
ELSEVIER 

An Intemational Journal 
Available online at www.sciencedirect.com computers & 

.c,=.c. ~o , .~cT.  mathematics 
with applications 

Computers and Mathematics with Applications 48 (2004) 1677-1692 
www.elsevier .com/locate/camwa 

Genuinely Nonlinear Models  for 
Convect ion-Dominated  Problems  

T .  ILIESCU 
Depar tment  of Mathematics ,  Virginia Polytechnic Ins t i tu te  and State University 

456 McBryde Hall, Blaeksburg, VA 24061-0123, U.S.A. 

(Received October 2002; revised and accepted October 2003) 

A b s t r a c t - - T h i s  paper introduces a general, nonlinear subgrid-scale (SGS) model, having bounded 
artificial viscosity, for the numerical simulation of convection-dominated problems. We also present a 
numerical comparison (error analysis and numerical experiments) between this model and the most 
common SGS model of Smagorinsky, which uses a p-Laplacian regularization. The numerical experi- 
ments for the 2-D convection-dominated convection-diffusion test problem show a clear improvement 
in solution quality for the new SGS model. This improvement is consistent with the bounded amount 
of artificial viscosity introduced by the new SGS model in the sharp transition regions. @ 2004 
Elsevier Ltd. All rights reserved. 

K e y w o r d s - - S u b g r i d - s c a l e  model, Artificial viscosity, p-Laplacian. 

1. I N T R O D U C T I O N  

One of the fundamental difficulties in the numerical study of convection-dominated problems 
is that considerable information can be contained in small scales, below the level of the finest 
mesh. To represent these effects on the larger scales, different methodologies have been used in 
practical calculations. These methodologies have been successfully analyzed and implemented in 
the linear case of convection-diffusion problems (the streamline-diffusion method is probably the 
most successful in this class). For nonlinear problems (e.g., the Navier-Stokes equations), one of 
the most common methodologies is to use various subgrid-scale (SGS) models (see, e.g., [1-3], 
for a survey of these models). However, very little rigorous mathematical analysis has been done 
validating the effects of these nonlinear SGS terms on the underlying continuum model and on 
the discretization ultimately employed. 

The goal of this paper is twofold. First, we introduce a general, nonlinear SGS model, hav- 
ing bounded artificial viscosity. Then, we start a careful comparison of this new SGS model 
with the most common SGS model of Smagorinsky [4], which uses a p-Laplacian regularization. 
Specifically, we present the error analysis for the corresponding finite element method (FEM) 
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discretizations of the two SGS models, as well as numerical experiments for the 2-D convection- 

dominated convection-diffusion test problem with homogeneous Dirichlet boundary conditions 

- z A u  + b V u  + cu : f ,  in ~, (1) 

u = 0, on  0 ~ ,  (2) 

where ~ is a polyhedral domain in ]~d (d = 2,3), b : 9 --~ ~d, c : ~ --~ R, f : ~ --~ ~, and 
0 < s << 1. This test problem is a first and essential step in careful numerical comparison of 
the two SGS models, in that there is little (if any) hope of understanding the effects of these 
SGS terms upon the discretization of more general, nonlinear problems (as the Navier-Stokes 
equations), without studying these effects on (1),(2), first. 

The most common approach for the discretization of the linear problem (1),(2) is the stream- 
line-diffusion finite element method (SDFEM). SDFEM, introduced by Hughes and Brooks [5], 
and mainly analyzed by Nivert [6,7] and Eriksson and Johnson [8], is a great improvement of 

the common upwind type methods and has been successfully implemented and tested on a wide 

variety of problems [9,10]. SDFEM stabilizes (1),(2) in a consistent way, introducing a linear 

amount of artificial viscosity (AV) in the direction of the flow, and reducing the need for extra 

stabilizing AV. Along these lines, a further way to reduce the need for extra stabilizing AV is to 

apply the AV locally, via a Smagorinsky-type SGS term of the form 

added to the discretization of the left-hand side (LHS) of (1). In the above formula, I '  ] is the 
Euclidian norm, h represents the mesh-width in the discretization of (1),(2), u h is the discretized 
solution, and #, a, and p are user-specified parameters. This extra nonlinear term introduces 
the AV in a selective way: it introduces a negligible amount of AV in smooth regions (where 
]•uh[ is small), and a stabilizing amount of AV in the sharp transition regions (where IVu h] ,,~ 
O(h-1)) .  The p-Laplacian AV term (3) stabilizes the diseretization and also spreads the small 
(below the mesh-width) scales onto the computable mesh. This p-Laplacian AV term has been 
used in numerous challenging numerical applications; the Smagorinsky [4] model, which uses a 
p-Laptacian AV term, is one of the most popular models in the numerical simulation of turbulent 
flows [1-3]. However~ very little rigorous analysis, mathematical or numerical, has been done 
validating the corresponding continuum and discretized models (see [11-13]). 

