation trees over an $\mathrm{LL}(k)$ grammar is explored and a property of these trees obtained which is shown to characterize the $\operatorname{LL}(k)$ grammars. This characterization, called the LL(k) Left Part Theorem, makes it possible to establish a pair of iteration theorems for the $L L(k)$ languages. These theorems provide a general and powerful method of showing that a language is not $L L(k)$ when that is the case. They thus provide for the first time a flexible tool with which to explore the structure of the $\mathrm{LL}(k)$ languages and with which to discriminate between the $\mathrm{LL}(k)$ and $\mathrm{LR}(k)$ language classes.

Examples are given of $\operatorname{LR}(k)$ languages which, for various reasons, fail to be $\mathrm{LL}(k)$. Easy and rigorous proofs to this effect are given using our $\mathrm{LL}(k)$ iteration theorems. In particular, it is proven that the dangling-ELSE construct allowed in PL/I and Pascal cannot be generated by any LL(k) grammar. We also give a new and straightforward proof based on the $\mathrm{LL}(k)$ Left Part Theorem that every $\mathrm{LL}(k)$ grammar is $\operatorname{LR}(k)$.

1. Introduction

The classical pumping lemma [3] and Ogden's lemma [20] are among the most powerful tools we possess for proving that languages are not context-free. Hence one goal of recent research has been to obtain analogous theorems for subclasses of the context-free languages. Thus Ogden [19] gives an iteration theorem for the deterministic context-free languages, Harrison and Havel have established an iteration theorem for

[^0]the family of strict deterministic languages [11] which is also extendible to the deterministic context-free languages, anc. Boasson has established an iteration theorem for the one-counter languages [6]. More recently King has obtained iteration theorems for the simple deterministic languages and the strict deterministic languages of degree n [13]. Such results help elucidate the structure of languages belonging to these families, and provide us with a convenient means of distinguishing between context-free languages which are and are not of a given class.

We establish here a property of $L(k)$ derivation trees which is analogous to the left part properties of strict deterministic grammars [11] and left part grammars [18]. We show that our property characterizes the $L L(k)$ grammars and use it to establish two iteration theorems for the $L L(k)$ languages. These theorems, in turn, enable us to prove simply and rigorously that a variety of $\operatorname{LR}(k)$ languages are not $\mathrm{LL}(k)$. In particular, the ALGOL-60 dangling IF-THEN-ELSE construct allowed in Pascal and PL/I cannot be generated by an $\mathrm{LL}(k)$ grarnmar. We are also able to give a new and straightforward proof that every $L L(k)$ grammar is $\operatorname{LR}(k)$.

The present paper is organized as follows. In the remainder of this section we recall various commonly known definitions and theorems which we will need. In section 2 we will semi-formalize the notion of a derivation tree, and in the spirit of [11] will establish various useful properties of such trees. Thus equipped we will proceed in section 3 to prove a left part theorem for $L L(k)$ grammars which enables us to establish our iteration theorems in section 4. Finally, in section 5 we present some applications of our work.

A context-free grammar ($c f g$) G is a 4-tuple (N, Σ, P, S). N is a finite, non-empty set of nonterminals, or variables, denoted by upper case Roman characters such as A and B. Σ is a finite, non-empty set of terminals, denoted by lower case Roman characters from the beginning of the alphabet, such as a and b. The vocabulary of G, written V, is $N \cup \Sigma$. P is a finite subset of $N \times V^{*}$; an element (A, α) of P is called a production or rule and is written $\mathrm{A} \rightarrow \alpha . \mathrm{S}$ is a special variable called the start or goal symbol. For any variable A we call $A \rightarrow \Lambda$ a Λ-rule, where Λ is the empty string, and say that G is Λ-free iff G contains no Λ-rules.

We write $\alpha \Rightarrow \beta$ (α derives β in one step) iff there exists a variable A $\in \mathrm{N}$ and strings $\gamma_{1}, \gamma_{2}, \delta \in \mathrm{~V}^{*}$ such that $\alpha=\gamma_{1} \mathrm{~A} \gamma_{2}, \beta=\gamma_{1} \delta \gamma_{2}$ and
$A \rightarrow \delta$ is in P. If $\gamma_{1} \in \Sigma^{*}$ then we may write $\alpha \Rightarrow_{L} \beta ; \Rightarrow^{+}$and \Rightarrow_{L}^{+}are the transitive closures of \Rightarrow and \Rightarrow_{L}, while \Rightarrow^{*} and \Rightarrow_{L}^{*} are their reflexive transitive closures. If $\alpha \Rightarrow^{*} \beta$ then we say that α derives β. If $\alpha \Rightarrow_{\mathrm{L}}^{*} \beta$ then the derivation is leftmost. By \Rightarrow^{n} we mean a derivation of exactly n steps, for any $n \geqslant 0$, while \Rightarrow_{L}^{n} denotes a leftmost derivation of exactly n steps. The relations $\Rightarrow_{R}, \Rightarrow_{R}^{+}$and \Rightarrow_{R}^{*}, etc., are similarly defined. If we use a Greek letter such as π (for example: $\Rightarrow_{\mathrm{L}}^{\pi}$) which is constrained to belong to P^{*} then π represents the sequence of rules (possibly null) by which the derivation proceeds.

We will say that an occurrence of the symbol $X \in \Sigma$ is exposed at the $(n+1)$ st step of the leftmost derivation

$$
\mathrm{S} \Rightarrow_{\mathrm{L}}^{\mathrm{n}} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta \gamma
$$

if X appears somewhere in $\beta \gamma$ and there are no variables anywhere to the left of X in $\beta \gamma$.

The context-free language (cfl) $\mathscr{L}(\mathrm{G})$ generated by G is exactly the set of terminal strings which can se derived from the start symbol S. Similarly, if $\alpha \in \mathrm{V}^{*}$ then $\mathscr{L}_{(}^{*} \alpha$) is the set of terminal strings which can be derived from α. The left sentential forms of G are exactly those strings of terminals and nonterminals which can be generated from S by a leftmost derivation.

G is said to be unambiguous if no string in $\mathscr{L}(\mathrm{G})$ has more than one distinct leftmost derivation. Otherwise G is said to be ambiguous.

A variable A of G is said to be reduced iff A derives at least one terminal string and itself appears in some string of terminals and nonterminals which can be derived from S. G is said to be reduced iff either the variables of G are all reduced or $P=\varnothing$.
A variable A of G is said to be left recursive iff $A \Rightarrow^{+} A \beta$ for some string $\beta \in V^{*}$. G is left recursive iff some variable A of G is left recursive.

If w is a string and k a non-negative integer then w / k is the first k symbols of w if $|w|>k$ and is w itself if $|w| \leqslant k$, where $|w|$ is the length of w. More generally, for a cig $G=(N, \Sigma, P, S)$ we define

$$
\begin{aligned}
\operatorname{finsit}_{k}(\beta)=\{ & w \in \Sigma^{*} \mid \\
& \left(|w| \leqslant k \text { and } \beta \Rightarrow^{*} w\right) \text { or } \\
& \left.\left(|w|=k \text { and } \beta \Rightarrow^{*} \text { wy for some } y \in \Sigma^{+}\right)\right\}
\end{aligned}
$$

for any $\beta \in V^{*}$. first t_{k} is extended to sets in the usual way.

Next we review pertinent facts about $\mathrm{LL}(k)$ grammars.
Definition 1.1. A cfg $G=(N, \Sigma, P, S)$ is $L L(k)$ iff for any $A \in N ; w, x, y \in$ $\Sigma^{*} ; \beta, \beta^{\prime}, \gamma \in \mathrm{V}^{*}$; and any two derivations
$\mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wx}$
$\mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta^{\prime} \gamma \Rightarrow_{\mathrm{L}}^{*}$ wy
for which $x / k=y / k$ we necessarily have $\beta=\beta^{\prime}$. A language is $L L(k)$ iff it is generated by an $\mathrm{LL}(k)$ grammar.

The following results are well-known or easily proven [5]. They will be used subsequently and are stated here for convenience.

Theorem 1.2. [22] No $L L(k)$ grammar is ambiguous.
Theorem 1.8. [22] No $\mathrm{LL}(k)$ grammar is left recursive.
Theorem 1.4. Let $G=(N, L, P, S)$ be a cfg. G is an $L L(k)$ grammar iff for any $A \in N ; w, x, y \in \Sigma^{*} ; \beta, \beta^{\prime}, \gamma, \gamma^{\prime} \in \mathrm{V}^{*} ;$ and any two derivations
$\mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wx}$
$\mathrm{S} \Rightarrow_{\mathrm{L}}^{*} w A \gamma^{\prime} \Rightarrow_{\mathrm{L}} \mathrm{w} \beta^{\prime} \gamma^{\prime} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wy}$
for which $x / k=y / k$ we necessarily have $\beta=\beta^{\prime}$.
Theorem 1.4 allows the right context γ of A in the two derivations of definition 1.1 to differ. Definition 1.1 is taken from Aho and Ullman [2]; theorem 1.4 is actually the LL(k) definition used by Rosenkrantz and Stearns [22].

Theorem 1.5. [2] Let $G=(N, \Sigma, P, S)$ be a cfg. G is an $L L(k)$ grammar iff given any $A \in N, W \in \Sigma^{*}$, and $\gamma \in V^{*}$ such that $S \Rightarrow_{L}^{*} w A \gamma$, we have first $_{\mathbf{k}}(\beta \gamma) \cap \operatorname{finst}_{\mathrm{k}}\left(\beta^{\prime} \gamma\right)=\varnothing$
for every distinct pair of rules $A \rightarrow \beta$ and $A \rightarrow \beta^{\prime}$ in P.
Thoorem 1.6. Let $G=(N, \Sigma, P, S)$ be a cfg. G is an $L L(k)$ grammar iff given
(1) $w \in \operatorname{finst}_{k}\left(\Sigma^{*}\right)$
(2) $x \in \Sigma^{*}$
(3) $A \in N$
then there exists at most one rule $A \rightarrow \beta$ in P such that
(4) $S \Rightarrow{ }^{*} \mathrm{XAW}_{2}$
(5) $A \Rightarrow \beta \Rightarrow{ }^{*} W_{1}$
(6) $\left(w_{1} w_{2}\right) / k=w^{r}$
for any $w_{1}, w_{2} \in \Sigma^{*}$.

This was the definition of $\operatorname{LL}(k)$ grammars used by Lewis and Stearns [15].

The following special version of the $L L(k)$ definition will be useful in section 3.

Theorem 1.7. Let $G=(N, L, P, S)$ be a reduced cfg. G is an $L L(k)$ grammar iff for any $A \in N ; w, x, y \in \Sigma^{*} ; \beta, \beta^{\prime}, \gamma \in V^{*}$; and any two derivations

$$
\begin{aligned}
& S \Rightarrow_{\mathrm{L}}^{\mathrm{n}} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wx} \\
& \mathrm{~S} \Rightarrow_{\mathrm{L}}^{\mathrm{n}} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta^{\prime} \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wy}
\end{aligned}
$$

for which $x / k=y / k$ we necessarily have $\beta=\beta^{\prime}$. (Notice that wA γ is derived in n steps in both derivations.)

Proof: A proof in the iorward direction is trivial. To establish the reverse direction, suppose that G is not $L L(k)$, but that the existence of two such derivations necessarily forces $\beta=\beta^{\prime}$. Since G is not $L L(k)$ it follows from theorem 1.5 that there exist strings $A \in N ; w \in \Sigma^{*} ; \beta, \beta^{\prime}$, $\gamma \in \mathrm{V}^{*}$; such that $\mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \gamma$ and

$$
\begin{equation*}
\operatorname{first}_{\mathbf{k}}(\beta \gamma) \cap \text { first }_{\mathbf{k}}\left(\beta^{\prime} \gamma\right) \neq \varnothing \tag{1}
\end{equation*}
$$

for some distinct pair of rules $A \rightarrow \beta$ and $A \rightarrow \beta^{\prime}$ ir P. Let x and y be strings in $\mathscr{L}(\beta \gamma)$ and $\mathscr{L}\left(\beta^{\prime} \gamma\right)$, respectively, such that $\mathrm{x} / \mathrm{k}=\mathrm{y} / \mathrm{k}$ and suppose that S derives wA $\begin{aligned} & \text { leftmost in } n \text { steps. Then }\end{aligned}$

$$
\begin{aligned}
& \mathrm{S} \Rightarrow_{\mathrm{L}}^{\mathrm{n}} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wx} \\
& \mathrm{~S} \Rightarrow_{\mathrm{L}}^{\mathrm{n}} \mathrm{wA} \gamma \Rightarrow_{\mathrm{L}} \mathrm{w} \beta^{\prime} \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{wy}
\end{aligned}
$$

where $x / k=y / k$. By hypothesis we must have $\beta=\beta^{\prime}$, which is a contradiction. Hence G must be $\mathrm{LL}(k)$.

