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Microtubules are components of the cardiac cytoskeleton that can proliferate in response to pressure-overload in
animal and human heart failure. We wished to test whether there was a proliferation of the microtubule cyto-
skeleton in the right ventricle of rats with pulmonary hypertension induced bymonocrotaline (MCT) andwhether
this contributed to contractile dysfunction. Male Wistar rats were injected with 60 mg/kg of MCT in saline or an
equivalent volume of saline (CON). MCT produced clinical signs of heart failure within 4 weeks of injection.
Expression of right ventricular mRNA for α-tubulin was measured by real-time reverse transcription polymerase
chain reaction. Free and polymerised fractions of β-tubulin proteinwere assessed usingWestern blot analysis and
immunofluorescence microscopy was used to assess tyrosinated and acetylated (stabilized) microtubules. Right
ventricular myocyte contraction was measured in response to the microtubule de-polymeriser colchicine
(10 μmol/l for at least 1 h). Compared to CON, inMCT right ventricles there was a small but statistically significant
increase in the expression ofmRNA forα-tubulin (Pb0.001); total (Pb0.05) and polymerised fraction (Pb0.01) of
β-tubulin protein and level of acetylated tubulin (Pb0.01). However colchicine treatment did not increase the con-
traction of MCT myocytes (P>0.05) or affect their response to increased stimulation frequency. Our observations
support the hypothesis that microtubule proliferation is a common response to pulmonary hypertension in failing
right ventricles but suggest that the effect this has on contraction depends upon the specific experimental or clin-
ical conditions that prevail and the subsequent level of microtubule proliferation.

© 2013 Elsevier Ltd. Open access under CC BY-NC-ND license. 
1. Introduction

Microtubules are load-bearing and load-modulated (stress-
polymerised) components of the cardiac myocyte cytoskeleton
[1,2]. They are protein cylinders of α and β-tubulin heterodimers,
about 25 nm in diameter, aligned predominantly along the longitu-
dinal axis of myocytes. The levels of α- and β-tubulin are closely
linked. Microtubules undergo post-translational modification, such
as the acetylation of Lys40, as part of a stabilization process [3].
Microtubules also interact with microtubule associated proteins
(Map) that promote stability (predominantly Map4 in cardiac mus-
cle) and with GTP-binding proteins such as Gi and Gs see [1,2,4,5].
In tissue from human sufferers of heart failure there is increased
mRNA and protein levels for tubulin, e.g. [6] under conditions
where wall stress is enhanced [7].

In a series of seminal studies, that included the generation of pulmo-
nary hypertension by pulmonary artery banding, Cooper and colleagues
s, Garstang Building, University
+44 113 343 4228.

NC-ND license. 
showed that microtubule proliferation could provoke myocardial
contractile dysfunction [4,5,8–10]. In their studies, depressed ejection
fraction and elevated levels of cellular tubulin were seen in in situ
whole hearts [10]. The shortening of failing myocytes was decreased
by a viscous load imposed on the sarcomeres by a proliferatedmicrotu-
bule cytoskeleton [11] rather than by changes in Ca2+ handling [12].
This viscous loadwas relieved and shorteningwas restored bymicrotu-
bule disruption [8,12].

However such a role for microtubules was not found in all studies
[13,14] and it has been reported that pulmonary hypertension
induced by alterations in the pulmonary vasculature has different
outcomes to load-only elevation (pulmonary artery banding) [15].
Monocrotaline (MCT) induces pulmonary hypertension in rats.
There are effects upon the pulmonary vasculature and subsequent
right ventricular (RV) failure [16,17]. However the role of microtu-
bules in this dysfunction has not been investigated. The aim of this
study was to test whether microtubule proliferation occurs in the
RV of MCT-treated rats and whether this is associated with the
contractile dysfunction seen in this model, in order to give further
insights into the response of the microtubule cytoskeleton to pressure
overload and to the contractile dysfunction of the RV in pulmonary
hypertension.
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2. Methods
2.1. Animal model