In Section 2, using the p-Laplacian's strong monotonicity, Minty's lemma [14,15], and discrete 
inverse Sobolev's inequalities, we prove existence, uniqueness, max-norm stability, and a priori 
error estimates for u h, the approximate solution of the discretization of (1),(2) including the 
nonlinear AV term (3). This analysis follows the approach used by Layton in [13] and coraplements 
the one on the pure p-Laptacian problem [16]. 

The p-Laplacian AV term (3), despite its well-known (see [13]) qualities, has the drawback of 
introducing an unbounded amount of AV in sharp transition regions, whereas just O(h) AV is 
needed. Motivated by this drawback, we introduce in Section 3 a general, nonlinear, bounded AV 
term of the form 

added to the discretization of the LHS of (1). The parameters in (4) are the same as those in (3). 
The function a(.), however, instead of being a power function (and thus unbounded) as in the 
p-Laplacian AV term (3), is a general bounded, smooth, nonnegative, real-valued function, whose 
derivative is also bounded (see Figure 1). 

The nonlinear AV term (4) introduces a bounded amount of AV in the sharp transition regions, 
and almost no AV in the smooth regions. 

Since the nonlinear bounded AV term (4) has no monotonicity properties, the error analysis 
for the corresponding model is more challenging than the one for the p-Laplacian AV model. In 
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Figure 1. The graph of a(.); the horizontal axis represents Ih•uhl. 

Section 3, we prove existence, uniqueness, and a priori error estimates for U h, the approximate 
solution of the discretization of (1),(2) including the nonlinear AV term (4). 

Numerical experiments reported in Section 4 show that, for problems exhibiting very sharp lay- 
ers, the bounded AV model shows a visible improvement in solution quality versus the p-Laplacian 
AV model. 

These numerical experiments, supported by a careful mathematical and numerical analysis, 
which we begin here, make the bounded nonlinear AV SGS model a promising approach for the 
numerical study of convection-dominated problems, such as turbulent flows. 

2. E R R O R  A N A L Y S I S  F O R  T H E  p - L A P L A C I A N  AV M O D E L  

We begin by introducing the mathematical structures needed for the numerical analysis of 
the p-Laplacian AV model. Let IIh(~) denote the finite element partition of ~ into face-to-face 
d-simplices (d = 2, 3) with mesh-width (maximum d-simplex diameter) h. The minimum angle 
in IIh(~), 0min, is assumed to be bounded away from zero uniformly in h. The norm I1" H denotes 
the usual L2(g~) norm, and [[. IIL~ denotes the LP(~) norm. The norm on W -l'q, the dual of the 
Sobolev space Wlo 'p, is defined by 

II'~[Iw . . . .  :=  sup ((~, V) 
o+v~w~,~ IlVvlIL~' 

where 1/p + 1/q = 1. 
Let X = H01(~t), its norm [[-I[z :--]]" [[1,a, and (.,-) the L2(gt) inner product. The usual weak 

formulation [9,17,18] of problem (1),(2) is to find u E X satisfying 

e(Vu, V v ) + ( b .  Vu, v)+(cu, v ) = ( f , v ) ,  V v e X .  (5) 

We define an energy-norm associated with (5) 

IIIvll[ := (EIIWll 2 + 11~112) 1/2 • 

The spaces X h are associated conforming finite element spaces, X h C X, and B(-,-) represents 
the usual bilinear form associated with (5). Specifically, for u, v E X 

B(u, v) := e(Vu, Vv) + (b.  Vu, v) -[- (cu, v). (6) 
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Using the Riesz representation theorem, define AVp: Wd 'p ~ (W~'P) ' by 

(AVp(u),v) : = p , h  °- ((IhWl)"-2W, W) ,  V~,~ ~ Wo ~,p, J )  

with # > 0, cr > 0, and p k 2. 
Since AVp(.) is associated with the ~Laplacian, its monotonicity properties are documented 

in many places (see, e.g., [14,15]). We summarize them here, 

( A V p ( u )  - A V p ( v ) ,  u - v )  >_ # C l ( p ) h ~ + P - 2 1 1 V ( u  - v)IIPL,, 

',lAG(u) - AVp(v)llw-~,~ < I~Cffp)h"+P-2rP-21[V(u - '-')ILL,', 

(8) 
(9) 

where CI(p) and C2(p) are constants independent of h, r : :max{i lWllL, ,  !lVvllL,,}, and 1/p + 
1/q = 1. 

By a coercivity argument [10], there exists a unique solution of (5), provided that there exists 
a constant & such that 

inf [ - c ( x ) - 2 ( V ' b ) ( x )  > a > O .  (10) 
x~gt 

We now begin the study of the p-Laplacian AV model for the convection-dominated convection- 
diffusion problem (1),(2), given by 

f fh~'( lhW," i ' -~W, L W ) + ~ ( V ~ , % V v ) + ( b .  W t . ) + ( ~ L ~ ) : ( f , . ) ,  Vv e X'< (11) 

Since the above model is nonlinear, it is not altogether obvious that an approximate solution U h 

exists. The following lemma answers this question. 