Theorem 1.8. Let $G=(N, \Sigma, P, S)$ be a reduced $L L(k)$ grammar. Let $G_{A}=(N, \Sigma, P, A)$ be the grammar formed from G by changing the start symbol from S to A, for any variable A of G. Then G_{A} is also an $L L(k)$ grammar.
Proot: Suppose that G_{A} were not $L L(k)$. Then for some $x, y_{1}, y_{2} \in \Sigma^{*}$; $\beta, \beta^{\prime}, \gamma \in \mathrm{V}^{*} ; \mathrm{E} \in \mathrm{N}$; there must exist two derivations

$$
\begin{aligned}
& \mathrm{A} \Rightarrow_{\mathrm{L}}^{*} \mathrm{xB} \gamma \Rightarrow_{\mathrm{L}} \mathrm{x} \beta \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{xy}_{1} \\
& \mathrm{~A} \Rightarrow_{\mathrm{L}}^{*} \mathrm{xB} \gamma \Rightarrow_{\mathrm{L}} \mathrm{x} \beta^{\prime} \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{xy}_{2}
\end{aligned}
$$

in G_{A} witi: $y_{1} / k=y_{2} / k$ and $\beta \neq \beta^{\prime}$. But this is also a derivation in G. Since G is reduced, there also exists in G a derivation sequence $\mathrm{S} \Rightarrow_{\mathrm{L}}^{*}$ wA δ for some $\mathrm{w} \in \Sigma^{*}$ and $\delta \in \mathrm{V}^{*}$. We obtain the following
derivations in G :

$$
\begin{aligned}
& \mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \delta \Rightarrow_{\mathrm{L}}^{*} \mathrm{wxB} \gamma \delta \Rightarrow_{\mathrm{L}} \mathrm{wx} \beta \gamma \delta \Rightarrow_{\mathrm{L}}^{*} w x y_{1} \mathrm{z} \\
& \mathrm{~S} \Rightarrow \Rightarrow_{\mathrm{L}}^{*} \mathrm{wA} \delta \Rightarrow \Rightarrow_{\mathrm{L}}^{*} \mathrm{wxB} \gamma \delta \Rightarrow_{\mathrm{L}} \mathrm{wx} \beta^{\prime} \gamma \delta \Rightarrow_{\mathrm{L}}^{*} w x y_{2^{2}} \mathrm{z}
\end{aligned}
$$

where z is any string derived from δ. Recall that $y_{1} / k=y_{2} / k$. If $\left|y_{1}\right|<k$ or $\left|y_{2}\right|<k$ then we must have $y_{1}=y_{2}$, in which case $\left(y_{1} z\right) / k=\left(y_{2} z\right) / k$. If both y_{1} and y_{2} are of length k or greater then again $\left(y_{1} z\right) / k=\left(y_{2} z\right) / k$. Since G is $L L(k)$, we must therefore have $\beta=\beta^{\prime}$, which is a contradiction. Therefore G_{A} must also be $\mathrm{LL}(k)$.

We also need to introduce $L R(k)$ grammars. We use the definition suggested by Geller and Harrison [10].

Definition 1.9. A cfg $G=(N, \Sigma, P, S)$ is $L R(k)$ for some $k \geqslant 0$ iff $S \Rightarrow_{R}^{+} S$ is impossible in G and for any $w, w^{\prime}, x \in \Sigma^{*} ; \alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in V^{*} ; A, A^{\prime} \in N$; and derivations

$$
\begin{aligned}
& \mathrm{S} \Rightarrow_{\mathrm{R}}^{*} \alpha \mathrm{AW} \Rightarrow_{\mathrm{R}} \alpha \beta \mathrm{~W} \\
& \mathrm{~S} \Rightarrow_{\mathrm{R}}^{*} \alpha^{\prime} \mathrm{A}^{\prime} \mathrm{x} \Rightarrow_{\mathrm{R}} \alpha^{\prime} \beta^{\prime} \mathrm{x}=\alpha \beta \mathrm{W}^{\prime}
\end{aligned}
$$

if $w / k=w^{\prime} / k$ then $(A \rightarrow \beta,|\alpha \beta|)=\left(A^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right)$.

2. Trees

Following Harrison and Havel [11] we semi-formally develop the notion of trees, particularly derivation trees, and their properties. Our presentation is a compromise between the demands of rigor and a desire not to sacrifice entirely comprehensibility and intuition. To this end we will occasionally make informal use of pictures.

For our purposes a tree T is a directed acyclic graph defined by a pair of sets (ϑ, \mathscr{E}), where ϑ is a set of nodes and \mathscr{E} is a set of edges $(\mathrm{x}, \mathrm{y}) \in V \times V$, in which all nodes save one (the root node of τ, written $r t n(T)$) have exactly one entering edge; the root node has no entering edges. For example, the tree in figure 1 is defined by

$$
\left(\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\},\left\{\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\}\right)
$$

The edges (x, y) in \mathscr{E} define the immediate descendency relation Γ; x is a parent of y and y is a child of x. In figure 1 we have $x_{0} \Gamma x_{1}$ but not $x_{1} \Gamma x_{2}$. The reflexive transitive closure Γ^{*} of Γ is called the descendancy relation. There is a path from node x to node y iff $\mathrm{x} \Gamma^{*} \mathrm{y}$. Thus in figure 1 there is a path from x_{0} to x_{3} since $x_{0} \Gamma^{*} x_{3}$, but no path from x_{3} to x_{1}. If $r \operatorname{tn}\left(\tau^{J}\right) \Gamma^{i} y$ then y is said to be at depth i in T. The height of T is the length of a longest path in T; it is thus equal to the depth of a deepest node.

A node x is internal iff there exists a node y such that $x \Gamma y$. Otherwise x is a leaf, and has no children.

We will need a left to right ordering of the nodes in a tree. For this reason we assume that \mathscr{E} is actually a sequence of edges so that we may define an additional relation π on the nodes of a tree in the following way. If the r edges leaving an arbitrary node x are listed in \mathscr{E} in the order $\left(x, y_{1}\right), \cdots,\left(x, y_{r}\right)$ then $y_{1} \sqcap y_{2} \sqcap \cdots \sqcap y_{r}$ anol the edges will be drawn left to right according to this ordering, as in figure 2. Furthermore, if $p \Gamma y$ and there does not exist any node x such that $x \cap y$ then $p \Gamma_{L} y$ (y is a leftmost child of p). The relation Γ_{A} is defined similarly. Finally, we write $x L y$ iff $(x, y) \in\left(\Gamma_{R}^{-1}\right)^{*} \cap\left(\Gamma_{R}\right)^{*}$, so that $x L y$ iff there are no nodes between x and y. The reflexive transitive closure L^{*} of L then defines the notion of left to right order in T. (The relations Γ and L are identical to the relations represented by these symbols in Harrison and Havel [11].) If we list the leaves l_{1}, \cdots, l_{r} of T in left to right order, which is to say that

$$
l_{1}\left\llcornerl _ { 2 } \left\llcorner\cdots \left\llcorner l_{\mathrm{r}}\right.\right.\right.
$$

then we obtain the left to right sequence of nodes

$$
\operatorname{leaves}(T)=\left(l_{1}, l_{2}, \cdots, l_{\mathrm{r}}\right)
$$

Let us adopt the convention that if we list the nodes in a subtree $T^{\prime \prime}$ of \mathcal{T} then edges between those nodes in \mathcal{T} are implicitly the edges of \mathcal{T}^{\prime}

Fig. 1.

Fig. 2.
(the induced subtree). Then for any internal node x of the tree \mathcal{T} the set $\{y \in T \mid x=y$ or $x \Gamma y\}$ defines the elementary subtres of T with root x. Also, if x is a node of T then we define T_{x} to be the largest induced subtree of T whose root is x. More precisely,

$$
\boldsymbol{T}_{x}=\left\{y \in \mathcal{T} \mid x \Gamma^{*} y\right\}
$$

Since our trees represent context-free derivations we will want each node to represent a grammar symbol or, perhaps, Λ. Furthermore, it is often desirable to distinguish between a node and the symbol it
represents since several nodes may represent the same grammar symbol. Hence we define a labeled tree to be a tree $\boldsymbol{T}=(\vartheta, \mathcal{E})$ together with a labeling function λ from ϑ into a finite set \mathscr{L} of labels such that $\vartheta \cap \mathscr{L}=\varnothing$. The labeling function λ is then extended to sequences of nodes in the obvious way; for a sequence (x_{0}, \cdots, x_{n}) of nodes we have $\lambda\left(x_{0}, \cdots, x_{n}\right)=\lambda\left(x_{0}\right) \cdots \lambda\left(x_{n}\right)$. Our labels will always be drawn from some set $V_{h}=V \cup\{\Lambda\}$, where V is the vocabulary of some cfg. Of particular interest are the root label and frontier of T :

$$
\begin{aligned}
\operatorname{rtt}(\mathcal{T}) & =\lambda(\operatorname{rtn}(T)) \\
\operatorname{fr}(T) & =\lambda(\operatorname{leaves}(T))
\end{aligned}
$$

Let $G=(N, \Sigma, P, S)$ be a context-free grammar, and let T be a labeled tree for which the labels are symbols from V_{Λ}. T is said to be a grammatical tree iff $\mathrm{f}_{n}(T) \in \Sigma^{*}$ and either
T is a trivial tree consisting of a single labeled node or
for every internal node x in T, if y_{1}, \cdots, y_{r} are all of x 's
children in left to right order then $\lambda(x) \rightarrow \lambda\left(y_{1}\right) \cdots \lambda\left(y_{r}\right)$ is a rule
of G and $\lambda\left(y_{i}\right)=\Lambda$ is allowed only if $1=i=r$.
Leaves which are labeled with terminals are referred to as terminal nodes. Leaves which are labeled with Λ are called Λ-nodes. Observe that a node x is internal iff $\lambda(x) \in N$. A grammatical tree T is said to be a derivation tree iff $\operatorname{rth}(\mathcal{T})=\mathrm{S}$.

Figure 3, for example, displays a grammatical tree over the context-free grammar $S \rightarrow$ aSbS $\| \Lambda$. Occasionally we will omit the names of nodes in a grammatical tree, leaving only the labels, in which case the tree of figure 3 would appear as in figure 4.

The sentential forms which appear in a derivation are embedded in a natural way in the grammatical tree representing that derivation. We represent this embedding by means of cross sections (CS's) and canonical cross sections, which we define inductively for a tree \boldsymbol{T} by the following:
(1) $\eta=\left(x_{0}\right)$, where $x_{0}=r \operatorname{tn}(T)$, is a cross section at level 0 .
(2) Let $\eta=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{k}}, \cdots, \mathrm{x}_{\mathrm{m}}\right)$ be a cross sec ion of level l and let x_{k} be an internal node of T. If y_{1}, \cdots, y_{r} are all the children of x_{k} in left to right order then

$$
\eta^{\prime}=\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{y}_{1}, \cdots, \mathrm{y}_{\mathbf{r}}, \mathrm{x}_{\mathrm{k}+1}, \cdots, \mathrm{x}_{\mathrm{m}}\right)
$$

is a cross section of level $\ell+1$.
(x_{0}) is also said to be a left canonical cross section (LCCS) of \boldsymbol{T}. If η is an LCCS of \mathcal{T} and x_{k}, the node which is replaced, is the leftmost internal node of η, then η^{\prime} is also a left canonical cross section of τ. Right canonical cross sections ($R C C S^{\prime}$ s) are defined analogously. For readability we may sometimes write ($\left.\begin{array}{lllll}x_{1} & x_{2} & \cdots & x_{m}\end{array}\right)$ instead of ($\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{m}}$).

For example, in the grammatical tree of figure $3\left(\mathrm{x}_{1} \mathrm{x}_{5} \mathrm{x}_{3} \mathrm{x}_{4}\right)$ is an LCCS, ($\left.x_{1} x_{2} x_{3} x_{6}\right)$ is a CS but not an LCCS and ($\left.x_{1} x_{2} x_{0} x_{4}\right)$ is neither an LCCS nor a CS.

The following properties of cross sections are intuitive. Consequently we state them without proof, though in an order convenient for rigorous development. More detail may be found in [5].

Fact 9.1. Let $\eta=\left(x_{1}, \cdots, x_{\mathrm{rn}}\right)$ be a cross section of some tree \boldsymbol{T}. Then $\mathrm{x}_{i}\left\llcorner\mathrm{x}_{i+1}, 1 \leqslant i<\mathrm{m}\right.$.

Fig. 3. A grammatical tree in which we distinguish nodes and labels.

Fig. 4. A grammatical tree in which nodes and labels are not distinguished.

Fact 2.2. No node of any tree T appears more than once in any one cross section of \boldsymbol{T}.

Fact 2.8. [11] No two distinct LCCS's of a grammatical tree can be of the same level.

Fact 2.4. The level associated with any cross section is unique.
Fect 2.6. Let \mathfrak{T} be a tree and let \mathfrak{n} be a node in \boldsymbol{T}. Then \mathfrak{n} appears in at least one LCCS (respectively CS) ri T. Moreover, we may assume that there are no internal nodes to the left (respectively to the leit and right) of \mathfrak{n} in this cross section.

Fact 2.6. Let T be a tree. Then leaves(\mathcal{T}) is an LCCS of T.

Next we delineate the relationship between cross sections and sentential forms. First we describe how to pass from cross sections to derivations.

Deot 2.7. Let $G=(N, \Sigma, P, S)$ be a cfg and let T be a grammatical tree over G. If η is a cross section of τ at level ℓ then $\operatorname{rtt}(\tau) \Rightarrow \lambda(\eta)$.

We have a stronger result for canonical cross sections.
Feot 2.8. Let $G=(N, L, P, S)$ be $a \operatorname{cfg}$ and let T be a grammatical tree over G. If η and η^{\prime} are LCCS's of level l and $l+i$, for any l and $i \geqslant 0$. then $\lambda(\eta) \Rightarrow_{\mathrm{L}}^{i} \lambda\left(\eta^{\prime}\right)$. If η and η^{\prime} are instead RCCS's then $\lambda(\eta) \Rightarrow_{\mathrm{R}}^{i} \lambda\left(\eta^{\prime}\right)$.

This result does not hold for cross sections in general. In figure 5 the cross secion

$$
\eta=\left(\begin{array}{llllllll}
x_{1} & x_{5} & x_{13} & x_{7} & x_{0} & x_{3} & x_{4}
\end{array}\right)
$$

Fig. 5.

is at level 3 and the cross section

$$
\eta^{\prime}=\left(\begin{array}{lllllllll}
\mathrm{x}_{1} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7} & \mathrm{x}_{14} & \mathrm{x}_{3} & \mathrm{x}_{9} & \mathrm{x}_{15} & \mathrm{x}_{11}
\end{array} \mathrm{x}_{16}\right)
$$

is at level 6, but $\lambda(\eta)=$ aabSbS cannot possibly derive $\lambda\left(\eta^{\prime}\right)=$ aaSbbab, the S in aaSbbab already having been erased in aabSbs.