All experiments were conducted in accordance with the Directive
2010/63/EU of the European Parliament and with local ethical review.
Male Wistar rats (200 g) received a single intraperitoneal injection of
MCT (60 mg/kg in saline) or an equivalent volume of saline (CON).
Animals were weighed weekly for 3 weeks post-injection then daily.
MCT-treated animals were sacrificed when they exhibited clinical signs
of heart failure which included: loss of weight on successive days,
dyspnea, cold extremities or lethargy. CON animals were sacrificed on
equivalent days, post-injection. Blot dried heart, lung and liver weights
were recorded in all animals.
2.2. Measurement of mRNA by real time reverse transcription polymerase
chain reaction (RT-PCR)

RV free wall samples from 14 MCT and 12 CON rats were snap fro-
zen in liquid nitrogen. Total RNA extraction was performed using a
modified Qiagen mini-kit protocol for striated muscle and real-time
RT PCR was performed using an ABI PRISM 7900HT sequence detec-
tion system (Applied Biosystems) as previously described [18,19].
The expression of gene transcripts for α-tubulin and Map4 in the
test samples was normalized to an endogenous reference (18S). The
normalized signal was then made relative to the normalized signal
level in a corresponding calibrator sample (which is composed of
cDNA from a control sample).
2.3. Western blotting

Sections of RV tissue were prepared for Western Blot analysis of
tubulin as previously described [20]. Briefly, isolated hearts were
flushed with a physiological solution (see below) to remove excess
blood. A section of RV tissue was dissected, weighed and homoge-
nized in an appropriate amount of microtubule stabilizing buffer
(MTSB; 5 ml comprising, glycerol 50%, dimethyl sulfoxide 5%, sodi-
um phosphate (pH 6.75) 10 mM, ethylene glycol tetraacetic acid
0.5 mM, MgSO4 0.5 mM, NP-40 detergent 1%, sodium pyrophos-
phate 25 mM, per 0.25 g of tissue). The MTSB was supplemented
with Protease Inhibitor Cocktail (PIC, 1:200, Sigma) and phosphatase
inhibitor cocktail (PPIC, 1:200, Sigma). A sample was then centrifuged
at 100,000 g for 20 min. at 25 °C. The resulting supernatant containing
the free tubulin fraction was saved. The pellet was re-suspended and
homogenized on ice in the same volume of microtubule de-stabilizing
buffer (MTDB; sucrose 250 mM, sodium phosphate (pH 6.75) 10 mM,
MgSO4 0.5 mM, GTP 1 mM) supplemented with PIC and PPIC as before.
The sample was kept on ice for 1.5 h and then centrifuged at 100,000 g,
4 °C for 20 min. The resulting supernatant contained the polymerised
fraction of tubulin. The remaining pellet was re-suspended in MTDB
and checked for any residual tubulin. Equal proportions of free and
polymerised tubulin fractions were separated on 10% Tris–HCl gels
under reducing conditions, this was equivalent to 20 μg of protein as
determined by bicinchoninic acid assay in the free tubulin fractions.
This was followed by a semi-dry transfer of the proteins onto
polyvinylidene fluoride membranes and probing by antibodies (prima-
ry antibody, anti-β-tubulin antibody, 1:500, Sigma; secondary anti-
body; goat-anti-mouse, 1:2500, Immuno Research). Band density was
determined using Scion Image for Windows (Scion Corporation, USA).
Equal proportions of the free and polymerised tubulin fractions were
loaded for comparison. Equivalent loading was checked by stripping
and re-probing the membranes for glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH).
2.4. Immunofluorescence microscopy

Single RV myocytes were plated onto laminin-coated cover-
slips, and allowed to settle for 2 h in medium. Cells were fixed
in 4% paraformaldehyde for 10 min, followed by 10 min in methanol
(−20 °C) or subsequent permeabilization in 0.1% Triton-X in phos-
phate buffered saline. Antibodies were diluted in phosphate buffered
saline containing 0.1% Triton-X 100. Antibodies were mouse anti-
acetylated tubulin (Sigma), rat anti-tyrosinated tubulin (Serotec)
and mouse anti-β-tubulin (Sigma). Secondary antibodies were
anti-mouse Alexa 546 and anti-rat Alexa 488 (Molecular probes).
Cells were imaged by de-convolution microscopy using a Deltavision
system (Applied Precision). In subsequent experiments, to study the
effects of colchicine, a Zeiss confocal LSM700 was used. In each case
exposure times were set at the start of imaging and maintained
throughout. To analyse fluorescence, 3 rectangular areas were cho-
sen at random in each cell image, and total fluorescence intensity
within the rectangle was measured separately for each fluorescence
channel using Image J. The background fluorescence (outside the
cell) was subtracted for each image prior to analysis. For relative tu-
bulin abundance each measurement of fluorescence was divided by
the mean of the relevant CON group. To measure the effect of
colchicine, fluorescence in the presence of colchicine was divided
by the mean of the relevant vehicle group. Data were analysed
using Graph Pad Prism.

