optical coherence tomography (OCT) directly after implantation and after 12 months.

Results: Postintervention acute stent malapposition (ASM) occurred in 30 stents (50%). Of these, 21 stents (70%) resolved completely, whereas 6 stents resolved partly and 3 persisted completely after one year. At this time-point, a total of 15 stents (25%) with late stent malappositions (LSM) were detected due to late acquired stent malapposition (LASM) in additional 10 stents. Twelve of these 15 stents showed complete or almost complete (>80%) coverage of the malapposed struts, whereas 3 struts had >60% coverage of any malposed strut.

Conclusion: A quarter of electively implanted DES is associated with LSM. Uncoverage of malapposed struts applies only to a minority of stents with LSM. The reason for coverage/uncoverage and the clinical impact has to be determined.

<table>
<thead>
<tr>
<th></th>
<th>total MA stents</th>
<th>total stent struts</th>
<th>malapposed uncovered struts</th>
<th>malapposed covered struts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM baseline</td>
<td>30</td>
<td>337</td>
<td>337</td>
<td>0</td>
</tr>
<tr>
<td>- persistent SIM</td>
<td>5</td>
<td>150</td>
<td>159</td>
<td>0</td>
</tr>
<tr>
<td>- partly Persistent SIM</td>
<td>6</td>
<td>166</td>
<td>166</td>
<td>0</td>
</tr>
<tr>
<td>LSM (1a)</td>
<td>15</td>
<td>196</td>
<td>21</td>
<td>174</td>
</tr>
<tr>
<td>- LSM without baseline</td>
<td>3</td>
<td>129</td>
<td>7</td>
<td>122</td>
</tr>
<tr>
<td>- LASM with MA in baseline but diff. pos.</td>
<td>7</td>
<td>178</td>
<td>178</td>
<td>0</td>
</tr>
<tr>
<td>- persistent SIM</td>
<td>3</td>
<td>66</td>
<td>14</td>
<td>52</td>
</tr>
<tr>
<td>- partly persistent SIM</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: malapposition covered and uncovered (SM=stent malapposition, LSM=late stent malapposition, LASM=late acquired stent malapposition)

CRT-401

Screening of Cardiovascular Risk in Policewomen of Pacifying Police Units From State Government

Vanessa Marquilla,1 Ivana Borges,2 Antonio Carlos Souza3
1Military Undersecretary from Rio de Janeiro State Government, Rio de Janeiro, Brazil; 2Military Undersecretary from Rio de Janeiro State Government, Rio de Janeiro, Brazil

Background: Coronary heart disease (CHD) may be clinically different in women when compared to men and, consequently, being underdiagnosed and under treated. Worldwide, heart disease and stroke are the leading cause of death in female gender with 8.6 million deaths per year.

Objective: To identify the CHD and stroke risk factors prevalence in a female population in order to prevent disease and modify risk factors as possible.

Methods: Observational and cross-sectional study of CHD and stroke risk factors prevalence in a female employee population through an one-minute quiz based on self-knowledge of risk factors and cardiovascular health as age, tobacco smoke, hyperton- sion, dyslipidemia, physical inactivity, obesity, diabetes and family history of CHD.

Those women who had ≥2 positive answers or the lack of knowledge of any item were encouraged to complete the risk assessment in a healthcare unit as they were considered to be in high risk group.

Results: The survey was answered by 210 women between 09/27/2012 and 05/16/2013.

- Age ranged from 25 and 74 years old.
- Tobacco 16% of the total group; hypertension in 13% (lack of knowledge in 3%); 95% have already measured cholesterol (22% with >200 mg/dl, 25% and 62% unaware of total and HDL cholesterol, respectively); 88% have already measured glycemia (82% denied being diabetic and 14% unaware of their condition); 20% of family history of CHD and stroke; 51% unaware of body mass index (BMI), and it was calculated: 60% BMI ≥25, 17% ≥25 and ≤30, 8% >30, 9% lack; 36% physical inactivity. 74% of the interviewed women obtained ≥2 positive answer or the lack of any item. It was observed that 98% used to visit the gynecologist and 33% did it to a cardiologist.

Conclusion: Three quarters of the interviewed women demonstrated high risk factors prevalence by achieving ≥2 positive answers or ignoring the answer about their conditions.