Fact 2.8. [11] Let T be a derivation tree over some unambiguous cfg and let η and θ be two LCCS's (or RCCS's) in T. If $\lambda(\eta)=\lambda(\theta)$ then $\eta=\theta$.

We pass from derivations to cross sections via the next two results.
等ant 8.10. Let $G=(N, L, P, S)$ be a cfg and let $A \Rightarrow^{i} \alpha \Rightarrow^{*} w$, where A is a variable, $\alpha \in V^{*}$ and W is a string of terminals. Then there exists a grammatical tree T containing a cross section η of level i such that
$\operatorname{rtl}(\tau)=\mathrm{A}, \operatorname{fr}(\tau)=\mathrm{w}$ and $\lambda(\eta)=\alpha$. Moreover, if the derivation is leftmost or rightmost then η is respectively a left or right canonical cross section (f \boldsymbol{T}.

If we are dealing with an unambiguous grammar then we can prove a stronger result.

Fast 8.11. Let $G=(N, \Sigma, P, S)$ be an unambiguous cfg and T a grammatical tree over G. If $n t(\tau) \Rightarrow^{i} \alpha \Rightarrow^{*} f_{n}(\tau)$, where $\alpha \in V^{*}$, then there exists a cross section η at level i in \boldsymbol{T} such that $\lambda(\eta)=\alpha$. Moreover, if the derivation is leftmost or rightmost then η is respectively a left or right canonical cross section of \boldsymbol{T}.

In developing our arguments we will need to disassemble and reassemble derivation trees and cross sections in a highly specialized manner. Hence we next define the tree fragments about which we will be speaking.

Definition 8.12. Let T be a grammatical tree such that $|f(T)|=m$. Let. y_{1}, \cdots, y_{n} be a complete left to right sequence of the terminal nodes of \boldsymbol{T}. If n lies in the range $1 \leqslant n \leqslant m$ then

$$
\begin{aligned}
& {[r]_{\mathcal{T}}=\left\{x \in \mathcal{T} \mid x L^{*} \Gamma^{*} y_{n}\right\}} \\
& \{r\}_{\mathcal{T}}=[n]_{\mathcal{T}} \cup\left\{x \in \mathcal{T} \mid \exists b \in \mathcal{T} \text { s.t. } \operatorname{rtn}(\mathbb{T}) \Gamma^{*} b \Gamma^{*} y_{n} \text { and } b \Gamma^{+} x\right\}
\end{aligned}
$$

$[0]_{\mathcal{T}}=\left\{{ }^{[}\right\}_{\mathcal{T}}=(\varnothing, \varnothing)$ and for $n>m,[n]_{\mathcal{T}}=\{n\}_{\mathcal{T}}=\boldsymbol{T} .[n]_{\mathcal{T}}$ is called a left $[n]$-pars of \boldsymbol{T} and $\{n\} \boldsymbol{T}$ is called a left $\{n\}$-part of \boldsymbol{T}. Thus if p is the root-leai path to the nth terminal node (counting from the left), then $[n]_{\mathcal{T}}$ consists of those nodes which are on or left of p, while ${ }^{\{n\}_{\boldsymbol{T}}}$ consists of those nodes of \boldsymbol{T} which are left of p, or on p, or are right of p and have a parent on p. For example, in figures 7 and 8 we see in bold the left [4]-part and left \{4\}-part of the tree in figure 6. (Our left []-parts correspond to the left parts defined by Harrison and Havel [11].)

Next we establish those properties of left parts which will be needed later.

Theorem 2.18. [11] Let η be an RCCS of the grammatical tree \boldsymbol{T} and let n the a positive integer. The restriction of η to $[n]_{\mathcal{F}}$ is an RCCS of $[\mathrm{n}]_{\mathrm{T}}$.

Theorem 8.14. Let η be an LCCS of the grammatical tree T at level l and let n be a positive integer. If η contains an internai node of $\{n\} \boldsymbol{T}$ then η is an LCCS of level l in $\{n\}_{\mathrm{r}}$ as well. (Refer to figures 9 and 10.)

Proof: The proof proceeds by means of ani induction on l.
Basis $(l=0)$: Let $x_{0}=r \operatorname{tn}(\tau)$. We must have $\eta=\left(x_{0}\right)$, since this is the only LCCS of \boldsymbol{T} having level 0 . But then η is, by definition, an LCCS of $\{n\}$ f for every $n \geqslant 1$.

Induction Step: We assume that the theorem is true for LCCS's of T having level l or less and extend the theorem to LCCS's of T having level $l+1$. Let η be such an LCCS of level $\ell+1$ in T and let θ be the LCCS of level ℓ in T from which it is obtained. Let

$$
\begin{aligned}
& \theta=\left(\begin{array}{lllllll}
z_{1} & \cdots & z_{g-1} & z_{g} & z_{g+1} & \cdots & z_{r}
\end{array}\right) \\
& \eta=\left(\begin{array}{lllllllll}
z_{1} & \cdots & z_{g-1} & x_{1} & \cdots & x_{s} & z_{g+1} & \cdots & z_{r}
\end{array}\right)
\end{aligned}
$$

so that z_{g} is the leftmost internal node of θ with respect to T .
The leftmost internal node of η with respect to T is an internal node of $\{n\}_{\boldsymbol{T}}$ as well since by hypothesis η contains at least one internal node of $\{\mathbf{n}\}_{\boldsymbol{T}}$, and by definition internal nodes of \boldsymbol{T} which are left of such a node must be internal nodes of $\{n\}_{\mathcal{T}}$ also. It follows that if one of

Fig. 6. The derivation tree \boldsymbol{T} for id * id id, id), over the indicated grammar.

Fig. 9, illustrating theorem 2.14. The LCCS η of T contains a node (circled above) which is internal to ${ }^{\mathrm{n}} \boldsymbol{\eta} \boldsymbol{T}$. Consequently η is an LCCS of $\left.{ }^{\{n\}}\right\}$.

Fig. 10. The nodes of η which belong to $\{\mathrm{n}\}_{\mathrm{T}}$ are circled above right. None is an internal node of $\{n\}\}$, and it is evident that η is not an LCCS of $\{n\}$.
x_{1}, \cdots, x_{s} is the leftmost internal node of η in \boldsymbol{T} then its parent z_{g} belongs by definition to $\{\mathrm{n}\} \boldsymbol{\gamma}$. If the leftmost internal node of η in \boldsymbol{T} is instead one of z_{g+1}, \cdots, z_{r} then since z_{g} is left of that node $i_{i} \theta z_{g}$ again must be an internal node of $\{n\}\}$. In either case θ is an $120 C S$ of T at level ℓ which contains the internal node z_{g} of $\{n\} \mathcal{T}$. It follows from the induction hypothesis that θ is an LCCS of $\{n\}\}_{T}$ at level l. By definition, then, η is an LCCS of $\{n\}$ r having level $\ell+1$, as desired.

If η does not contain an internal node of $\{n\}_{\boldsymbol{T}}$ then it need not be an LCCS of $\{\mathrm{n}\}$ 个. Such a situation is depicted in figure 10.

Theorem 2.15. [11] Let T be a grammatical tree with respect to some $\operatorname{cfg} G$, let n be a positive integer, and let $s=|f r(\tau)|$. Let $\eta=\left(x_{1} \cdots x_{k}\right)$ be an RCCS in $[n] \mathcal{T}$ and let y_{r}, \cdots, y_{s} be all the leaves of τ which are right of x_{k}; accordingly we assume $x_{k} L y_{r} L \cdots \dot{L}_{s}$, Then the sequence

$$
\theta=\left(x_{1} \cdots x_{k} y_{r} \cdots y_{s}\right)
$$

is an RCCS of T.

Theorym 2.16. Let T be a grammatical tree and n a positive integer. If η is an LCCS of $\{n\}$ er then η is an LCCS of τ as well.

Proot: The proof is by induction on the level l of η.
Basis ($l=0$): It must be the case that η is the root node, which is an LCCS of T by definition.
Induction Step: Assume that the theorem holds for all LCCS's of level ℓ or less. Let θ be an LCCS of $\{n\} \boldsymbol{r}$ at level $\ell+1$ and let η be the LCCS of $\{n\}$? ${ }^{\prime}$ at level l from which it is formed. By the induction hypothesis η is an LCCS of T. By definition, then, θ is an LCCS of T. -

We will need the following special case of theorem 2.16.
Theorem 2.17. Let T a derivation tree and let n be a positive integer. Then leaves $(\{n\} r)$ is an LCCS of T.

Proot: According to fact 2.6 leaves $\left(\{n\}_{T}\right)$ is an LCCS of $\{n\}$. It then follows from theorem 2.16 that leaves $(\{n\} \mathcal{T})$ is an LCCS of T as well.

Finally, we will need to define what it means for trees, or parts of trees, to be equal.

Definition 2.18. Two labeled trees \mathcal{T} and \mathcal{T}^{\prime} are said to be structurally isomorphic, written $\mathcal{T} \approx \mathcal{T}^{\prime}$, iff there exists a bijection $\boldsymbol{T} \rightarrow \mathcal{T}^{\prime}: x \rightarrow \mathrm{x}^{\prime}$ between the nodes of \mathcal{T} and \mathcal{T}^{\prime} such that

- $x \Gamma y$ iff $x^{\prime} r^{\prime} y^{\prime}$
- $x \sqcap y$ iff $x^{\prime} \sqcap y^{\prime}$
(Note that we use the same symbols Γ and \square to represent the descendancy and left-right relations in both trees.) Intuitively, T and \boldsymbol{T}^{\prime} are identical except for labeling. If the structural isomorphism preserves labeling $\left(\lambda(x)=\lambda\left(x^{\prime}\right)\right)$ then we say that the trees are isomorphic and write $\boldsymbol{T}=\boldsymbol{T}^{\prime}$.

8. A Left Part Theorem

Our goal is to establish iteration theorems for the $L L(k)$ languages. Our first such theorem will be founded on an argument about derivation trees, and in particular on a characterization of derivation trees over $L L(k)$ grammars, which is our immediate goal. Our starting point is ine following result, which is analogous to Geller's Extended $\operatorname{LR}(k)$ Theorem [9].

Theores 8.1. (The Extended $L L(k)$ Theorem). Let $G=(N, L, P, S)$ be an $L L(k)$ grammar. For any $A \in N ; w, x, y \in \Sigma^{*}$; and $\gamma \in V^{*}$, if
$\begin{array}{ll}\text { (1) } S \Rightarrow_{L}^{\pi} w A \gamma \Rightarrow_{L}^{*} w x \\ \text { (2) } S \Rightarrow_{L}^{*} & w y \\ \text { (3) } x / k=y / k & \end{array}$
then
(4) $S \Rightarrow_{L}^{\pi} w A \gamma \Rightarrow_{L}^{*} w y$

Froof: Assume for the sake of contradiction that (1), (2) and (3) hold, but not (4). Since the leftmost derivations of $w x$ and wy have the initial left sentential form S in common, and (4) does not hold, derivations (1) and (2) diverge before reaching wA γ. Let $u B \delta$ be the last left sentential form they have in common (where $u \in \Sigma^{*}, B \in N$, and $\delta \in V^{*}$). Then for some $\sigma \in P^{*}$ and $v \in \Sigma^{*}$ such that $w=u v$ we have

$$
\begin{array}{ll}
\mathrm{S} \Rightarrow_{\mathrm{L}}^{\sigma} \mathrm{uB} \delta \Rightarrow_{\mathrm{L}} \mathrm{u} \beta_{1} \delta \Rightarrow_{\mathrm{L}}^{*} \mathrm{uvA} \gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{uvx}=\mathrm{wx} \\
\mathrm{~S} \Rightarrow_{\mathrm{L}}^{\sigma} \mathrm{uB} \delta \Rightarrow_{\mathrm{L}} \mathrm{u} \beta_{2} \delta \Rightarrow_{\mathrm{L}}^{*} & \mathrm{uvy}=\mathrm{wy}
\end{array}
$$

for distinct rules $B \rightarrow \beta_{1}$ and $B \rightarrow \beta_{2}$ of G. Since $x / k=y / k$, we must have $(v x) / k=(v y) / k$. It follows that $\beta_{1}=\beta_{2}$ since G is $L L(k)$, contradicting the assumption that $u B \delta$ is the last common sentential form, so that (4) must hold.

This theorem describes a property of derivation trees as well as of derivations. Let $w x$ and $w y$ be strings in the language generated by an $\mathrm{LL}(k)$ grammar G and suppose that $\mathrm{x} / \mathrm{k}=\mathrm{y} / \mathrm{k}$. Then the portions of the derivation trees $\mathcal{T}^{w x}$ and $\mathcal{T}^{w y}$ for $w x$ and wy which have been filled in at the time the last symbol of w is exposed in leftmost derivations of $w x$ and wy will be the same. Our left part theorem is a somewhat stronger formalization of this intuition. It is convenient to begin with the following preliminary result.

Lomma 8.2. Let $G=(N, \Sigma, P, S)$ be a reduced $L L(k)$ grammar and let T and T^{\prime} be two grammatical trees over G such that $\operatorname{rt}(T)=\operatorname{rt}\left(T^{\prime}\right)=B$, where B is a variable, terminal or Λ. Let n be a non-negative integer. If for some variable A and terminal strings u, v and v^{\prime} such that $A \Rightarrow u B v$ and $A \Rightarrow{ }^{*} u B^{\prime}$ we have $\left[\ln _{n}(T) v\right] /(n+k)=\left[f_{m}\left(T^{\prime \prime}\right) v^{\prime}\right] /(n+k)$ then $\{n+1\}_{T}=\{n+1\} T^{\prime \prime}$.

Proot: The proof proceeds by means of an induction on the height h of the higher of the two trees T and T^{\prime}. Let $\operatorname{rtn}(T)=x_{0}$ and $\operatorname{rtr}\left(T^{\prime}\right)=x_{0}^{\prime}$.