LEMMA 2.1. (Existence and uniqueness of uh.) There exists a unique solution for (11). 

PROOF. The proof follows from the coercivity of the bilinear form in (11), the strong monotonic- 
ity (8) of the p-Laplacian AV term, and Minty's lemma [14,15]. 

For the error analysis we will need to use discrete tools linking the L2(~) and LP(~) norms. 
In particular, most commonly used finite element spaces satisfy the following inverse inequality 
and Poincar4 inequality: 

C~hliW, II ~ IMI < g~llWll, vv e x'L (12) 

where C1, C2 are constants independent of h. II 

We will also need the following LP-L2-type inverse inequality [13, Lemma 2.1]. 

LEMMA 2.2. Let 0mfn be the minimum angle in the triangulation and M k = {v(x) : v E C(~), 
VlT E Pk(T), VT E IIh(f~)}, Pk being the polynomials of degree < k. Then, there is a C = 
C(Omin,P, k) such that for 2 < p < oo, d = 2, 3, and all v E M k 

!lW[js.(r~) < ch (~/~)((2-p)/p)HwlI. (13) 

A stability result for method (11) with p-Laplacian regularization is given by the following 
lemma. 

LEMMA 2.3. I f  p > d, then 

IIfll and (14) 

IId ll _ _< ." , ( i s )  
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where  C is a generic  cons tan t  i ndependen t  o f  h. 

PROOF. Setting v -= u h in (11), we get 

, h e * ,  -*- I lwhl l~ + ~ < , u  h) = (f, uh). 
Using (10), (12), the above equality, and H6ldeffs inequality, we get 

( c ;  2~ + &)Ilu~ll 2 -< UJI Iluhll , and 

~h °+ ' -~  I I w ~ l I ~  ~ Ilfllw-,,~ I I w ' ~ l l . ,  

where 1 /p  + 1/q = 1. Therefore, 
tlfll II~"ll _< 

- 2  - '  C; e + a  

which proves (14), and 

#h~+p_ 2 V u  h p-1 < tlflIw . . . . .  
L p  - -  

which implies 

i lwhl l~ .  < _l/(p_l)h_(~+~_a/(p_~)llf 1/(p-1) - -  I I W - l , q  ' 

By the Sobolev embedding theorem, we have that, for p > d, 

II~hllL~ < c(a) I Iv , , " l l , .  
From the above two inequalities, (15) now follows. I 

2.1. A Pr ior i  E r r o r  Analysis  

An a pr ior i  error estimate for method (11) is given by the following theorem. 

THEOREM 2.1. S u p p o se  tha t  X h satisf ies estimate (13) and tha t  in f~ex ,  IIVwIIL, < cllvu]l 
Then,  

~,ch"+"-~ IIv (~, -~,'~)II.+P ~llv(u - ~,")11~ + I1~,- ~,"11 ~ 
_< c inf  { l i ~  - ~11 ~ + ~ l lV (~  - ~) l l  2 + I IV (~  - ~)1[ ~ + ~ h " + " - ~ l l V ( ' ~  - w ) l l ~  

w ~ X  h 

+#2~--i h2O-+2(p-2)+d((2-p)/p) II v(~ - ~)II g,, II w II ~(Z- 2) } 

+ff~C~-~h~+~(~-~)+d((2-~)/~) ii v,.,ll ~,g -~, 

where  C is a generic  cons tan t  i ndependen t  o f  h. 

PROOF. The error bound is proved by using Galerkin orthogonality and the monotonicity of 
AVp(.)  (8). First, the error equation is derived. Subtracting (11) from (5), we get 

- ( A V p ( u h ) , v ) + B ( e , v ) = O ,  V v E X  h, (16) 

where e = u - u h. Let w E X h be arbitrary and define ¢ = w - u h E X h, fl = u - w (note that 
e = ~ ÷ ¢). Adding and subtracting terms as appropriate and using the bilinearity of B(., .), we 
get 

(AVp(w) ,  v) - (AVp (uh) , v) + B(¢, v) = (AVp(w) ,  v)  - (AVp(u) ,  v)  

-B(rT ,  v) + (AVp(u) ,  v) ,  g v  e X ~. (i7) 

Using (9), we also have 

(AVp(u) ,  v) = (AVp(u) ,  v) - (AVp(O), v) s IIAVp(u) - AV,,(O)I Iw-, ,~ IIWll 

<_ ~c~(p)h~+"-211Wll~Y ~ IlWlt. (is) 
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If we set v = ¢ (since ¢ e X h) and use the strong monotonicity of AVp(.) (8) and the coercivity 
of B(-, .) on the LHS of (17), the local-Lipschitz continuity of AVp(.) (9) and the continuity of 
B(., .) on the right-hand side (RHS), and (18), we obtain 