2.5. Myocyte shortening

Single RV myocytes were isolated using a collagenase digestion
technique as previously described [21]. The experimental solution
contained (mmol/l) NaCl 137, KCl 5.4, NaH2PO4 0.33, MgCl2 0.5,
HEPES 5, glucose 5.6, CaCl2 1, and pH 7.4. Cells were exposed to the
microtubule disruptor colchicine (10 μM) dissolved in methanol
(0.1% vol/vol in experimental solution) or to vehicle in solution for
at least 1 h [8,22] before transferring to the experimental chamber
of an inverted microscope (Nikon Diaphot). Cells were superfused
with experimental solution containing vehicle in the presence or ab-
sence of colchicine. Cells were stimulated by external platinum elec-
trodes to contract to steady state at stimulation frequencies of 1 Hz
and 5 Hz. Cell shortening and resting sarcomere length were measured
with a video edge detection device (Ionopix, Milton, MA). The index of
contraction was shortening as a % of resting cell length. The maximum
rate of sarcomere shortening was measured from the d/dt derivative
of the cell length trace. All treatments and experiments were carried
out at 37 °C.

2.6. Statistics

All data are expressed asmean±sem. Two-way analysis of variance
(ANOVA), two-way repeated measures ANOVA, unpaired Student's
t-tests or non-parametric equivalents were performed as appropriate.
Statistically significant difference was assumed if Pb0.05.

3. Results

3.1. Microtubule proliferation in RV myocytes from MCT-treated rats

MCT treated animals had significantly greater heart, lung and
liver weight to body weight ratios (Fig. 1A) and RV weight to LV
weight (Fig. 1B). Consistent with a proliferation of the microtubule
cytoskeleton in MCT hearts, real time RT-PCR analysis revealed a sig-
nificantly elevated expression of mRNA for α-tubulin (Pb0.001,
Fig. 2). However mRNA for Map4 was not increased (Fig. 2). Western
blot analysis showed significantly elevated levels of total tubulin
protein (Pb0.05) and polymerised tubulin fraction (Pb0.01) in the
RV of MCT hearts (Fig. 3). Immunofluorescence microscopy on single
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Fig. 1. Right ventricular hypertrophy in MCT-treated animals. (A) Heart weight (HW),
lungs and liver weight to body weight (BW) ratios and (B) right ventricular weight
(RVW) to left ventricular weight (LVW) ratio, for CON (□) and MCT treated (■) rats.
MCT treated rats had increased HW:BW, Lungs:BW, Liver:BW and RVW:BW
(*Pb0.001 unpaired t-test, n=6 each group).
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Fig. 3. Increased tubulin protein in MCT right ventricles. (A) Western blot showing in-
creased levels of β-tubulin in the right ventricle of MCT-treated rats. (B) Total tubulin
and (C) ratio of polymerised to total tubulin for CON (□) and MCT treated (■) rats
mean±sem. Equivalent loading was checked by re-probing for GAPDH. There was a sta-
tistically significant increase in total tubulin and the fraction of polymerised β-tubulin in
the MCT treated RV tissue compared to CON (B *Pb0.05, C *Pb0.01, unpaired t-test, n=
6 each group).
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myocytes (Figs. 4A & C) found that the level of tyrosinated tubulin
was not statistically increased in MCT myocytes but β-tubulin
(Pb0.01) and acetylated (stabilized) tubulin (Pb0.001) were increased
(Fig. 4 C). There was a significant decrease in the level of β-tubulin
(Pb0.001) and tyrosinated tubulin (Pb0.01 CON, Pb0.001 MCT)
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Fig. 2. mRNA expression of microtubule related proteins in MCT right ventricles. There
was an increase in the expression of mRNA encoding for α-tubulin in the right ventricle
of MCT treated (■) rats compared to CON (□) but expression of mRNA for microtubule
associated protein (Map4) was not significantly increased (*Pb0.001, unpaired t-test,
n=14 MCT, n=12 CON, results were normalized to expression of 18S).
following treatment with colchicine. The effect of colchicine on
β-tubulin was significantly greater in CON than MCT myocytes
(Pb0.001). There was no effect of colchicine on acetylated tubulin
(Fig. 4D).
3.2. Lack of effect of microtubule disruption on shortening of RV myocytes
from MCT-treated rats