Basis $(~ K=0)$: Both T and T^{\prime} consist of a single node. Suppose that $\lambda\left(x_{0}\right)=\lambda\left(x_{0}^{\prime}\right)$. Trivially we have $\boldsymbol{T}=\mathcal{T}^{\prime}$, whence $\{n+1\} \mathcal{T}^{\prime}=\{n+1\} \mathcal{T}^{\prime}$.
induction Step: Assume that the lemma is true for trees of height $\leqslant h$, and call this assumption hypothesis H. We shall extend H to trees of height $\leqslant(h+1)$.

Without loss of generality assume that T has height $h+1$. Then x_{0} is an internal node of T so that $B \in N$. Sirice $\lambda\left(x_{0}\right)=\lambda\left(x_{0}^{\prime}\right)$ and $\operatorname{fr}\left(\mathcal{T}^{\prime}\right) \in \Sigma^{*}$ ($\mathcal{T}^{\prime \prime}$ is a grammatical tree) x_{0}^{\prime} must be an internal node of $\mathcal{T}^{\prime \prime}$.

Let \boldsymbol{T} be the tree

and let T^{\prime} be the tree

Our hypothesis is that

$$
\begin{aligned}
& A \Rightarrow^{*} u B v \\
& A \Rightarrow u B v^{\prime} \\
& \lambda\left(x_{0}\right)=\lambda\left(x_{0}^{\prime}\right)=B \\
& {\left[f_{r}\left(T^{\prime}\right) v\right] /(n+k)=\left[f_{r}\left(T^{\prime}\right) v^{\prime}\right] /(n+k)}
\end{aligned}
$$

for some variable A and some $u, v, v^{*} \in \Sigma^{*}$.
Olalm A. The elementary subtrees rooted in x_{0} and x_{0}^{\prime} are isomorphic. That is,

- $s=s^{\prime}$
- $\lambda\left(\mathrm{x}_{i}\right)=\lambda\left(\mathrm{x}_{\mathrm{i}}^{\prime}\right), \quad 1 \leqslant i \leqslant \mathrm{~s}$

Proof of Clatm A: By definition $\left(x_{1}, \cdots, x_{s}\right)$ is a CS of T and ($x_{1}^{\prime}, \cdots, x_{s^{\prime}}^{\prime}$) is a CS of T^{\prime}. Hence by fact 2.7

$$
\begin{aligned}
& \lambda\left(x_{0}\right)=B \Rightarrow \lambda\left(x_{1} \cdots x_{s}\right) \Rightarrow{ }^{*} w_{1} \cdots w_{s} \\
& \lambda\left(x_{0}^{\prime}\right)=B \Rightarrow \lambda\left(x_{1}^{\prime} \cdots x_{s}^{\prime}\right) \Rightarrow^{*} w_{1}^{\prime} \cdots w_{s^{\prime}}^{\prime}
\end{aligned}
$$

Since G_{A} is $L L(k)$ (theorem 1.8) and

$$
\left(w_{1} \cdots w_{s} v\right) /(n+k)=\left(w_{1}^{\prime} \cdots w_{s^{\prime}}^{\prime} v^{\prime}\right) /(n+k)
$$

it follows from theorem 1.6 that

$$
\lambda\left(x_{1} \cdots x_{s}\right)=\lambda\left(x_{1}^{\prime} \cdots x_{s^{\prime}}^{\prime}\right)
$$

and the claim is established. a
Claim B. If for some $\ell \leqslant s$ we have
(a) $T_{i}=T_{i}^{\prime}, \quad 1 \leqslant i<l$
(b) $\left|w_{1} \cdots w_{l-1}\right|=\left|w_{1}^{\prime} \cdots w_{l-1}^{\prime}\right|=m \leqslant n$
then for $n^{\prime}=n-m$ we have $\left\{n^{\prime}+1\right\}_{\mathcal{T}_{\ell}}=\left\{n^{\prime}+1\right\}_{\mathcal{T}^{\prime}}$.
Proot of Olatm B: Observe that T_{l} and T_{l}^{\prime} have height $\leqslant h$. If we can satisfy the conditions of hypothesis H then we will immediately obtain the desirud result. If $l=s=1$ and $\lambda\left(x_{1}\right)=\Lambda$ then the claim follows trivially. We may therefore assume that x_{l} is not a Λ-node. From Claim A we know that $\lambda\left(x_{l}\right)=\lambda\left(x_{l}^{\prime}\right)$. Let $C=\lambda\left(x_{l}\right)$. Since x_{l} is not a Λ-node we have $C \in V$.

By assumption there exist derivations

$$
A \Rightarrow{ }^{*} u B v
$$

$$
\mathrm{A} \Rightarrow^{*} \mathrm{uBv} v^{\prime}
$$

Since T and T' are grammatical trees there exist derivations

$$
\begin{aligned}
& \mathrm{B} \Rightarrow{ }^{*} \mathrm{w}_{1} \cdots \mathrm{w}_{l-1} \mathrm{Cw}_{l+1} \cdots \mathrm{w}_{\mathrm{s}} \\
& \mathrm{~B} \Rightarrow{ }^{*} \mathrm{w}_{1}^{\prime} \cdots \mathrm{w}_{l-1}^{\prime} \mathrm{Cw}_{l+1}^{\prime} \cdots \mathrm{w}_{s}^{\prime}
\end{aligned}
$$

(facts 2.5 and 2.7) so that
$A \Rightarrow{ }^{*} \mathrm{uw}_{1} \cdots \mathrm{w}_{l-1} \mathrm{Cw}_{l+1} \cdots \mathrm{w}_{\mathrm{s}} \mathrm{v}$
$\mathrm{A} \Rightarrow{ }^{*} \mathrm{u} w_{1}^{\prime} \cdots \mathrm{w}_{l-1}^{\prime} \mathrm{Cw}_{l+1}^{\prime} \cdots \mathrm{w}_{\mathbf{s}}^{\prime} v^{\prime}$
Since $w_{i}=w_{i}^{\prime}, 1 \leqslant i<l$, we may write

$$
\begin{align*}
& z=w_{1} \cdots w_{l-1}=w_{1}^{\prime} \cdots w_{l-1}^{\prime} \\
& A \Rightarrow{ }^{*} u z C w_{l+1} \cdots w_{s} v \tag{2}\\
& A \Rightarrow u z C w_{l+1}^{\prime} \cdots w_{s^{\prime}}^{\prime} \tag{3}
\end{align*}
$$

It follows from (b) that $n^{\prime}=n-m$ is a non-negative integer. Since

$$
\left(w_{1} \cdots w_{s} v\right) /(n+k)=\left(w_{1}^{\prime} \cdots w_{s}^{\prime} v^{\prime}\right) /(n+k)
$$

and $w_{i}=w_{i}^{\prime}, 1 \leqslant i<l$, we must have

$$
\left(w_{l} \cdots w_{s} v\right) /\left(n^{\prime}+k\right)=\left(w_{l}^{\prime} \cdots w_{s}^{\prime} v^{\prime}\right) /\left(n^{\prime}+k\right)
$$

or

$$
\begin{equation*}
\left[\rho_{n}\left(T_{l}\right) w_{l+1} \cdots w_{s} v\right] /\left(n^{\prime}+k\right)=\left[l_{r}\left(T_{l}^{\prime}\right) w_{l+1}^{\prime} \cdots w_{s}^{\prime} v^{\prime}\right] /\left(n^{\prime}+k\right) \tag{4}
\end{equation*}
$$

In view of (2), (3), (4), and the fact that T_{l} and T_{l} have height ai most h we may invoke H to conclude that $\left\{n^{\prime}+1\right\} \mathcal{T}_{l}=\left\{n^{\prime}+1\right\} \mathcal{T}^{\prime}$, as desired. \square

Olatm C. If for some $l \leqslant s$ no tree among T_{1}, \cdots, T_{l} contains the $(n+1) \underline{\text { st }}$ terminal node of T^{T} and no tree among $\tau_{1}^{\prime}, \cdots, T_{l}$ contains the $(n+1)^{\text {st }}$ terminal node of \mathcal{T}^{\prime} then $\boldsymbol{T}_{j}=\mathcal{T}_{j}^{\prime} ;$ for each j in the range $1 \leqslant j \leqslant l$.
Proof of Clatm C: The argument is an induction on j.
Basis ($j=0$): Vacuous.
Induction Step $(j \geqslant 1)$: Assume that the claim is true for indices $1, \cdots,(j-1)$. Then condition (a) of Claim B is satisfied for $l=j$. Since neither T_{j} nor T_{j} contain the $(n+1) \underline{\text { st }}$ terminal node of T and T^{\prime}, respectively, we have

$$
\left|w_{1} \cdots w_{j-1}\right|=\left|w_{1}^{\prime} \cdots w_{j-1}^{\prime}\right|=m \leqslant n-\left|w_{j}\right|
$$

and, for $n^{\prime}=n-m$,

$$
\begin{align*}
& n^{\prime} \geqslant\left|w_{j}\right| \tag{5}\\
& n^{\prime} \geqslant\left|w_{j}\right| \tag{6}
\end{align*}
$$

so that condition (b) of Claim B is satisfied and we may conclude that $\left\{n^{\prime}+1\right\} \boldsymbol{Y}_{j}=\left\{n^{\prime}+1\right\} \boldsymbol{T}_{j}$. In fact from (5) and (6) it follows that $\left.\left\{n^{\prime}+1\right\}\right\}_{j}=\Psi_{j}$ and that $\left\{n^{\prime}+1\right\}_{j}^{\prime}=\mathcal{T}_{j}^{\prime \prime}$, whence $\tau_{j}=\mathcal{T}_{j}^{\prime} ;$
Now let r be the least index such that at least one of T_{r} and T_{r}^{r} contains the $(n+1)$ st terminal node of T and $T^{\prime \prime}$, or ($s+1$) if no such index exists. It follows from Claims B and C that there are isomorphisms f_{i} establishing $\boldsymbol{T}_{i}=\boldsymbol{T}_{i}^{\prime}, \quad 1 \leqslant i<r$, and (if $r \leqslant s$) an isomorphism f_{r} establishing $\left\{n^{\prime}+1\right\}_{\mathcal{T}_{r}}=\left\{n^{\prime}+1\right\}_{\mathcal{T}_{r}^{\prime}}^{\prime}$, where $m=\left|w_{1} \cdots w_{r-1}\right|=$ $\left|w_{1}^{\prime} \cdots w_{r-1}^{\prime}\right|$ and $n^{\prime}=n-m$. Now $\{n+1\}_{\mathcal{T}}$ is the shaded portion of

and $\{n+1\} \mathcal{T}^{\prime}$ is the shaded portion of

If we define the mapping ify

- $f\left(x_{0}\right)=x_{0}^{\prime}$
- $f\left(\mathrm{x}_{i}\right)=\mathrm{x}_{\boldsymbol{i}}^{\prime}, \mathrm{r}+1 \leqslant i \leqslant \mathrm{~s}$
- $f(p)=f_{i}(p), 1 \leqslant i<r$, if p is a node of \boldsymbol{T}_{i}
- $f(p)=f_{r}(p)$ if p is a node of $\left.\left\{n^{\prime} * 1\right\}\right\}_{r}$ and $r \leqslant s$
then it follows easily from Claim A and the above argument that f is a label-preserving structural isomorphism between $\{n+1\} \boldsymbol{T}$ and $\{n+1\} \mathcal{T}^{\prime}$, so that $\{n+1\}_{\boldsymbol{T}}=\{n+1\}^{\prime}$, and the proof is complete.

Lemma 3.2 is actually the forward direction of the Left Part Theorem, which we are now prepared to prove.

Theorem 8.8. (The $L L(k)$ Left Part Theorem) A reduced cfg G is $L L(k)$ iff the following condition holds for all $n \geqslant 0$: if T and T^{\prime} are grammatical trees over G such that
(1) $\operatorname{rth}(\tau)=\operatorname{rtt}\left(T^{\prime}\right)$
(2) $\operatorname{fr}(T) /(n+k)=\operatorname{fr}_{n}\left(T^{\prime}\right) /(n+k)$
then $\left.\{n+1\}_{\}}=\{n+1\}\right\}^{\prime}$.
Prool *: Lemma 3.2 suffices to establish the forward direction. Suppose that $G=(N, \Sigma, P, S)$ is a reduced $L L(i)$ grammar and that T and T^{\prime} are any two grammatical trees over G suci that
(1) $\operatorname{rtt}(T)=\operatorname{rtt}\left(T^{\prime}\right)$
(2) $\operatorname{fr}(T) /(n+k)=\operatorname{fr}\left(T^{\prime}\right) /(n+k)$

Fig. 11, illustrating the Left Part Theorem for LL languages. The left $\{|x|+1\}$-parts of derivation trees for $x y_{1}$ and $x y_{2}$ are shown shaded. These left parts are the portions of the respective trees which have been filled in at the time all of $x\left(y_{1} / 1\right)$ and $x\left(y_{2} / 1\right)$ have been exposed. If the grammar is $L L(k)$ and $y_{1} / k=y_{2} / k$ then these left parts are necessarily identical.

Let $A=\operatorname{rtt}(\tau)=\operatorname{rtt}\left(\tau^{\prime}\right)=B$ and $u=v=v^{\prime}=\Lambda$. For the derivations $A \Rightarrow u B v$ and $A \Rightarrow{ }^{*} u B v^{\prime}$ we use the trivial derivation $A \Rightarrow{ }^{*} A$. Since $v=v^{\prime}=\Lambda$,

$$
\left[\operatorname{lr}_{r}(\tau) v\right] /(n+k)=\left[\operatorname{lo}_{r}\left(T^{\prime}\right) v^{\prime}\right] /(n+k)
$$

follows immediately from (2). We have now satisfied the hypothesis of lemma 3.2, and may therefore conclude that $\left.\{n+1\} \mathcal{T}^{\prime}=\{n+1\}\right\}^{\prime}$, as desired.