CRT-400

Screening of Cardiovascular Risk in Female Employees From State Government

Ivana Borges,1 Vanessa Marquilla,2 Simone Simoes,3 Marcia Fidelis,4 Paula Ferreira,5 Tatiana Spritzer,6 Antonio Carlos Souza7
1Military Undersecretary from Rio de Janeiro State Government, Rio de Janeiro, Brazil; 2Military Undersecretary from Rio de Janeiro State Government, Rio de Janeiro, Brazil

Background: Coronary heart disease (CHD) may be clinically different between women and men, under diagnosed or treated. Worldwide, heart disease and stroke are the leading cause of death in female gender with 8.6 million deaths per year.

Objective: To identify the CHD and stroke risk factors prevalence in a female population through an one-minute quiz based on self-knowledge of risk factors and cardiovascular health as age, tobacco smoke, hypertension, dyslipidemia, physical inactivity, obesity, diabetes and family history of CHD.

Those women who had ≥2 positive answers or the lack of knowledge of any item were encouraged to complete the risk assessment in a healthcare unit as they were considered to be in high risk group.

Results: The survey was answered by 210 women between 09/27/2012 and 05/16/2013.

- Age ranged from 25 and 74 years old. Tobacco 16% of the total group; hypertension in 13% (lack of knowledge in 3%); 95% have already measured cholesterol (22% with >200 mg/dl, 25% and 62% unaware of total and HDL cholesterol, respectively); 88% have already measured glycemia (82% denied being diabetic and 14% unaware of their condition); 20% of family history of CHD and stroke; 51% unaware of body mass index (BMI), and it was calculated: 60% BMI ≥25, 17% ≥25 and ≤30, 8% >30, 9% lack; 36% physical inactivity. 74% of the interviewed women obtained ≥2 positive answer or the lack of any item. It was observed that 98% used to visit the gynecologist and 33% did it to a cardiologist.

Conclusion: Three quarters of the interviewed women demonstrated high risk factors prevalence by achieving ≥2 positive answers or ignoring the answer about their conditions.
Screening of Cardiovascular Risk of Female Adolescents Students From Vocational High School of State Government

Vanessa Marçolla
Governo do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Background: Cardiovascular diseases are the leading cause of death in Brazil and worldwide, affecting people of working age total, resulting in the loss of potential years of life, and producing a high burden on the public health system, especially in terms of spending. The presence of risk factors in childhood and adolescence has been configured with a strong predictor of cardiovascular disease in adulthood.

Objective: This study aims to investigate the entire group of female adolescents from vocational public high school, in order to propose strategies for the prevention of cardiovascular disease.

Methods: Observational and cross-sectional study of cardiovascular and stroke risk factors prevalence in all of female adolescents population through an one-minute and anonymous questionnaire with 30 closed questions on self-knowledge of risk factors and cardiovascular health. The survey was performed with questions of fast answers, like yes or no, about age, stress level, tobacco smoke, hypertension, dyslipidemia, physical inactivity, obesity, diabetes and family history of CHD. A positive answer or the lack of knowledge are equivalent to a point.

Results: The study population consisted of over a thousand young women, 82% adolescents aged between 15 and 17 years, 20% have a family history of cardiovascular disease, dyslipidemia 4.4%, 98% never closed blood sugar, obesity 6%, 72% sedentary, hypertensive 3.5%, 9% were smokers, 53% regularly attend a gynecologist and 98% never attended a consultation with a cardiologist.

Conclusion: The results point to a high cardiovascular risk, where it is necessary and urgent to establish prevention programs that address the prospect of allied health education the responsibility of the individual to achieve ideal cardiovascular health, which reduces the impact of the economic health of the coffers government.

CRT-402

Impact of First and Second Generation Drug-Eluting Stents on Bare Metal Stent Failure


Background: Strategies comparison for bare-metal stent (BMS) in stent restenosis (ISR) treatment remains not adequately tested. We hypothesized that the second generation everolimus-eluting stent (EES) for the treatment of BMS-ISR is associated with improved outcomes compared to first generation sirolimus-eluting stent (SES) or paclitaxel-eluting stent (PES).