In unstimulated cells we observed a significantly shorter resting sar-
comere length in MCT myocytes (Pb0.001). Exposure to colchicine did
not affect the resting sarcomere length of either CON (vehicle 1.91±
0.01 μm; colchicine 1.93±0.01 μm, n=24 cells each, P>0.05) or MCT
myocytes (vehicle 1.79±0.01 μm; colchicine 1.78±0.01 μm, n=
26–28 cell, P>0.05).

When stimulated, shortening was significantly greater in MCT
myocytes at a stimulation frequency of 1 Hz (Figs. 5A & B) but not at
5 Hz (Figs. 5A & D). Increased stimulation frequency caused an increase
in the shortening of CON myocytes but a decrease in the shortening of
MCT myocytes, this difference in response was statistically significant
(Fig. 5F). Exposure to colchicine did not alter any of these parameters.
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The rate of sarcomere shortening was not different between CON or
MCT myocytes at 1 Hz (Fig. 5C) but was greater in CON myocytes at
5 Hz (Fig. 5E). There was an increase in the rate of sarcomere shorten-
ing in CON myocytes when stimulation frequency was increased but a
decrease in rate in MCT myocytes. This difference in response was
statistically significant (Fig. 5G).

4. Discussion

4.1. Evidence for increased wall stress and proliferated microtubules in
MCT-treated hearts

The principle novel findings of our study are that the microtubule
cytoskeleton of RV myocytes from MCT-treated animals is proliferated,
with some evidence of increased stabilization (acetylated tubulin), but
this proliferation does not contribute to the contractile dysfunction
seen in these myocytes.

It is thought that pressure-induced microtubule proliferation is
triggered when cardiac hypertrophy cannot prevent an increase in
ventricular wall stress [4,5]. Wall stress (σ) can be calculated as σ=
pr/2h where p=trans-wall pressure difference; r=radius of curva-
ture and h=wall thickness. We have measured peak systolic pres-
sure in CON hearts to be 24 mmHg and 79 mmHg in MCT hearts
[19]; RV wall thicknesses as 0.63 mm (CON) and 1.4 mm (MCT) and
a mid-line RV radius of curvature of 6.5 mm (CON) and 7.0 mm
(MCT) [23]. On the simplified assumptions that the RV cross-section
is circular and the RV wall is solid, substitution of these values into
the above equation gives a 59% increase in wall stress in the RV of
MCT compared to CON hearts. Thus there appears to be a feasible trig-
ger for microtubule proliferation in the MCT model. Consistent with
this prediction, we found evidence for increased tubulin mRNA;
total and polymerised tubulin protein and post-translational stabili-
zation by acetylation.

4.2. Reasons for lack of effect of proliferated microtubules on contraction
of MCT myocytes

However, microtubule disruption did not increase shortening
amplitude in MCT myocytes nor did it increase the rate of sarcomere
shortening. This may stem from the fact that the contractile pheno-
types of pulmonary artery banding studies and MCT-treated rats
are different. Banding consistently leads to a reduction in myocyte
contraction at relatively low stimulation frequencies [5,8]. In con-
trast we find that at 1 Hz cell shortening in MCT treated myocytes
is enhanced but falls steeply with increased stimulation frequency
[23] (and this study Fig. 5). As stimulation frequency increases,
resting [Ca2+]i levels increase and the diastolic cell length shortens.
It was conceivable that a mechanism restricting sarcomere shorten-
ing (microtubule proliferation) could become more pronounced at
shorter diastolic sarcomere lengths as the compressive forces on
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microtubules increase. Thus there was the possibility that microtu-
bules play a role in the steep stimulation frequency dependent fall
in contraction seen in MCT myocytes (and many other heart failure
models). However our experimental evidence suggests this is not
the case.