Proot *: Let $G=(N, \Sigma, P, S)$ be a reduced cfg with the property that if T and T^{\prime} are any two grammatical trees over G such that
(1) $r t(T)=r t\left(T T^{\prime}\right)$
(2) $\mathrm{fn}(T) /(n+k):=\operatorname{fn}\left(T^{\prime}\right) /(n+k)$
then $\{n+1\}_{\mathcal{T}}=\{n+1\} \mathcal{T}^{\prime}$. We intend to show that G must necessarily be an $L L(k)$ grammar. For suppose that G is not $L L(k)$. In view of theorem 1.7 there must exist a pair of derivations

$$
\begin{aligned}
& \mathrm{S} \Rightarrow_{\mathrm{L}} \mathrm{uA} \beta \Rightarrow_{\mathrm{L}} \mathrm{u} \alpha \beta \Rightarrow_{\mathrm{L}}^{*} \mathrm{uv} \\
& \mathrm{~S} \Rightarrow_{\mathrm{L}} \mathrm{uA} \beta \Rightarrow_{\mathrm{L}} u \alpha^{\prime} \beta \Rightarrow \Rightarrow_{\mathrm{L}}^{*} u v^{\prime}
\end{aligned}
$$

such that $v / k=v^{\prime} / k$ and $\alpha \neq \alpha^{\prime}$. Let T and T^{\prime} be derivation trees over G for $u v$ and $u v^{\prime}$, respectively, and let $n=|u|$ so that (uv) $/(n+k)=\left(u v^{\prime}\right) /(n+k)$. Since $r t(T)=S=r t h\left(T^{\prime}\right), \quad f r(T)=u v$, and $\operatorname{fn}\left(T^{\prime}\right)=u v^{\prime}$ there exists by assumption an isomorphism f establishing $\{n+1\}\}=\{n+1\} \mathcal{T}^{\prime}$. Let

$$
\begin{aligned}
& \eta=\left(z_{1} \cdots z_{g} \cdots z_{r}\right) \\
& \eta^{\prime}=\left(z_{1}^{\prime} \cdots z_{g^{\prime}}^{\prime} \cdots z_{r^{\prime}}^{\prime}\right)
\end{aligned}
$$

be the unique LCCS's at level l in T and T^{\prime} (fact 2.3) having the label $u A \beta$, in which z_{g} and z_{g}^{\prime} are the leftmost internal nodes (so that they are labeled with $A)$. Since $n=|u|$ and $u=\lambda\left(z_{1}, \cdots, z_{g-1}\right)$ the $(n+1)$ st terminal node of \boldsymbol{T} is either one of the nodes z_{g+1}, \cdots, z_{r} or is descended from one of the nodes z_{g}, \cdots, z_{r}. Similarly the $(n+1)$ st terminal node of T^{\prime} is either one of the nodes $z_{g^{\prime}+1}^{\prime}, \cdots, z_{r^{\prime}}^{\prime}$ or is descended from one of the nodes $z_{g}^{\prime}, \cdots, z_{r^{\prime}}^{\prime}$ Accordingly η and η^{\prime} each contain an internal node of $\{n+1\}\}^{\prime}$ and $\{n+1\} \tau^{\prime}-z_{g}$ and z_{g}^{\prime}, respectively. According to theorem 2.14 it follows that η and η^{\prime} are LCCS's of $\{\mathrm{n}+1\}_{\mathrm{T}}$ and $\{n+1\} \mathcal{T}^{\prime}$ at level l. Since f is an isomorphism it must be the case that $f(\eta)$ is an LCCS of $\{\mathrm{n}+1\} \boldsymbol{T}$ ' at level ' l. But η^{\prime} is also an LCCS of $\{n+1\} \boldsymbol{\gamma}$ having level ℓ. Since there can be at most one such LCCS (fact 2.3) we must have $f(\eta)=\eta^{\prime}$. It follows that $g=g^{\prime}$ and $f\left(z_{g}\right)=z_{g^{\prime}}^{\prime}$. Since z_{g} and $\mathrm{z}_{\mathrm{g}}^{\prime}$ are internal nodes of $\{\mathrm{n}+1\}_{\mathrm{T}}$ and $\{\mathrm{n}+1\}_{\mathcal{T}^{\prime}}$, their children must belong to $\{n+1\}_{\mathcal{T}}$ and $\{n+1\}_{\mathcal{T}}$, respectively, so that the elementary subtrees rooted in z_{g} and $\mathrm{z}_{\mathrm{g}}^{\prime}$, are isomorphic. That is to say, if $\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{s}}$
are the children of z_{g} and $x_{1}^{\prime}, \cdots, x_{s^{\prime}}^{\prime}$ are the children of $z_{g^{\prime}}^{\prime}$ then $s=s^{\prime}$ and

$$
\lambda\left(x_{1} \cdots x_{s}\right)=\lambda\left(x_{1}^{\prime} \cdots x_{s^{\prime}}^{\prime}\right)
$$

But

$$
\begin{aligned}
& \lambda\left(\mathrm{x}_{1} \cdots \mathrm{x}_{\mathrm{s}}\right)=\alpha \\
& \lambda\left(\mathrm{x}_{1}^{\prime} \cdots \mathrm{x}_{\mathrm{s}^{\prime}}^{\prime}\right)=\alpha^{\prime}
\end{aligned}
$$

so that $\alpha=\alpha^{\prime}$, which we assumed was not the case. Consequently G must be LL(k).

4. Iteration Theorems

Armed with the Left Part Theorem our intent is to establish some pumping properties of the $L L(k)$ languages. Roughly speaking, we will invoke the argument used in establishing Ogden's lemma to obtain the usual decomposition of the derivation tree for a string w belonging to an $L L(k)$ language L in which we have distinguished a sufficient number of positions. This induces the usual factorization of w as $w_{1} w_{2} w_{3} w_{4} w_{5}$. By looking at derivation trees for w and for any other string $W_{1} W_{2} u$ in L such that $\left(w_{3} w_{4} w_{5}\right) / k=u / k$, and applying the Left Part Theorem appropriately, we will obtain our first iteration theorem. We will need the following definitions.

Dofinition 4.1. Let $w \in \Sigma^{*}$ and let n be a positive integer. If $w_{1} \cdots w_{n}=w$, where $w_{i} \in \Sigma^{*}$ for $1 \leqslant i \leqslant n$, ther the sequence $\left(w_{1}, \cdots, w_{n}\right)$ is said to be a factorization of w.

Definitioai 4.8. Let $w \in \Sigma^{*}$. Suppose that $w=a_{1} a_{2} \cdots a_{n}$, where each a_{i} $\in \Sigma$. Any index $i, 1 \leqslant i \leqslant n$, is called a position in w. For example, the symbol occupying position 3 of the string aacbda is c. Next let \mathcal{K} be any set of positions in a terminal string w. Any factorization $\varphi=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5}\right)$ of w induces a natural "partition" \mathcal{K} / φ of \mathcal{K} into:

$$
\mathcal{K} / \varphi=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}, \mathcal{K}_{4}, \mathcal{K}_{5}\right\}
$$

where

$$
\mathcal{K}_{i}=\left\{k \in \mathcal{K}| | w_{1} \cdots w_{i-1}\left|<k \leqslant\left|w_{1} \cdots w_{i}\right|\right\}\right.
$$

Thus \mathcal{K}_{i} selects out of \mathcal{K} those positions which appear in w_{i}. We ca!l the elements of \mathcal{K} a'istinguished positions (or $d p^{\prime} s$). The following notation will also be convenient.

Depmition 4.8. Let $u_{i} \in \Sigma^{*}, 1 \leqslant i \leqslant r$, for some alphabet Σ. Then

$$
\prod_{i=1}^{r}\left(u_{i}\right)=u_{1} u_{2} \cdots u_{r-1} u_{r}
$$

We are now ready to proceed.
Theorem 4.4. (The First LL Iteration Theorem) Let L be an $L L(k)$ language. There exists an integer p such that given a string w in L and p or more distinguished positions \mathcal{K} in w we may write

$$
\begin{aligned}
& \varphi=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5}\right) \\
& \mathcal{K} / \varphi=\left\{\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}, \mathcal{K}_{4}, \mathcal{K}_{5}\right\}
\end{aligned}
$$

where
(1) $w_{2} \neq \Lambda$
(2) a: Either w_{1}, w_{2} and w_{3} each contain dp's $\left(\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3} \neq \varnothing\right)$,
or w_{3}, w_{4} and w_{5} each contain dp's $\left(\mathcal{K}_{3}, \mathcal{K}_{4}, \mathcal{K}_{5} \neq \varnothing\right)$,
b: and $w_{2} w_{3} w_{4}$ contains at most p dp's $\left(\left|\mathcal{K}_{2} \cup \mathcal{K}_{3} \cup \mathcal{K}_{4}\right| \leqslant p\right)$.
(3) a: Let $n=\left|w_{1} w_{2}\right|$ and suppose that w^{\prime} is any string in L such that $w^{\prime} /(n+k)=w /(n+k)$. Then there is a factorization $\left(w_{1}, w_{2}, w_{3}^{\prime}, w_{4}^{\prime}, w_{5}^{\prime}\right)$ of w^{\prime} such that
(i) $\quad w_{1} w_{2}^{r} w_{3} \prod_{i=1}^{r}\left(u_{i}\right) w_{5}$
(ii) $\quad w_{1} w_{2}^{r} w_{3}^{\prime} \prod_{i=1}^{r}\left(u_{i}\right) w_{5}$
(iii) $\quad w_{1} w_{2}^{r} w_{3} \prod_{i=1}^{r}\left(u_{i}\right) w_{5}^{\prime}$
(iv) $\quad w_{1} w_{2}^{r} w_{3}^{\prime} \prod_{i=1}^{r}\left(u_{i}\right) w_{5}^{\prime}$
are in L for all $r \geqslant 0$ and for all strings $\prod_{i=1}^{r}\left(u_{i}\right)$ in which $\mathrm{u}_{i}=\mathrm{w}_{4}$ or $\mathrm{u}_{i}=\mathrm{w}_{4}^{\prime}, 1 \leqslant i \leqslant \mathrm{r}$.
b: Furthermore, if $\prod_{i=1}^{r}\left(\bar{u}_{i}\right)$ is a catenation of words $\bar{u}_{i} \in\left\{w_{4}, w_{4}^{*}\right\}$ such that

$$
\prod_{i=1}^{r}\left(u_{i}\right)=\prod_{i=1}^{r}\left(\bar{u}_{i}\right)
$$

then $\mathrm{u}_{i}=\overline{\mathrm{u}}_{\mathrm{i}}, \quad 1 \leqslant i \leqslant \mathrm{r}$.
Proos: Let $G=(N, \Sigma, P, S)$ be an arbitrary reduced $L L(k)$ grammar generating L. The methods used by Ogden [20] (or see Harrison and Havel [11]) suffice to establish the existence of an integer p such that for any string w in L in which p or more positions \mathcal{K} are distinguished
there is a factorization $\varphi=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of w such that (2) holds and for some variable $A \in N$ for which $A \Rightarrow{ }^{+} w_{2} A w_{4}$ we have

$$
S \Rightarrow w_{1}^{*} A w_{5} \Rightarrow w_{1} w_{2}^{r} A w_{4}^{r} w_{5} \Rightarrow^{+} w_{1} w_{2}^{r} w_{3} w_{4}^{-} w_{5}
$$

for all non-negative integers r. Since no $\mathrm{LL}(k)$ grammar is left recursive (1) holds. To complete our proof we must show that φ satisfies (3) as well.

Let $n=\left|w_{1} w_{2}\right|$ and consider any string w^{\prime} in L such that $w^{\prime} /(n+k)=w /(n+k)$. Let T and $T^{\prime \prime}$ be the derivation trees for w and w^{\prime}, respectively. Since $w /(n+k)=w^{\prime} /(n+k)$ we may invoke the Left Part Theorem to obtain $\{n+1\} \mathcal{T}^{\prime}=\{n+1\} \boldsymbol{T}^{\prime}$. (Refer to figure 12.)

Consider T. Let x and y be the internal nodes of corresponding to the $A^{\prime} s$ in $w_{1} A N_{5}$ and $w_{1} w_{2} A w_{4} w_{5}$. We know that $w_{3} \neq \Lambda$ since $\mathcal{K}_{3} \neq \varnothing$.

Fig. 12a: 7.

Fig. 12b: \mathbf{T}^{\prime}.

Fig. 12. Derivation trees for w and w^{\prime}, in which the left $\left\{\left|w_{1} w_{2}\right|+1\right\}$-parts are shaded. As a result of the fact that G is $L L(k)$ and $\left(w_{1} w_{2} w_{3} w_{4} w_{5}\right) /\left(\left|w_{1} w_{2}\right|+k\right)=\left(w_{1} w_{2} w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime}\right) /\left(\left|w_{1} w_{2}\right|+k\right)$ the left $\left\{\left|w_{1} w_{2}\right|+1\right\}$-parts are isomorphic. In particular, the two nodes labeled A in $\{n+1\} T$ must appear in the same position in $\{n+1\} \mathcal{T}^{\prime}$.