~tC1 (p)h~+P-2IIV¢[I~ + allVCH 2 + 5I[¢]I 2 -< #C2(p)h~+P-2rP-2HVCHL~ ]IV~]ILp + atlV~[I iIV¢ll 

+K~IiV~lt il¢ll + K2II~II II¢ll 

+~C2(p)h~+P-2tIVuI]E1HvCilz~, 

where r = max{llVUltL, , IIVW[IL~}. 
Using Lemma 2.2 and the Cauehy-Sehwarz inequality on the RHS yields 

#h~+P-2CI(p) NV¢ifL~ + calIV¢ll 2 + C]]¢tl 2 < #2C(p)z-lrU(P-2)h2°+2(P-2)+d((2-P)/P)IlVrIN2Lp 

+~C(p)s-~h~+2(~-2)+d((2-P)/~) I IwI l~  -2 

+c~llv~II ~ + cllv,II ~. 

Since Ilu~ +u2 IIPL~ < C(p)(Hu~]fL~ + Ilu21fL~), and r <_ CIIVU[[L~ at infimum, the result now follows 
taking the infimum over w E X h of the above inequality and using the triangle inequality. | 

REMARK 2.1. L p stability of the L 2 projection into finite element spaces is proved in [19]. 

REMARK 2.2. Theorem 2.1 also proves the convergence of u h. Indeed, since a > 0, p >_ 2, and 
d = 2, 3, we get 2a + 2(p - 2) + d(d - p)/p > O. 

REMARK 2.3. The convergence of u h is not uniform in ~. However, for many practical choices of 
the parameters c~ and p, the scaling between s and h is reasonable. For example, in 2-D (d = 2), 
for p _> 3 and a > 1, we have 2a + (p - 2)(2 - 2/p) > 10/3, and thus e > 0(h1°/3), in order to 
get convergence of u h. In 3-D (d = 3), for p _> 3 and cr _> 1, we have 2c~ + (p - 2)(2 - 2/p) > 3, 
and thus E > O(h 3) in order to get convergence of u h. 

3. E R R O R  A N A L Y S I S  F O R  T H E  
G E N E R A L  B O U N D E D  AV M O D E L  

In this section, we study the general, bounded AV model used for the discretization of the 
convection-dominated convection-diffusion problem (1),(2) 

~h~(a(ihV~hi) Vuh,Vv)+~(Wh,Vv)÷(b.V~h,~)+(cuh,~)=(/,,), v v ~ x  ~. (19) 

We start  with a very general AV model (i.e., a very general function a(.)), and then we impose 
restrictions on it in order to obtain existence, uniqueness, and convergence for the solution of 
the discretized problem. In particular, we prove an a priori error bound for u h, the approximate 

solution of (19). 
Here, cr > 0 and # > 0 are parameters to be determined, and a(.) is a smooth, bounded, 

nonnegative function whose graph looks like tha t  in Figure 1. 
The shape of a(.) makes the AV term tzh'~(a(Ih~yuhl)Xyuh , ~7v) fit the description we gave in the 

introduction: the amount of AV introduced in the discretization (19) is negligible in the smooth 

regions (where the gradient is small) and bounded where the gradient is large 

( ) f h~ (Vuh' Vv) ,  where IVuhl ,.~ 0 (.~--1) , 
#h~ I h~uh lp-2Vuh 'Vv  ~ hp+~-2 (Vuh, Vv) ,  where f~7uh I ~ 0(1) .  

We now seek conditions upon a(.) and #, sufficient for the existence, uniqueness, and conver- 
gence of u h. 
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LEMMA 3.1. (Existence of uh.) Assume that b(.) and c(.) are smooth enough functions and 
that (10) is satisfied. 

Then, provided a(.) >_ O, there exists a solution to (19), and we have the following a priori 
bound: 

[luhlll < C( f , x ,h ) := ]ifH-1 
~/(1 + C22) + 5 / ( 1  + C~2h-2) ' (20) 

where C1, C2 are constants independent of h. 

REMARK 3.1. Condition (10) is a common condition that ensures existence and uniqueness of u, 
the solution of the continuous problem (5). 

PROOF. Since dim(X h) < o% existence will follow from Schauder's fixed point theorem once we 
have proved an a priori bound on any possible solution u h. 

Using (12), we get 

lluh]i21 and ][uhll 2 >_ lluhli21 (21) 
[IVuhll~ >- 1 + c~' 1 + c ~ h  -:'  

where 6'1, C2 are constants independent of h. 
Letting v -- u u in (19) yields 

#h¢(a(lhVuhL) V u h , V u h ) + ~ ( V u h , V u h ) + ( b .  V u h , u h ) + ( c u h , u h ) = ( f ,  uh ) . (22) 

Since a(.) is nonnegative and # :> 0, we have 

.h  e (a (IhVu~l) w ~, w ~) > o. 