One factor that may explain the lack of effect of microtubule dis-
ruption upon contraction is that although we saw statistically signif-
icant increases in tubulin mRNA and protein the increase was less
than that previously reported for pulmonary artery banding. Com-
paring β-tubulin measured by Western blotting, we saw a 21% in-
crease in total tubulin and a 7% increase in the polymerised fraction
while Tsutsui et al. [8] reported 100% increase in total tubulin with
a maintained polymerised fraction, in response to 4 weeks pulmo-
nary artery banding in cats. In addition we saw no increase in
mRNA expression of Map4. Decoration of microtubules with Map4
is thought to be an important factor in their stabilization and effects
upon contraction [20]. Therefore we conclude that although there is
some proliferation and stabilization of the microtubule cytoskeleton
in response to MCT this is not large enough to modulate contraction.

However, in making this conclusion we note that the study of
Ishibashi et al. [24] reported an increase in total tubulin of 30% and
an increase in the polymerised fraction of 28% following 4 weeks of
abdominal aortic constriction in rats. These responses are closer to
those we observed but in that study [24] 30 min exposure to 1 μM
colchicine had a beneficial effect upon myocyte contraction.

The increase in wall stress in response to MCT may not be as great
as seen in previous banding studies and wall stress is thought to be a
key factor in the microtubule response [5]. It may also be relevant
that volume overload is reported to have no effects upon the micro-
tubule cytoskeleton [8] and the MCT model causes both volume and
pressure overload.

While changes in [Ca2+]i handling are not thought to be important
in the contractile response of some artery banding models [8,12], they
are found in the MCT model. We have previously reported that there
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is a steep action potential duration restitution and Ca2+ transient am-
plitude restitution, in the presence of reduced sarcoplasmic reticulum
Ca2+ pump function [23]. It now seems likely that these changes in
Ca2+-handling rather than a densification of the microtubule cyto-
skeleton are principally responsible for the steep fall in shortening
with increased stimulation frequency. Decreased resting sarcomere
length was observed in MCT myocytes, this is thought to be due to
a Ca2+-independent mechanism [25] and our observations now
show that thismechanism is not related tomicrotubule proliferation.

4.3. Specific microtubule populations

The effect of colchicine on total (β-) tubulin was greatest in CON
myocytes. This may be explained by the increased levels of stabilised
microtubules in MCT myocytes. We observed these microtubules to be
resistant to a short destabilising treatment, consistent with previous
findings [3]. The response of tyrosinated-tubulin to both MCT and col-
chicine treatment was small compared to β-tubulin. This is somewhat
surprising and may suggest that non-specific fluorescence was dampe-
ning the responsiveness of the tyrosinated-tubulin antibody.Wedid see
increased acetylation of MCT microtubules and when considering the
role of microtubules in myocytes it is worth noting that they play a
major role in cell trafficking and it has been shown there is increased se-
lection of acetylated microtubules by molecular motors [26].

4.4. Conclusions

Our findings in MCT-induced pulmonary hypertensive rats support
the theory, developed in pulmonary arterial banding models, that in-
creased ventricularwall stresswill provoke the proliferation ofmicrotu-
bules in failing RV myocytes. However, while microtubule proliferation
has been shown to have amajor impact on contraction in somemodels,
this is not the case in the MCTmodel, we suggest this is because the in-
crease in microtubules is not great enough to affect contraction. This
leads to the conclusion that the major impact upon contraction in this
model is via regulation of [Ca2+]i handling rather than microtubule
proliferation. Our findings indicate that the impact of microtubule
proliferation upon contraction is likely to depend upon the prevailing
experimental or clinical conditions and the subsequent level ofmicrotu-
bule proliferation.
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