Therefore the subtree rooted in y has a terminal novie among its leaves. The leftmost such terminal node n is labeled with $w_{3} / 1$ and is contained in $\{n+1\}$; it is, in fact, the $(n+1)$ st terminal node of T. Since the nodes x and y defined above lie on the root-leaf path to n they also belong to $\{n+1\}$. (They appear in figure $12 a$ labeled by A). Let f be the isomorphism of the Left Part Theorem. It follows that

$$
\begin{aligned}
& A=\lambda(x)=\lambda(f(x)) \\
& A=\lambda(y)=\lambda(f(y))
\end{aligned}
$$

Let η and θ now be the unique LCCS's of T in which the leftmost internal nodes are x and y, respectively (fact 2.5). We may write

$$
\begin{align*}
& \eta=\left(a_{1} \cdots a_{\underline{a}} \times d_{1} \cdots d_{\underline{d}}\right) \tag{7}\\
& \theta=\left(a_{1} \cdots a_{\underline{a}} b_{1} \cdots b_{\underline{b}} y c_{1} \cdots c_{\underline{c}} d_{1} \cdots d_{d}\right) \tag{8}
\end{align*}
$$

Since x and y are both internal nodes of $\{\bar{n}\}_{\mathcal{T}}, \eta$ and θ are LCCS's of $\{n+1\} \boldsymbol{T}$ as well (theorem 2.14). Since $\{n+1\}_{\mathcal{T}}=\{n+1\} \mathcal{T}^{\prime}, f(\eta)$ and $f(\theta)$ are LCCS's of $\{n+1\} \mathcal{T}^{\prime}$, and hence of \mathcal{T}^{\prime} (theorem 2.16). Again because $\{n+1\} \boldsymbol{T}=\{n+1\} \boldsymbol{T}^{\prime}$ we may conclude that $\lambda(\eta)=\lambda(f(\eta))$ and $\lambda(\theta)=\lambda(f(\theta))$. In particular,

$$
\begin{aligned}
& w_{1}=\lambda\left(a_{1} \cdots \underline{a}_{\underline{a}}\right)=\lambda\left(f\left(a_{1} \cdots \underline{a}_{\underline{a}}\right)\right) \\
& w_{2}=\lambda\left(b_{1} \cdots b_{\underline{b}}\right)=\lambda\left(f\left(b_{1} \cdots b_{\underline{b}}\right)\right)
\end{aligned}
$$

and for some $\alpha, \beta \in V^{*}$

$$
\begin{aligned}
& \alpha=\lambda\left(c_{1} \cdots c_{\underline{c}}\right)=\lambda\left(f\left(c_{1} \cdots c_{\underline{c}}\right)\right) \\
& \beta=\lambda\left(d_{1} \cdots d_{\underline{d}}\right)=\lambda\left(f\left(d_{1} \cdots d_{\underline{d}}\right)\right)
\end{aligned}
$$

Now by invoking theorem 2.8 we obtain from T the derivations

$$
\begin{array}{ll}
S & \Rightarrow_{L}^{*} \lambda\left(a_{1} \cdots a_{\underline{a}}\right) \lambda(x) \lambda\left(d_{1} \cdots d_{\underline{d}}\right)=w_{1} A \beta \tag{9}\\
A=\lambda(x) & \Rightarrow_{L}^{*} \lambda\left(b_{1} \cdots b_{\underline{b}}\right) \lambda(y) \lambda\left(c_{1} \cdots c_{\underline{c}}\right)=w_{2} A \alpha \\
A=\lambda(y) & \Rightarrow_{L}^{*} w_{3} \\
\alpha & \Rightarrow_{L}^{*} w_{4} \\
\beta & \Rightarrow_{L}^{*} w_{5}
\end{array}
$$

and from σ^{\prime} the derivations

$$
\begin{array}{ll}
S & \Rightarrow_{L}^{*} \lambda\left(f\left(a_{1} \cdots a_{\underline{a}}\right)\right) \lambda(f(x)) \lambda\left(f\left(d_{1} \cdots d_{\underline{d}}\right)\right)=w_{1} A \beta \\
A=\lambda(f(x)) & \Rightarrow_{L}^{*} \lambda\left(f\left(b_{1} \cdots b_{\underline{b}}\right)\right) \lambda(f(y)) \lambda\left(f\left(c_{1} \cdots c_{\underline{c}}\right)\right)=w_{2} A \alpha \\
A=\lambda(f(y)) & \Rightarrow_{L}^{*} w_{3}^{\prime} \tag{16}\\
\alpha & \Rightarrow_{L}^{*} w_{4}^{\prime} \\
\beta & \Rightarrow_{L}^{*} w_{5}^{\prime}
\end{array}
$$

for some terminal strings $w_{3}^{\prime}, w_{4}^{\prime}$ and w_{5}^{\prime} such that $w_{1} w_{2} w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime}=w$. By suitably combining these derivations we can obtain any of the strings specified in (3a). For example, to obtain strings of the form
(i) $w_{1} w_{2}^{r} w_{3} \prod_{i=1}^{r}\left(u_{i}\right) w_{5}$
begin with (9), followed by r applications of (10), followed by (11), followed by a suitable mixture of (12) and (17), and finish with (13). (Season to taste.)

Next we establish (3b). If $w_{4}=w_{4}^{\prime}$ then (3b) follows trivially. Therefore assume that $w_{4} \neq w_{4}^{\prime}$, so that (12) and (17) are distinct leftmost
derivations, neither of which is a prefix of the other. For the sake of simplicity we restrict our attention now to strings of type (i). Let R be the set

$$
\{(9)\}\{(10)\}^{r}\{(11)\}\{(12)+(17)\}^{r}\{(13)\}
$$

Notice that a string in R uniquely specifies the leftmost derivation of a type (i) word in L. In particular, let $\boldsymbol{p}_{i}, 1 \leqslant i \leqslant \mathrm{r}$, be defined by

$$
\begin{aligned}
& \mathfrak{p}_{i}=(12) \text { if } u_{i}=w_{4} \\
& \mathfrak{p}_{i}=(17) \text { if } u_{i}=w_{4}^{\prime}
\end{aligned}
$$

Then given a string of type (i), which determines a sequence \boldsymbol{p}_{i},

$$
\{(9)\}\{(10)\}^{\mathbf{r}}\{(11)\} \prod_{i=1}^{\mathbf{r}}\left\{\boldsymbol{p}_{i}\right\}\{(13)\}
$$

is a leftmost derivation of the word. If there exist two catenations

$$
\prod_{i=1}^{r}\left(u_{i}\right) \quad \text { and } \quad \prod_{i=1}^{r}\left(\bar{u}_{i}\right)
$$

and corresponding sequences \boldsymbol{p}_{i} and $\overline{\boldsymbol{p}}_{i}$ such that

$$
\prod_{i=1}^{\mathrm{r}}\left(\mathrm{u}_{i}\right)=\prod_{i=1}^{\mathrm{r}}\left(\bar{u}_{i}\right)
$$

and for which $u_{i} \neq \bar{u}_{i}$, for some i in the range $1 \leqslant i \leqslant r$, so that $\boldsymbol{p}_{i} \neq \ddot{p}_{i}$, then there are two distinct strings in R, representing two distinct leftmost derivations of the same string in L. But then G is an ambiguous grammar, which cannot be the case since G is $L L(k)$. Hence (3b) follows for a string of type (i).
We can extend (3b) to strings of type (ii), (iii) and (iv) by analogous arguments - the details are omitted.

Before proceeding with a formal development of a second pumping lemma for the $L L(k)$ languages, we sketch the intuition underlying our argument. (Refer to figure 13.) Suppose that $u v$ and $u v y,|v|=k$, are strings in some language L generated by a Λ-free $L L(k)$ grammar G. Leftmost derivations of $u v$ and uvy must proceed identically at least until all of u has been exposed; that is the meaning of the Extended $L L(k)$ Theorem. After exposing the rightmost terminal of u in a leftmost derivation of either $u v$ or uvy there can be no more than k. variables remaining in the left sentential form since G is Λ-free and $|v|=k$. Judicious use of this fact, together with the Left Part Theorem and the argument of the First Iteration Theorem, is sufficient for ou: purposes.

We will need the following result, which is due to Rosenkrantz and Stearns.

Thsorem 4.6. Given an $L L(k)$ grammar $G=(N, \Sigma, P, S)$ we can construct an $L L(k+1)$ grammar $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S^{\prime}\right)$ such that $\mathscr{L}\left(G^{\prime}\right)=\mathscr{L}(G)$ and G^{\prime} is Λ-free unless $\Lambda \in \mathscr{L}(G)$, in which case G^{\prime} contains the single Λ-rule $S^{\prime} \rightarrow \Lambda$ and Σ soes not appear in the right-hand side of any rule in P^{\prime}.
Proot. Using the arguments found in Rosenkrantz and Stearns [22], pages 236-241 (or see Aho and Ullman [2], pages 674-681), we may obtain a Λ-free $L L(k+1)$ grammar $G^{\prime \prime}=\left(N^{\prime \prime}, \Sigma, P^{\prime \prime}, S^{\prime \prime}\right)$ generating $\mathscr{L}(G)-\{\Lambda\}$. If $\Lambda \notin \mathscr{L}(\mathrm{G})$ then set $\mathrm{G}^{\prime}=\mathrm{G}^{\prime \prime}$.
Suppose, however, that $\mathscr{L}(G)$ contains Λ. Then we form a new grammar G^{\prime} whose start symbol is S^{\prime} and whose rules are the rules of $G^{\prime \prime}$ together with $S^{\prime} \rightarrow S^{\prime \prime} \mid \Lambda$, where S^{\prime} is a new variable not in $V^{\prime \prime}$. It is trivial to prove that G^{\prime} is also $\mathrm{LL}(\mathrm{k}+1)$ and generates exactly $\mathscr{L}(\mathrm{G})$.

Theorem 4.6. (The Second LL Iteration Theorem) Let L be an $L L(k-1)$ language, $k \geqslant 1$. There exists an integer p such that for any two distinct strings x and $x y$ in L, if $|x| \geqslant k$ and p or more positions in y are distinguished, then there is a factorization $\varphi=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of $x y$ such that (1) - (3) of the First LL Iteration eneorem hold and $\left|w_{1}\right| \geqslant|x|-k$.

Proof. In view of theorem 4.5 we may assume that L is generated by some $L L(k)$ gramma $G=(N, \Sigma, P, S)$ which is Λ-free, except possibly for an $S \rightarrow \Lambda$ rule, in which case S does not appear in any right-hand side.

For any variable A let $G_{A}=(N, \Sigma, P, A)$ be the cfg obtained from G by changing the start symbol to A, let p_{A} be the constant obtained from the First Iteration Theorem for the language $\mathscr{L}\left(\mathrm{G}_{\mathrm{A}}\right)$ (which is also $\mathrm{LL}(k)$ see theorem 1.8), and let

$$
\begin{aligned}
& p^{\prime}=\max \left\{p_{A} \mid A \in N\right\} \\
& p=k p^{\prime}+1
\end{aligned}
$$

Suppose that x and $x y$ are strings belonging to L, where $|x| \geqslant k$ and p or more nositions are distinguished in y. Let us write x as $u v$, where $|u|=n$ and $|v|=k$, and let \mathcal{T} and \mathcal{T}^{\prime} be derivation trees for $u v$ and uvy. (See figure 13.) Let $\eta=$ leaves $\left(\{n+1\}_{T^{\prime}}\right)$ and $\eta^{\prime}=\operatorname{leaves}\left(\{n+1\}_{\mathcal{T}^{\prime}}\right)$.
Since $x /(n+k)=(x y) /(n+k)=x$, it follows from the Left Part Theorem that $\{\mathrm{n}+1\}_{\mathcal{T}}=\{\mathrm{n}+1\}_{\mathcal{T}^{\prime}}$, whence η and η^{\prime} are isomorphic and $\lambda(\eta)=\lambda\left(\eta^{\prime}\right)$. It follows from theorem 2.17 that η and η^{\prime} are LCCS's of T° and T^{\prime}, respectively. Consequently we may write

$$
\begin{aligned}
& \mathrm{S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{u} \gamma=\lambda(\eta) \Rightarrow_{\mathrm{L}}^{*} \mathrm{uv} \\
& \mathrm{~S} \Rightarrow_{\mathrm{L}}^{*} \mathrm{u} \gamma=\lambda\left(\eta^{\prime}\right) \Rightarrow_{\mathrm{L}}^{*} \mathrm{uvy}
\end{aligned}
$$

for some γ in V^{*} (fact 2.8). Since $|v|=k \geqslant 1$ these derivations involve no Λ-rules. It follows that $|\gamma| \leqslant k$ since $|v|=k$ and $\gamma \Rightarrow_{\mathrm{L}}^{*} \mathrm{v}$.
Now write γ as $X_{1} X_{2} \cdots X_{s}(s \leqslant k)$. Let $\left(z_{1}, z_{2}, \cdots, z_{s}\right)$ be the factorization of vy such that $X_{i} \Rightarrow_{L}^{*} z_{i}, 1 \leqslant i \leqslant s$. Suppose that there are p^{\prime} or fewer dp's in each z_{i}. Then there are at most $s p^{\prime} \leqslant k p^{\prime}<p$ dp's in $v y$, which is not the

Fig. 13a. T.

Fig. 13b. ${ }^{T}$.

Fig. 13. The solidly shaded areas indicate the leaves descended from a particular internal node o: $T^{\prime \prime}$ which is a leaf of the left $\{|u|+1\}$-part of T^{\prime}. The dashed lines mark the frontier of the left $\{|u|+1\}$-parts for each tree. This is the left sentential form obtained at the time $\mathrm{v} / 1$ is exposed.
case. Hence some particular z_{i} contains more than $p^{\prime} \geqslant p_{x_{i}} d p^{\prime} s$. Now the string z_{i} belongs to the language $\mathscr{L}\left(\mathrm{G}_{\mathrm{x}_{i}}\right)$, which (as we noted above) is an $\mathrm{LL}(k)$ language. Also, we have distinguished $\mathrm{P}_{\mathrm{x}_{i}}$ or more positions in this string. It follows from the First Iteration Theorem that there is a factorization $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right)$ of z_{i} such that (1) - (2) of theorem 4.4 hold with respect to $\mathscr{L}\left(\mathrm{G}_{\mathrm{x}_{i}}\right)$ and for some variable B we have $\mathrm{B} \Rightarrow{ }^{+} \sigma_{2} \mathrm{~B} \sigma_{4}$ and

$$
\mathrm{X}_{i} \Rightarrow \sigma_{1}^{*} \mathrm{~B} \sigma_{5} \Rightarrow^{*} \sigma_{1} \sigma_{2}^{\mathrm{r}} \mathrm{~B} \sigma_{4}^{\mathrm{r}} \sigma_{5} \Rightarrow^{+} \sigma_{1} \sigma_{2}^{\mathrm{r}} \sigma_{3} \sigma_{4}^{\mathrm{r}} \sigma_{5}
$$

in ${ }^{{ }^{1}}{ }^{1}{ }_{i}$. From this it follows that the factorization

$$
\left(\mathrm{uz}_{1} \cdots \mathrm{z}_{i-1} \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5} \mathrm{z}_{i+1} \cdots \mathrm{z}_{\mathrm{s}}\right)=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5}\right)
$$

satisfies (1) - (2) with respect to L. Since u is necessarily a prefix of ${ }^{W}$ it is clear that $\left|w_{1}\right| \geqslant|x|-k$. If we let

$$
\mathrm{n}=\left|u \tau_{1} \cdots \mathrm{z}_{i-1} \sigma_{1} \sigma_{2}\right|
$$

and consider any string w^{\prime} in L such that $w^{\prime} /(n+k)=w /(n+k)$, the argument used to deduce (3) in theorem 4.4 may be used to deduce property (3) here, and the proof is complete.