Integrating by parts, using (10) and the above inequality on the LHS, and the Cauchy-Schwarz 
inequality on the RHS of (22), we have 

Using (21) in the above inequality, we get 

S + 1 -{- C12h -2 Iluhl121 -~ l]fll-1 I[uhlll , (23) 

which yields (20). Estimate (20) and Schauder's fixed point theorem prove existence of u h, the 
solution to (19). l 

REMARK 3.2. Notice that for the existence of u h, we did not impose any new conditions on a(.) 
(other than those already imposed in the beginning of the section) or on #. Thus, any function a(.) 
whose graph resembles the one in Figure 1 is admissible. 

The following proposition proves the uniqueness of u h, with a very general condition on a(.). 
Note that usually the uniqueness is proved by means of monotonicity arguments. These arguments 
fail in this case, and we have to use nontrivial nonlinear variational analysis arguments [15] 
instead. 

LEMMA 3.2. (Uniqueness of uh.) Assume that the conditions in Lemma 2.2 are satisfied and 
that 

a'(x) > 0, Vx > 0. (24) 

Then, there exists a unique solution u h to (19). 

PROOF. Assume there are two solutions u~, u h in X h. Subtracting the two corresponding equa- 
tions, we get 

.h  ° (~ (IhW~l) W~ - a (IhW~D W~, W) + ~ (W~ - W~, W) 
+ ( b - V u ~ - b . V u  h , v ) + ( c u  h - c u  h,v) = 0 ,  V v C X  h. 
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Letting v :=u[ ~ -u~ ' E X a, integrating by parts, and using (i0) in the above equation, we have 

, h  ~ (~ ( Ihw~l )  w ~  - ~ ( Ihw~])  w ~  ~, v ( ~  - ~ ) )  
(25) 

+~ Ilv (~) - ~ ) i !  ~ + a II ( ~  - ~ ) l l  ~ -< o. 

The first term in the above inequality can be rewritten as 

h 2 

Consider now the following functional: 

where 

Notice that  

I :  H 1(~) ~ R, 

A : [0, cc) ~ R, 

I (U)  := ~ A(IVU(x)I) dx, 

A(x) = ta(t) dt. 

dX(U, Y) = ~f A (IV~I)~-~VVdx = a(IVUI)VUVV dx, 

where dI(U, V) is the G£teaux derivative of I at U in the direction V. 

Letting U1 := hul, Us : =  hu2, and V := U1 - U 2 ,  (26) reads 

#h° (dI(U1, V) - dI(U2, V)), 
h 2 

which is equal to 

#h ° fo 1 d h2 -~dI(U2 + t(U1 - U2), V) dt 

h2 ~ a(IV(U2 + ~(U1 - Us))I)V(U2 + t(U~ - U~))VV dx dt 

= h~ ~ o ~ a ' ( I V ( U ~ + t ( U ~ - ~ ' ~ J  ~-U~KU~ =U--~I v ~ + t ( U ~ - U ~ ) ) V V  

+ a([V(U2 + t(U1 - U2))[)IVV[ 2 dxdt. 

Since a '(x) _> 0, Vx _> 0 by (24), and a(x) _> 0, Vx > 0, the above expression is nonnegative. 
Thus, (26) is nonnegative; nonnegativity of (26) and (25) implies 

~l tv  ( ~ -  ~@)11~ + ~ II(~l~ - ~@)ll ~ -< o. 

Therefore, sin~e ~ > O, a > O, and ~) - ~ c X h c Ho~(a), we get 

~1 ~ = u~ ~, m 

REMARK 3.3. Note that  condition (24) is satisfied by any function a(.) whose graph resembles 
the one in Figure 1. 

3.1. A Priori E r r o r  Ana lys i s  

In this section, we present the a priori error analysis for the approximate solution U h. For a 
very general function a(.), this a priori error analysis is summarized in the following theorem. 
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continuous on ~ .  Further suppose 

a(x) < 1, 

Then, we have the following a priori estimate: 
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Assume  that a(.) is a positive, increasing function and that  b(-) and e(.) are 

IIv (~- ~) I1~ ÷ ~ I1(~- ~)11 ~ 

÷! ( / 
where C1, 6'2, K1, K2 are constants independent o f  h, and & is the constant  given by (10). 

PROOF. Subtracting (19) from (5), and using the fact that X h C_ X ,  we get 

- ~ h  ~ ( a ( IhWhl )  W h ,vv)  + ~ ( V ( u - u h ) , W )  ÷ ( b . V ( u - u h )  ÷ c ( u _ u ~ ) , v )  = 0, 

V v E X  u. 