Methods: Patients with BMS-ISR undergoing target lesion revascularization (TLR) were grouped according to the additional stent implanted into EES, SES, or PES groups. The end point was MACE composed by all-cause death, myocardial infarction (MI), or TLR and the incidence of definite stent thrombosis (ST) at 1 year.

Results: A total of 315 patients with BMS-ISR underwent TLR with EES, SES, and PES. The baseline clinical and angiographic parameters were comparable between 3 groups. The incidence of MACE was 13%, 11% and 16% (p=0.58), respectively. The incidence of ST was numerically lower in the EES group compared to SES and PES. (Table) Multivariate Cox regression showed the independent predictors of MACE at 1 year were: number of treated lesions (hazard ratio [HR]: 1.6; 95% confidence interval [CI]: 1.1-2.4) and acute MI ISR presentation (HR: 3.1, 95%CI: 1.1-9.1).

Conclusions: Second generation EES implantation for BMS failure showed similar rates of MACE at 1 year compared to first generation DES. Although not statistically significant, the incidence of cumulative ST was lower in the BMS stent failure treated with EES compared to PES or SES.

CRT-500

Theoretical and Practical Training From Students of Secondary Vocational Education to Care for Cardiac Arrest: A Prospective Study

Vanessa D. Marçolla
Governo do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Background: Cardiovascular diseases are the leading cause of death in Brazil and the world, sudden cardiac arrest is a major contributor to this index. Training reduces the ignorance and fear, increasing safety to recognize that the victim is not breathing properly, so as to trigger the help and start CPR as soon as possible.

Objectives: To apply a theoretical-practical training of vocational public high school, to work correctly, quickly and safely before a cardiopulmonary arrest, reassured maneuvers running efficiently, in order to save lives.

Methods: This study was designed as a prospective investigation in all of 1800 students of vocational public high school, located at Rio de Janeiro, Brazil. The program of theoretical and practical training lasts 2 hours. Each student attends a lecture with video on the subject for 30 minutes after 30 minutes of classroom practice. Then, using practical training mannequin, which are assessed through a performance checklist. At the end of each training, students were evaluated by the performance of critical steps:

1. Assessment of responsiveness and breathing;
2. Trigger emergency service / Pick up an automated external defibrillator;
3. Start cardiopulmonary resuscitation;
4. Check rhythm;
5. Use of force and speed of compression.

A questionnaire was distributed before the start of training to see if the student had prior knowledge about a rescue in the event of cardiac arrest.

Results: More than 50% did not have any knowledge about the subject. This preliminary evaluation showed that after 2 hours of training and analyzed the performance checklists: 85% knew how to perform the procedures call for help effectively, 30% were able to recognize the absence of breathing, 35% positioned themselves and began chest compressions recommended form.

Conclusion: Students from that school are represented by 90% of adolescents when trained are able to act in the scene of a cardiac arrest, multiply the knowledge to family and community and save lives. However, according to the international recommendations of retraining as an ideal that does not exceed two years.

CRT-403

Clinical outcome for 1 year follow up.

<table>
<thead>
<tr>
<th></th>
<th>EES (n=110)</th>
<th>PES (n=63)</th>
<th>SES (n=142)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE (n; %)</td>
<td>14 (12.8)</td>
<td>10 (15.6)</td>
<td>15 (10.6)</td>
<td>0.58</td>
</tr>
<tr>
<td>All cause death (n; %)</td>
<td>4 (3.7)</td>
<td>3 (4.7)</td>
<td>6 (4.3)</td>
<td>0.94</td>
</tr>
<tr>
<td>MI (n; %)</td>
<td>3 (2.8)</td>
<td>4 (6.5)</td>
<td>3 (2.2)</td>
<td>0.34</td>
</tr>
<tr>
<td>TLR (n; %)</td>
<td>10 (9.3)</td>
<td>6 (9.7)</td>
<td>8 (5.7)</td>
<td>0.47</td>
</tr>
<tr>
<td>TVR (n; %)</td>
<td>15 (13.9)</td>
<td>7 (11.3)</td>
<td>16 (11.4)</td>
<td>0.81</td>
</tr>
<tr>
<td>Stent thrombosis (n; %)</td>
<td>1 (0.9)</td>
<td>2 (3.1)</td>
<td>5 (3.5)</td>
<td>0.47</td>
</tr>
</tbody>
</table>