E. Applloations

We begin by showing that every $L L(k)$ grammar is $\operatorname{LR}(k)$. This is not a new result; Brosgol [8] obtained a rigorous proof via $L R(k)$ grammar theory by embedding Λ-rules in the grammar, and Soisalon-Soininen has reportedly also obtained a rigorous proof [23]. It is more often argued intuitively from a consideration of $L L(k)$ and $\operatorname{LR}(k)$ derivation trees that this result is obvious (see Aho and Ullman [2], for example). Using the LL(k) Left Part Theorem we can now make the tree argument rigorous.

Theorem 5.1. Every reduced $\mathrm{LL}(k)$ grammar is $\operatorname{LR}(k), k \geqslant 0$.
Proot: Let G be an arbitrary $L L(k)$ grammar. First of all, $S \Rightarrow_{R}^{+} S$ is impossible since G is unambiguous. Hence if G is not $L R(k)$ then for some $w, w^{\prime}, x \in \Sigma^{*} ; \alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in V^{*} ; A, A^{\prime} \in N$, there exist derivations

$$
\begin{aligned}
& S \Rightarrow \Rightarrow_{R}^{*} \alpha A W \Rightarrow \Rightarrow_{R} \alpha \beta W \\
& S \Rightarrow_{R}^{*} \alpha^{\prime} A^{\prime} x \Rightarrow_{R} \alpha^{\prime} \beta^{\prime} x=\alpha \beta W^{\prime}
\end{aligned}
$$

such that $w / k=w^{\prime} / k$ and $(A \rightarrow \beta,|\alpha \beta|) \neq\left(A^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right)$. If $k=0$ then either $\mathscr{L}(\mathrm{G})$ is empty, in which case there are no derivations at all since G is reduced, or $\mathscr{L}(G)$ is a singleton set, in which case we have $\alpha \beta w=\alpha \beta w^{\prime}$ and consequently $(A \rightarrow \beta,|\alpha \beta|)=\left(A^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right)$ since both sentential forms must derive the same string and G is unambiguous. We need therefore only consider the case in which $k \geqslant 1$.

Let $z \in \mathscr{L}(\alpha \beta)$, let T^{T} be the derivation tree for zw , let $T^{\prime \prime}$ be the derivation tree for $z w^{\prime}$, and let $n=|z|$. Since G is $L L(k)$ and $(z w) /(n+k)=\left(z w^{\prime}\right) /(n+k)$, we may apply the Left Part Theorem to obtain $\{n+1\} \boldsymbol{T}=\{n+1\} \mathcal{T}^{\prime \prime}$. Let \mathfrak{f} be the mapping which effects the isomorphism. Let $\eta=\left(u_{1}, \cdots, u_{s}\right)$ be the unique RCCS of T having the label aAw (theorems 1.2 and 2.9). Let u_{i} be the node of η labeled by the A explicitly shown in $\alpha A w$, and let

$$
\theta=\left(u_{1} \cdots u_{i-1} v_{1} \cdots v_{h} u_{i+1} \cdots u_{s}\right)
$$

be the RCCS formed from η by expanding u_{i}, so that $\lambda\left(v_{1} \cdots v_{h}\right)=\beta$ and $\lambda(\theta)=\alpha \beta w$. (Refer to figure 14a.) Let $a=w / 1\left(a \in \Sigma_{\Lambda}\right)$. Since $w / k=w^{\prime} / k$ and $k \geqslant 1$, we also have $a=w^{\prime} / 1$. Consider $[n+1]_{T}: \operatorname{fr}\left([n+1]_{T}\right)=$ za. Let $x=\left(u_{1}, \cdots, u_{r}\right)$ be the restriction of η to $[n+1]_{\mathcal{T}}$ and recall that $\lambda(\eta)=\alpha A w$. If $a \in \Sigma$ then $i<r$, since the first n terminals are derived from αA, and u_{i} belongs to $[n+1]_{T}$. If $a=\Lambda$ (because $w=\Lambda$) then

Figure 14a, illustrating the proof of theorem 5.1. In T we show η and θ, the unique RCCS's of τ labeled $\alpha A w$ and $\alpha \hat{\beta} w$. In $\boldsymbol{T}^{\prime \prime}$ we show RCCS's ξ and ζ, the extensions of χ^{\prime} and ψ^{\prime} (see figure 14b below) to T^{\prime} from $[\mathrm{n}+1]_{\mathrm{T}^{\prime \prime}}$. The isomorphism f maps $[\mathrm{n}+1]_{\mathrm{T}}$ onto $[\mathrm{n}+1]_{\mathrm{T}^{\prime}}$.

Figure 14b, illustrating the proof of theorem 5.1. In T we show the restrictions χ and ψ of η and θ to $\left[{ }^{[n+1] ~}\right.$. in τ^{\prime} we show the isomorphic images χ^{\prime} and ψ^{\prime} of χ and ψ under f. Since $[\mathrm{n}+1]_{\mathrm{T}}=[\mathrm{n}+\mathrm{i}]_{\mathcal{T}^{\prime \prime}}$ we have $\lambda(x)=\lambda\left(\chi^{\prime}\right)=\alpha \mathrm{Aa}$ and $\lambda(\psi)=\lambda\left(\psi^{\prime}\right)=\alpha \beta a$.
$[n+1]_{T}=\boldsymbol{T}$, so that $r=s, \chi=\eta$, and $\lambda(\chi)=\alpha A a=\alpha A w=\alpha A$. In either case $\lambda(\chi)=\alpha A a(i \leqslant r \leqslant s)$, so that u_{i} appears in χ. Next let

$$
\psi=\left(u_{1} \cdots u_{i-1} v_{1} \cdots v_{h} u_{i+1} \cdots u_{r}\right)
$$

be the restriction of θ to ${ }^{[n+1]} \boldsymbol{T}$, so that $\lambda(\psi)=\alpha \beta a . \chi$ and ψ are RCCS's of $[n+1]_{\mathcal{T}}$ (theorem 2.13), ψ being obtained in one step from χ by rewriting u_{i}. Since $\{n+1\}_{\mathcal{T}}=\{n+1\}_{\mathcal{T}}$ under f we must also have $[n+1]_{\mathcal{T}}=[n+1]_{\mathcal{T}^{\prime}}$ under f. If we let $\chi^{\prime}=\mathbf{f}(\chi)$ and $\psi^{\prime}=\mathbf{f}(\psi)$ then

$$
\begin{aligned}
& \lambda(\chi)=\lambda\left(\chi^{\prime}\right)=\alpha \mathrm{Aa} \\
& \lambda(\psi)=\lambda \cdot\left(\psi^{\prime}\right)=\alpha \beta \mathrm{a}
\end{aligned}
$$

and in view of ine isomorphism χ^{\prime} and ψ^{\prime} must be RCCS's of $[n+1]{ }^{\prime}{ }^{\prime}, \psi^{\prime}$ being obtained in one step from χ^{\prime} by rewriting $f\left(u_{i}\right)$. Now extend χ^{\prime} to form an RCCS ξ in $\mathcal{T}^{\prime \prime}$ by appending to χ^{\prime} (in left-to-right order) all of the leaves of \boldsymbol{T}^{\prime} which are right of $f\left(u_{r}\right)$ (theorem 2.15), so that
$\lambda(\xi)=\alpha A w^{\prime}$. Similarly extend ψ^{\prime} to obtain an RCCS ζ in ζ^{\prime} such that $\lambda(\zeta)=\alpha \beta \mathrm{w}^{\prime}$. Since there are no internal nodes to the right of u_{i} in η. there can be no internal nodes to the right of u_{i} in χ, and no internal nodes to the right of $f\left(u_{i}\right)$ in χ^{\prime}. Since ξ is obtained from χ^{\prime} by appending leaves, $f\left(u_{i}\right)$ is also the rightmost internal node of ξ. Hence ζ is an RCCS of T^{\prime} which can be obtained from the RCCS ξ of \mathcal{T}^{\prime} in one step by rewriting; $f\left(u_{i}\right)$. We must have

$$
r t(T) \Rightarrow_{R}^{*} \lambda(\xi) \Rightarrow_{R} \lambda(\xi)
$$

(fact 2.8). That is,

$$
S \Rightarrow_{\mathrm{R}}^{*} \alpha A w^{\prime} \Rightarrow \Rightarrow_{\mathrm{R}} \alpha \beta w^{\prime}
$$

Since we alsc know that

$$
S \Rightarrow \Rightarrow_{R}^{*} \alpha^{\prime} A^{\prime} x \Rightarrow_{\mathrm{R}} \alpha^{\prime} \beta^{\prime} x=\alpha \beta \mathrm{w}^{\prime}
$$

and that G is unambiguous (theorem 1.2) it must be the case that $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $A=A^{\prime}$ so that $(A \rightarrow \beta,|\alpha \beta|)=\left(A^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right)$ which is a contradiction. Hence G is, in fact, an $\operatorname{LR}(k)$ grammar.

It is necessary for the proof of theorem 5.1 that the grammar be reduced. For suppose that (N, Σ, P, S) is a reduced $L L(k)$ grammar. If we add to G the rules $S \rightarrow A$ and $A \rightarrow \dot{A}$ for some new variable A then it is easy to see from the definitions that G is still $\operatorname{LL}(k)$ but not $\operatorname{LR}(k)$. On the other hand, the presence in G of variables which cannot be derived from the start symbol does not effect the proof.

We next consider a number of results which follow easily from our iteration theorems. Theorems $5.2,5.3,5.4,5.5$ and 5.6 each illustrate a different way in which possessing the $L L(k)$ property restricts the form of strings in a language; each of the proofs illustrates a different way in which the iteration theorems may be used. We consider only langt:ages which are $\operatorname{LR}(k)$ since every $\operatorname{LL}(k)$ language is $\operatorname{LR}(k)$; if a language is not even $\operatorname{LR}(k)$ then other tools already exist for demonstrating this which incidently demonstrate that the language also fails to be LL.

Thoorean 6.2. The LR language $L_{1}=\left\{a^{n} b^{n}, a^{n} c^{n} \mid n \geqslant 1\right\}$ is not LL.
Proof: (Figure 15.) Assume that L_{1} is $L L(k)$ and let p be the constant obtained for L_{1} from the First Iteration Theorem. Consider the string $w=a^{p} a^{k} b^{p+k}$ in which the first $p a^{\prime} s$ are distinguished. From theorem 4.4 we obtain the usual factorization $\varphi=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of w. If w_{2} or w_{4} contained both $a^{\prime} s$ and $b^{\prime} s$ then in $w_{1} w_{2}^{2} w_{3} w_{4}^{2} w_{5}$ an a would follow a b, which cannot happen. Hence w_{2}, and similarly w_{4}, must consist

Fig.15. An application of Theorem 4.4 to the language $a^{n} b^{n}+a^{n} c^{n}$.
entirely of $a^{\prime} s$ or of b's. Moreover, if $w_{1} w_{2}^{2} w_{3} w_{4}^{2} w_{5}$ is to contain an equal number of a 's and b 's then (since at leas one of w_{2} and w_{4} is non-null) we must have $w_{2} \in a^{+}$and $w_{4} \in b^{+}$. Also, w_{3} must begin with at least k a's since w_{4} does not contain any distinguished positions. Now consider $a^{p+k} c^{p+k}$, which we can write as $w_{1} w_{2} u$ for some $u \in a^{k} a^{*} c^{+}$. Note that $u / k=\left(w_{3} w_{4} w_{5}\right) / k=a^{k}$. It follows that for some $w_{3}^{\prime}, w_{4}^{\prime}$ and $w_{5}^{\prime \prime}$ we have $u=w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime}$ and $w_{1} w_{2}^{2} w_{3}^{\prime} w_{4}^{\prime} w_{4} w_{5}^{\prime} \in L_{1}$. But $w_{4} \in b^{+}$and $w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime} \in$ $a^{+} c^{+}$, and there are no strings containing both $b^{\prime} s$ and $c^{\prime} s$ in L_{1}. c
Theorem 6.8. The LR language $L_{2}=\left\{a^{n} 0 b^{n}, a^{n} 1 b^{2 n} \mid n \geqslant 1\right\}$ is not LL.
Proof: (Figure 16.) Assume that L_{2} is $L L(k)$ and let p be the constant obtained for L_{2} from the First Iteration Theorem. Consider the string $w=a^{p} a^{k} 1 b^{2(p+k)}$ in which the first $p a^{\prime} s$ are distinguished. From theorem 4.4 we obtain a factorization $\psi=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \mathrm{w}_{5}\right)$ of w . Since φ satisfies theorem 4.4 we must have $w_{2} \in a^{+}$and $w_{4} \in b^{+}, 2\left|w_{2}\right|=\left|w_{4}\right|$, and w_{3} must begin with at least k a's. Now consider $a^{p+k} 0 b^{p+k}$, which may be written as $w_{1} w_{2} u$ for some $u \in a^{k} a^{*} O b^{*}$. Note that $u / k=\left(w_{3} w_{4} w_{5}\right) / k$. It follows from theorem 4.4 that for some $w_{3}^{\prime}, w_{4}^{\prime}$ and w_{5}^{\prime} we have $u=w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime}, \quad\left|w_{2}\right|=\left|w_{4}^{\prime}\right|$, and $w_{1} w_{2}^{2} w_{3}^{\prime} w_{4}^{\prime} w_{4} w_{5}^{\prime} \in L_{2}$. Let $\#_{a}$ and $\#_{b}$ be the