Let w C X h. Set e : = u -  u h, ~ = w - u ,  ~ = w - u u C X h, and notice that e = ~ - ~ .  Therefore, 
the above equation reads 

e(V~, Vv) + (b .  Vqo + e~, v) -- s(V•, Vv) + (b .  V ,  + c,, v) +/zh ~ (a (h I w~ l) wL w).  
Setting v = ~ yields 

Integrating by parts and using (10) on the LHS, and the Cauchy-Schwarz inequality on the RttS, 
we have 

- 1 ~ _~tl~[l~ 

+ ~1 (~2he~a (Shrub l) II II , Vuh,, ~ + ¼ IlV~ll 2. 

Notice that the functions b(.) and c(.) are continuous on ~ (by hypothesis) and therefore bounded. 
Using this remark and (27), we have 

~ 2 ÷~;h~ tlw~ll ~ + ~llV~ll , 

where K1, / (2  are constants independent of h. Using (12) and (23) yields 

Ilwhll <_ 
(~1 + c ~ /  (1 + c~)) + ~c~1~/¢~ + c ~  

Thus, (28) becomes 

1 .h~'ltfll_~ 

v • > o. (27) 
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By the triangle inequality, we get 

1 .h~llfl l_~ 

÷ ~  e ( ~ / ( 1  -t- C~)) +&C[h2/~/1 -FC~h 2 

Notice tha t  e = ~ - r / =  u - u h does not depend on w; thus, taking the infimum on w of both  
sides of the above inequality proves the theorem. | 

REMARK 3.4. The a priori error estimate in Theorem 3.1 gives convergence of the approximate 

solution u h to the exact solution u. The convergence is not uniform in c. However, by choosing a(.) 

suitably, the discretization can be made to be exponentially fitted in all transition regions. Thus, 

an attempt to prove uniform in c convergence would be legitimate in this case. 

REMARK 3.5. Inequality (27) is satisfied by any function whose graph resembles the one in 

Figure i, and allows us to introduce only O(h ~) AV in the sharp transition regions. 

Summarizing the results in this section, for any parameters /z _> 0 and ~r _> 0, and for any 

smooth function a(.) satisfying 

0 < a(z) < 1, Vz  >_ 0, 

0 _< a ' (x) ,  Vx _> 0, 

we proved existence, uniqueness, and convergence for the solution u h of (19). Notice tha t  although 
our results hold true for a more general function a(-) satisfying the above relations, in practice 
we use a function whose graph resembles the one in Figure 1, introducing a negligible amount  of 
AV in the smooth  regions, and only O(h ~) in the sharp transit ion regions. 

I I - - ' r ' - "  I I I I I 
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

h h Figure 2. The graphs ofa(Ih~Yu t) and IhVu l; the horizontal axis represents Ih~uhl. 
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Figure 3. Example 1, the exact solution: surface plot and contour lines, h -- 1/64. 

4. N U M E R I C A L  E X P E R I M E N T S  

In this section, we present numerical tests for the SDFEM, the p-Laplacian AV SGS method,  
and the bounded AV SGS method.  All three methods are applied to two challenging problems 
with sharp layers. These problems are catastrophically s tructural ly unstable (small per turbat ions 
in the da ta  result in dramat ic  unphysical oscillations, overshooting, and undershooting in the 
approximate  solution), a characteristic feature of more general nonlinear flows (e.g., turbulent  
flows). 

The boundary  value problem (1),(2) is solved on the unit square $2 = (0, 1) × (0, 1) by using a 
finite element discretization with conforming piecewise quadratics on a uniform mesh of isosceles 
right-angled triangles, with mesh-width h. The nonlinear problems (11) and (19) were solved 
by using a Picard- type iterative process (at each i teration we lagged the nonlinear term).  All 
the matrices and the corresponding right-hand sides were assembled by using a second-order 
quadrature  rule, and the resulting linear systems were solved by using the conjugate gradient 
squared (CGS) method  [20]. 

EXAMPLE 1. This problem is a slight modification of the one used as a benchmark  in [21] and 
has as the exact solution a circular blob (see Figure 3) with ext remely sharp layers. We made 
the following parameter  choices in (1),(2): E -- 10 -3,  c = 2. The convection field was chosen as 

b(x, y) = ( - ( 2 y -  1)(r0 ~ - ( x -  ~0) 2 - ( y -  y0)2), ( 2 ~ -  1)(to ~ - ( ~  - x 0 7  - ( y -  y0)2)), 

for 0 < (x - x0) 2 - (y - y0) 2 < r0 ~ and b = (0, 0) otherwise, and the r ight-hand side and the 
boundary  conditions were chosen such tha t  

1 aretan [1000 (r0 ~ - (x - x0) 2 - (y - yo)~)] 
~(x, y) = ~ + ~ 

with x0 = Yo = 0.5 and r0 = 0.25, is the exact solution of (1),(2). Note that ,  even though 
our analysis considers the homogeneous problem (1),(2), the same analysis carries over in a 
straightforward way to the nonhomogeneous case. 