Fig. 16. An application of Theorem 4.4 to the language $a^{n} 0 b^{n}+a^{n} 1 b^{2 n}$.
number of $a^{\prime} s$ and $b^{\prime} s$ in this string. Then $p+k+\left|w_{2}\right|=\#_{a}<p+k+2\left|w_{2}\right|=\#_{b}$, so that this string contains an illegal number of $b^{\prime} s$ (since w_{3}^{\prime} contains a 0) and cannot belong to L_{2}. .
Theorem 5.4. The LR language $L_{3}=\left\{a^{n} d a^{n} e, a^{n} f a^{n} g \mid n \geqslant 1\right\}$ is not LL.
Proot: (Figure 17.) Assume that L_{3} is $L L(k)$ and let p be the constant obtained for L_{3} from the First fleration Theorem. Consider the string $w=a^{P} a^{k} d^{p+k} e$ in which the first $p a^{\prime} s$ are distinguished. From theorem 4.4 we obtain a factorization $\varphi=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of w such that $w_{2} \in$ $a^{+}, w_{4} \in a^{+}$and $w_{3} \in a^{*} d a^{*}$. As usual we also have $\left(w_{3} w_{4} w_{5}\right) / k=a^{k}$. Now consider $a^{p+k_{f a}}{ }^{p+k} g$, which we may write as $w_{1} w_{2} u$ for some u. It is necessarily the case that $u / k=\left(w_{3} w_{4} w_{5}\right) / k$. It follows from theorem 4.4 that for some $w_{3}^{\prime}, w_{4}^{\prime}$ and w_{5}^{\prime} we have $u=w_{3}^{\prime} w_{4}^{\prime} w_{5}^{\prime}, w_{3}^{\prime} \in a^{*} f a^{*}$, w_{5}^{\prime} ends in g and $w_{1} w_{2}^{n} w_{3} w_{4}^{n} w_{5}^{\prime}$ is in L_{3} for every $n \geqslant 0$. But these strings have the form $a^{+} \mathrm{da}^{+} g$, and therefore cannot belong to L_{3}.

Theorem 6.6. The LR language $L_{4}=\left\{a^{m} b^{m+n} \mid m \geqslant 1,0 \leqslant n \leqslant m\right\}$ is not LL.

Proot: Assume that L_{4} is $L \dot{L}(k)$ and let p be the constant obtained for L_{4} from the First Iteration Theorem. Without loss of generality assume that $p \geqslant k$. Consider the string $a^{P_{b}}{ }^{p}$ in which the $a^{\prime} s$ are distinguished. From theorem 4.4 we obtain a factorization $\varphi=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of $a^{P} P^{P}$ such that $w_{1} w_{2}^{n} w_{3} w_{4}^{n} w_{5}$ is in L_{4} for every $n \geqslant 0$, from which it follows easily that w_{2} must consist entirely of a 's and w_{4} entirely of b's. Furthermore, $\left|w_{2}\right| \leqslant\left|w_{4}\right|$, for otherwise we could obtain strings with more $a^{\prime} s$ than b^{\prime} s for a suitably large value of n. In particular, $w_{1} w_{3} w_{5}$ is in L_{4}. Let $i=\left|\mathrm{w}_{2}\right|$; we know that $i \geqslant 1$. If w_{4} contains more than i b's then $w_{1} w_{3} w_{5}$ will contain more a 's thar b 's, which is not allowed. Therefore $\left|w_{2}\right|=\left|w_{4}\right|$; we have $w_{2}=a^{i}$ and $w_{4}=b^{i}$.

Fig. 17. An application of Theorem 4.4 to the language $a^{n} d a^{n} e+a^{n} f a^{n} g$. If this language is $L L$ then it must contain the strings $w_{1} w_{2}^{n} w_{3} w_{4}^{n} w_{5}^{\prime} \in a^{+} d a^{+} g$, which it does not.

Now consider the string $a^{P} b^{2 p}$. Since $w_{1} w_{2} \in a^{+}$and $p \geqslant k$ it must be the case that $a^{P} b^{P} /\left(\left|w_{1} w_{2}\right|+k\right)=a^{P} b^{2} P /\left(\left|w_{1} w_{2}\right|+k\right)$. Hence there is a factorization ($w_{1}, w_{2}, w_{3}^{\prime}, w_{4}^{\prime}, w_{5}^{\prime}$) of $a^{P} b^{2 p}$ such that $w_{1} w_{2}^{n} w_{3}^{\prime} w_{4}^{\prime n} w_{5}^{\prime}$ is in L_{4} for every $n \geqslant 0$, so that $w_{4}^{\prime} \in b^{+}$. In particular $w_{1} w_{3}^{\prime} w_{5}^{\prime}$ belongs to L_{4}. Let $\#_{a}$ be the number of $a^{\prime} s$ in $w_{1} w_{3}^{\prime} w_{5}^{\prime}$. Define $\#_{b}$ similarly, and let $j=\left|w_{4}^{\prime}\right|$. Since we must have $\#_{b} \leqslant 2 \#_{a}$ we must have $(2 p-j) \leqslant 2(p-i)$. It follows that $j \geqslant 2 i>i$. Hence $w_{4} \neq w_{4}^{\prime}$. But $w_{4} w_{4}^{\prime}=w_{4}^{\prime} w_{4}=b^{i+j}$, which is a violation of condition (3b) of theorem 4.4. Hence L_{4} cannot be LL. a

Theorem E.6. The LR language $L_{5}=\left\{a^{m_{b}} \mid m \geqslant n \geqslant 0\right\}$ is not LL.
Proot: (Figure 18.) Suppose that L_{5} is $L L(k-1)$ for some k and let p be the constant obtained by applying the Second Iteration Theorem to L_{5}. Consider the two strings $a^{p+k} b^{k}$ and $a^{p+k} b^{p+k}$, and distinguish the final p b 's in the latter string. According to the Second Iteration Theorem $a^{p+k_{b}} b^{p+k}$ has a factorization ($a^{p+k_{w_{1}}}, w_{2}, w_{3}, w_{4}, w_{5}$) such that

$$
\begin{aligned}
& \text { - } w_{2} \neq \Lambda \\
& \text { - } a^{p+k_{w}} w_{1} w_{2}^{n} w_{3} w_{4}^{n} w_{5} \in L_{5} \text { for every } n \geqslant 0
\end{aligned}
$$

From this we can deduce that $w_{2} w_{4} \in b^{+}$so that for a sufficiently large value of n we can obtain a string with more $b^{\prime} s$ than $a \prime s$ - a string which cannot belong to L_{5}. -

Note that it is possible to prove theorem 5.6 using the First Iteration Theorem and the technique applied in theorem 5.5.

Fig. 18. An application of Theorem 4.6 to the language $a^{m} b^{n}, m \geqslant n \geqslant 0$. Because $a^{p+k} b^{p+k}$ is sufficiently longer than $a^{p+k} b^{k}$ a pumping must occur among the $b^{\prime} s$.

Using L_{5} we easily obtain the following result.
Theorem E.7. The LL languages are not closed under right quotient with a regular sct.

Proof: It is easy to see that the language $a^{n} b^{n}$ is an LL language, and b^{*} is obviously a regular set. However

$$
a^{n} b^{n} / b^{*}=\left\{a^{m} b^{n} \mid m \geqslant n \geqslant 0\right\}
$$

is not an LL language, as we have just seen.
The Second Iteration Theorem is by its very nature not applicable to LL languages which are prefix-free, that is, to languages L for which $x \in L$ and $x y \in L$ imply $y=\Lambda$. Thus theorem 4.6 cculd not be used to prove any of theorems $5.2,5.3$ and 5.4. It is not known, however, whether there are languages which satisfy the First Iteration Theorem but which the Second Iteration Theorem can show are not LL, nor is it known whether one can always establish that a language fails to be LL via theorem 4.4 when that is the case.
L_{1} and L_{5} are from Rosenkrantz and Stearns [22]. L_{2} is taken from van Leeuwen [14]. L_{3} is taken from Bordier and Saya [7]. L_{5} abstracts the fatal difficulty, insofar as $L L(k)$ grammars are concerned, with the infamous dangling-ELSE introduced by the original ALGOL report [16] (and eliminated in the revised report [17]). Constructs such as

IF <bexp> THEN IF <bexp> THEN <stmt> ELSE <stmt>
in which the ELSE-clause might plausibly belong to either IF-THEN are allowed in PL/I [21] and Pascal [12]. The ambiguity is customarily resolved by associating an ELSE with the last previous unmatched THEN. It is claimed without proof by Aho, Johnson and Ullman [1] that such constructs are not LL ; applying the argument of theorem 5.6 allows us to establish this rigorously. A direct proof such as ours is necessary since the family of LL languages is not closed under homomorphisms or gsm mappings [22].

Theorem 5.8. The dangling IF-THEN-ELSE construct does not appear in any LL language.

Since this construct is, however, easily handled by a recursive descent compiler operating without backup, it follows that the $L L(k)$ languages form a proper subset of the family of languages which can be compiled by this technique, and are therefore not a perfect model of this family.

Conclusions

Theorems 4.4 and 4.6 provide a powerful and reasonably general technique for establishing that languages are not $\operatorname{LL}(k)$ when that is the
case. Previous results of this kind ([7], [14] and [22]) have generally been based on more complicated and less satisfying ad hoc arguments.

We leave open the question of whether satisfying the conditions of theorem 4.4 is sufficient to ensure that a language is $L L(k)$, although we do not believe that to be the case. The task of characterizing a family of languages by means of an iteration theorem appears, in general, to be a difficult one. Although a number of iteration theorems hav been established for several language classes, in only one case is the result known to be sufficient as well as necessary [24].

Finally, our arguments illustrate the advantages to be obtained from the careful analysis of derivation trees.

Acknowledgements

A stronger version of theorem 4.4 is presented here than was reported in [4], and the author is indebted to Bill Ogden, who also suggested the proof of theorem 5.5, for the improvement. Theorem 4.6 was inspired by an observation of Jan van Leeuwen's [14]. The suggestions and observations of Kellogg Booth and especially Professcr Michael Harrison are keenly appreciated. The author is also very grateful for Kimberly King's meticulous and invaluable refereeing.

Riseferencen

[1] A. V. Aho, S. C. Johnson and J. D. Ullman, Deterministic parsing of ambiguous grammars, C. $A C M$ 10 (1975) 441-452.
[2] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translating, and Compiling, Vols. I and II (Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973).
[3] Y. Bar-Hillel, M. Perles and E. Shamir, On formal properties of simple phrase structure \&rammars, Zeitschrift jür Phonetik, Sprachwissenschafi und Kommunikationsjorschung 14 (1961) 143-172. Also available in Language and Information by Y. Bar-Hillel (Addison-Wesley, Reading, Mass., 1964).
[4] J. C. Beatty, Iteration theorems for LL(k) languages, Proceedings of the Ninth Annual Syaposium on Theory of Computing, Boulder, Colorado (1977) 122-131.
[5] J. C. Beatty, Iteration theorems for the $L L(k)$ languages, Ph.D. Thesis, University of California, Berkeley, Calfornia (1977). Available as UCRL,-52379 from the Technical Information Department, Lawrence Livermore Laboratory, Livermore, California.
[6] L. Boasson, Two iteration theorems for some families of ianguages, J. Comput. System Sci. 7 (1973) 583-596.
[7] J. Bortior and H. Saya, A necessary and sufficient condition for a power language to be LL(k), Computer Journal 16 (1973) 351-356.
[8] B. M. Brosgol, Deterministie translation grammars. Ph. D. Thesis, Harvard University (1974).
[9] M. M. Geller, Compact parsers for deterministic languages, Ph. D. Thesis, University of California, Berkeley, California (1974).
[10] M. M. Geller and M. A. Harrison, On LR(k) grammars and languages, Theoretical Computer Science 4 (1977) 245-276.
[11] M. A. Harrison and I. M. Havei, on the parsing of deterministic languages, J. ACM 21 (1974) 525-548.
[12] K. Jensen and N. Wirth, PASCAL User Manual and Report, Lecture notes in computer science 18 (Springer-Verlag 1974).
[13] K. N. King, Iteration Theorems for Families of Strict Deterministic Languages, Technical Report UCB-CS-KK-78-01, University of California, Berkeley, California (1978).
$[14] \mathrm{J}$. van Leeuwen, An elementary proof that a certain context-free language is not $\mathrm{LL}(k)$, and a generalization, notes (1972).
[15] P. M. Lewis II and R. E. Stearns, Syntax-directed transduction, J. ACM 15 (1968) 465-488.
[16] P. Naur (ed.), Report on the algorithmic language ALGOL 60, C. ACM 3 (1960) 299-314.
[17] P. Naur (ed.), Revised report on the algorithmic language ALGOL 60, C. ACM 8 (1963) 1-17.
[18] A. Nijholt, A left part theoren for grammatical trees, Discrete Mathematics 25 (1979) 51-63.
[19] W. F. Ogden, Intercalation theorems for pushdown store and stack languages, Ph.D. Thesis, Stanford University, Celifornia (1968).
[20] W. Ogden, A helpful result for proving inherent ambiguity, Mathematical Systems Theory 2 (1968) 191-194.
[21] PL,/I language specifications, IBM document GY33-6003-2 (1970).
[22] D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic top-down grammars, Information and Control 17 (1970) 226-256.
[23] E. Soisalon-Soinen, Characterization of $\mathrm{LL}(k)$ languages by restricted $\operatorname{LR}(k)$ grammars. Ph. D. Thesis, University of Helsinki.
[24] D. S. Wise, A strong pumping lemma for context-free languages, Theoretical Computer Science 3 (1976) 359-369.

[^0]: - Research supported by the U. S. Earth Resources and Development Administration under Contract No. W-7405-Eng-48 and by the National Research Council of Canada under grant A-3022.