First,  we apply the usual SDFEM to problem (1),(2) [10], 

z (Vu h,Vv) + ( b .  Vu h,v) + (cu h,v) + E 5 ( -zAu h + b .  Vu  h + c u a , b . V v ) T  

Tenh (29) 
= ( f , v ) +  E 5(f,b" VV)T, Vv e X h, 

T E r I  a 

where 6 is a user-specified parameter .  In our calculations, we used 5 = h, which is probably the 
most  popular  choice in SDFEM. 
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Figure 4. Example 1, the usual SDFEM: surface plot and contour lines~ $ ~- h, h -= 
1/32. Note the poor solution quality (smearing, overshooting, and undershooting). 
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Figure 5. Example 1, the p-Laplacian AV SGS method: surface plot and contour 
lines; # = 1, a = 1, p = 3, h =- 1/32. Note the improvement in solution quality over 
Figure 4 (much smaller overshooting and undershooting). 

The graph (surface plot and contour lines) of the corresponding approximation u h is given in 

Figure 4. Note the poor solution quMity: dramatic overshooting and undershooting. 
Next, we apply the p-Laplacian AV SGS method (11) to (1),(2). Here, we used the following 

values for the user-specified parameters: ~ = 1, a = 1, p = 3. The graph (surface plot and 
contour lines) of the corresponding approximation u h is given in Figure 5. The p-Laplacian AV 
model introduces AV in a selective way (only in the sharp transition regions). This yields a 
visible improvement in solution quality (a clear reduction of the amount  of overshooting and 

undershooting). 
The last model tested is the general, bounded AV SGS model (19). For the user-specified 

parameters we made the following choices: tt = 1, a = 2, a(t) = -0 .02  + 1/(1 + 49e-s'Tt). 
The choice of a(.) needs explanation. As mentioned at the end of Section 3, an "admissible" 
function a(.) should resemble the "S-shaped" graph in Figure 1 and should also introduce a 
nonnegligible amount is of AV only where IUuhl ~.. O ( h - 1 ) .  Thus, the user has to decide when 
exactly the gradient is "large", tha t  is, for what  value of IhXJuh I the value of a(.) should become 
nonnegligible. For this test problem, our choice was motivated by the parameter  choice for the 
p-Laplacian AV term. For clarity, for the above parameter choices, we present in Figure 2 the 
graph of a(.) against the graph of the corresponding term in the p-Laplacian AV term (i.e., 

IhWh0. 
The graph (surface plot and contour lines) of the approximation u h of the general, bounded 
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Figure 6. Example 1, the improved AV SGS method: surface plot and contour 
lines; # ---- 1, a = 2, a(t) = -0.02 + 1/(1 + 49e-5'Tt), h = 1/32. Note the visible 
improvement over Figure 5 (sharper layer). 

Table 1. Example 1, norms of the errors for the three different discretizations, 
where "E" represents the error. The bounded, nonlinear AV SGS model performs 
consistently better than the p-Laplacian AV SGS model. 

h Norm 

1 IIEIIL~ 
16 IEIH1 

1 IIEIIL: 
32 JE]Hx 

1 [[EJJL2 
64 IEIH1 

1 IIEIIL~ 
128 I E I m  

SDFEM p~Laplacian AV Bounded AV 

0.450+0 0.391+0 0.255+0 

0.251+2 0.111+2 0.116+2 

0.130+0 0.138+0 0.975-1 

0.136+2 0.943+1 0.918+1 

0.517-1 0.960-1 0.582-1 

0.774+1 0.971+1 0.794+1 

0.124-1 0.610-1 0.214-1 

0.375+1 0.771+1 0.444+1 

z 
o,1 Q,.V, o,~ o,4 0.5 ~.6 o.7 0,0 

Figure 7. Example 2, the exact solution: surface plot and contour lines; h ---- 1/64. 

AV m o d e l  (19) is g iven  in F igu re  6. T h e  so lu t ion  qua l i ty  is b e t t e r  t h a n  t h e  one in F igu re  5, in 

t h a t  t he  con tour  l ines are  much  t ighter .  Th is  i m p r o v e m e n t  is due to  t h e  bounded a m o u n t  of AV 

in t roduced  by (19) in the  sharp  t r ans i t ion  regions,  jus t  enough  to  sp read  t h e  smal l  scales on the  

resolvable  mesh.  

Since we know the  exac t  solut ion,  we can make  more  precise t he  above  discussion and ca lcula te  

the  n o r m  of t he  er ror  in t he  th ree  d iscre t iza t ions .  In  Tab le  1, for different  m e s h - w i d t h s  (h = 1/16,  
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h = 1/16. 

Example 2, the usual SDFEM: surface plot and contour lines; ~ = h, 
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Figure 9. Example 2, the p-Laplacian AV SGS method: surface plot and contour 
lines; # = 1, cr = 1, p = 3, h = 1/16.  
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Figure 10. Example 2, the improved AV SGS method: surface plot and contour 
lines; ~ = 1, ~ = 2, a(t) ---- - 0 . 0 2  -~ 1/(1 -- 49e-s'Tt) ,  h = 1/16.  Note the visible 
improvement over Figure 9 (sharper layer). 

h = 1 / 3 2 ,  h -- 1/64, h -- 1/128), we present the L2-norm of the error (denoted by NEIIL2), and 
the H l - semino rm of the error (denoted by IEIH1). 

The bounded AV model performs consistently better  than  the p-Laplacian AV model: for 

h = 1/128 the L 2 norm of the error is almost three times smaller for the bounded AV model. 
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Both nonlinear AV models perform better than the SDFEM for the coarse meshes (h = 1/16, 

h = 1/32), and worse for the finer meshes (h = 1/64, h = 1/128). 

EXAMPLE 2. This problem, known as the "skew-step" problem, is a slight modification of the 
benchmark used in [21]. It  has a steep internal layer, which makes it numerically unstable. 
In (1),(2), we made the following parameter  choices: s -- 10 -3, b = (1, 0.5), c ---- 2. The right- 

hand side and the boundary  conditions were chosen such that  

2 
u(x , y )  = - a r c t a n ( 1 0 0 0 ( - 0 . b x + y  - 0 . 2 5 ) )  

is the exact solution of (1),(2). 

First, as in Example 1, we apply the usual SDFEM (29) to (1),(2), with 5 = h. Next, we apply 
the p-Laplacian AV SGS method (11) to (1),(2), with # = 1.0, cr = 1, p = 3. Finally, we apply the 
bounded AV SGS model (19), with # = 1, a = 2, a(t) = -0 .02  + 1/(1 +49e-STt) .  The parameter 
choices for the two nonlinear AV methods have the same motivation as the corresponding ones 

in Example 1. 
The surface plot and the contour lines for the SDFEM (29) are presented in Figure 8. Notice 

the undershooting and overshooting in the internal layer. The p-Laplacian AV SGS method (11) 
eliminates the undershooting and overshooting and spreads the internal layer over several elements 
(see Figure 9). The bounded AV SGS model (19) in Figure 10 yields improved resul ts-- the 

contour lines are tighter than those in Figure 9. 

The numerical results corresponding to the three discretizations are summarized in Table 2. 

For different mesh-widths (h = 1/16, h = 1/32, h = 1/64, h = 1/128), Table 2 presents the 
L2-norm of the error (denoted by IIEIIL2), and the Hl - seminorm of the error (denoted by IE]H1). 

The bounded AV model performs consistently better than the p-Laplacian AV model: for 
h = 1/128 the L 2 norm of the error is three times smaller for the bounded AV model. The 

numerical results for both  nonlinear AV models are better than those for the SDFEM in the 
Hl-seminorm,  but  worse in the L2-norm. 

Table 2. Example 2, norms of the errors for the three different discretizations, 
where "E" represents the error. The bounded, nonlinear AV SGS model performs 
consistently better than the p-Laplacian AV SGS model. 

h Norm 

1 IIEIIL2 
16 IEIH1 

1 ItEllL~ 
32 JEIm 

1 IIEll/= 
64 IEIm 

1 [IENL~ 
128 IEIH1 

SDFEM p-Laplacian AV Bounded AV 

0.152+0 0.321+0 0.209+0 

0.700+1 0.556+1 0.609+1 

0.108+0 0.250+0 0.144+0 

0.132+2 0.113+2 0.112+2 

0.633--1 0.189+0 0.867-1 
0.191+2 0.180+2 0.165+2 

0.255-1 0.134+0 0.360-1 
0.158+2 0.196+2 0.152+2 

5. C O N C L U S I O N S  

This paper introduced a general, nonlinear SGS model, having bounded AV, for the numeri- 

cal simulation of convection-dominated problems. As a first step in the validation of this new 

SGS model, we chose the linear setting of the convection-dominated convection diffusion prob- 

lem (I),(2). 

Indeed, there is little (if any) hope of understanding the effects of this nonlinear SGS model 

on the discretization of more general, nonlinear problems (such as the Navier-Stokes equations), 

without studying the effects on (i),(2) first. 
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We started with a careful mathematical  (existence, uniqueness) and numerical (a priori error 

estimates) analysis of the new SGS model and the most common SGS model of Smagorinsky 

which uses a p-Laplacian regularization. Then, we tested these two nonlinear AV models on two 

challenging problems with sharp layers. The bounded, nonlinear AV model performed consistently 

bet ter  than  the p-Laplacian AV model. To better  assess the performance of these two nonlinear 

AV models, we also included numerical results for SDFEM, the most common approach for the 

discretization of the linear problem (1),(2). 

These first results make the bounded~ nonlinear AV SGS model a promising alternative to the 

popular Smagorinsky model in the numerical simulation of turbulent  flows. 
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