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1. INTRODUCTION

During the last several years, Artin, Jørgensen, Stafford, Yekutieli, and
others have generalized many homological results from the commutative
case to the noncommutative connected graded case [AZ, SZ1, Jo1, Jo2,
Ye]. In this paper we generalize some of those to the noncommutative
local case. Our main interest is on noetherian local PI (polynomial identity)
algebras, though some results hold in a more general setting.

Throughout A is an algebra over a base field k, Í is its Jacobson radical,
and A0 = A/Í. If A0 is artinian, A is called semilocal. If A0 is a simple
artinian algebra (respectively, a division algebra), then A is called local
(respectively, scalar local). Unless otherwise stated we are working with left
modules and sometimes we use the term Aop-module for a right A-module
where Aop is the opposite ring of A. A finite A-module means finitely
generated over A. We use noetherian (respectively, artinian) for two-sided
noetherian (respectively, two-sided artinian).

904

0021-8693/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82223235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


homological invariants of local pi algebras 905

For the convenience of the reader we review some basic notations of
derived categories, the χ condition, and completion in Section 2. For more
details about derived categories see [Ha2].

In Sections 3 and 4 we prove the Auslander–Buchsbaum formula, which
relates the depth (see 3.2) and the projective dimension of a complex.

Theorem 1.1. Let A be either a noetherian local PI algebra or a noethe-
rian scalar local algebra satisfying χ. Then the Auslander–Buchsbaum formula
holds; namely, if X ∈ Dbfg�ModA� with pdX <∞, then

pdX + depthX = depthA:

A version of this was proved by Nishida [Ni, 1.6] for Gorenstein or-
ders, which are finite over their centers. The graded version was proved by
Jørgensen [Jo2, 3.2].

Let lfPD be the left little finitistic dimension (see 6.9). It is well known
that if A is a noetherian local ring with finite global dimension then
lfPDA = gldimA. If moreover A is PI, then gldimA = KdimA where
Kdim denotes the Krull dimension. An immediate consequence of the
Auslander–Buchsbaum formula is that lfPDA is bounded by depthA
without assuming finite global dimension.

Corollary 1.2. Let A be a noetherian local PI algebra. Then

lfPDA ≤ depthA ≤ KdimA = lcd�A�:
The proof of 1.2 is given in Section 6. We remark that the second inequal-

ity of 1.2 follows by local cohomology. Since every noetherian (semi)local
PI algebra has finite Krull dimension [MR, 13.7.15 and 6.4.8], lfPD of a
noetherian local PI algebra is finite.

By completion we always mean the completion with respect to the Í-adic
topology and write M̂ = lim←−M/Í

nM . It is easy to show that gldimA =
gldim Â. The following statements might be known but we could not find
references for them, so proofs are given in Sections 5 and 8 (see 5.7(2)
and 8.7(2)).

Proposition 1.3. Let A be a noetherian semilocal PI algebra and Â its
completion. Then

(1) idX = idÂ X̂ for all X ∈ Dbfg�ModA�.
(2) KdimM = KdimÂ M̂ for all finite A-modules M .

Some basic properties of Morita duality are given in Section 7. Sections 7
and 8 are devoted to proving 1.4 and 1.5 below.

Theorem 1.4. Let A be a noetherian PI algebra. Suppose an �A;T �-
bimodule AET defines a Morita duality between A and T . Then T is noethe-
rian and PI.
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Vámos [Va] proved that if A is noetherian, complete, semilocal, and PI,
then there exists an �A;T �-bimodule E, which induces a Morita duality,
for some right noetherian, complete, and semilocal ring T . We use local
cohomology to show that T is PI and left noetherian. If A is complete,
local, and finite over its noetherian center, then A admits a Morita self-
duality, which is induced by the Matlis duality of the center. It is unknown
if A in 1.4 always admits a Morita self-duality.

Theorem 1.5. Let A be a noetherian semilocal PI algebra and M be a
finite A-module. Then

(1) lcd�M� = KdimM .

(2) If d = KdimM , then Hd
Í�M� has dual Krull dimension d.

(3) For all i, Hi
Í�M� has dual Krull dimension no more than i.

The proof of 1.5 uses Morita duality and 1.4. In the commutative lo-
cal case, 1.5(1) was first proved in [Gr, Proposition 6.4(4)]. An elementary
proof was given in [MS] by using secondary representation of artinian mod-
ules which is not available in the noncommutative case. One way to view
1.5 is that the dualizing complex over �A;T � has the Auslander property
[YZ, 2.1 and 2.14]. The existence of dualizing complexes is proved in [WZ].
The proof of 1.5 is very similar to the proof of [SZ1, 3.10] and in the case
when A is noetherian local PI with finite global dimension, 1.5 and [SZ1,
3.10] are essentially equivalent.

Section 9 contains some examples. In particular, we modify an example of
Stafford [SZ2] to show that noetherian, scalar local, complete algebras need
not satisfy the weak χ condition nor the Auslander–Buchsbaum formula.

If an algebra is finite or integral over its noetherian center, then some
versions of the above results are known to various authors [BH1, BH2, GN,
Ni, SZ1]. We remark that not every complete, noetherian, local, PI algebra
is integral over its center (see [SZ1, 5.13] or the completion of the ring in
[SZ1, 5.10]). On the other hand, if A is a noetherian, local, PI algebra with
finite global dimension, then A is integral over its center [SZ1, 1.4].

2. PRELIMINARY

First we recall a few definitions and notations about complexes and de-
rived categories. We denote the homotopy categories by K and derived
categories by D. Let A be an algebra and let ModA be the category of
left A-modules. We write K�A� for K�ModA� and D�A� for D�ModA�.
These categories K�A� and D�A� will be equipped with superscripts
and/or subscripts in most cases. The superscript “+ ” (respectively “ − ”,
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respectively “ b ”) decorates the sign for categories of left-bounded (re-
spectively right-bounded, respectively bounded) complexes, while the
subscript “f ” decorates the sign for categories of complexes with finite
(i.e., finitely generated) cohomological modules. For example, D−f �A� is
the derived category whose objects are right-bounded complexes with finite
cohomological modules.

Let X ∈ K−�A�. A free resolution of X is a complex Y ∈ K−�A� con-
sisting of free modules such that there is a quasi-isomorphism Y

∼=−→X: A
complex Y ∈ K−�A� consisting of free modules is called finite if it consists
of finite free modules. A complex Y ∈ K−�A� consisting of free modules
is called minimal if the image Bi�Y � of the boundary map is in ÍYi for
each i. A projective, or flat, resolution of X ∈ K−�A� is similarly defined.

Let X ∈ K+�A�. An injective resolution of X is a complex Y ∈ K+�A�
consisting of injective modules such that there is a quasi-isomorphism
X

∼=−→Y . A complex Y ∈ K+�A� consisting of injective modules is called
minimal if the kernel Zi�Y � of the boundary map is essential in Yi for
each i.

Given any complex X, define

supX = sup�m � hm�X� 6= 0� and infX = inf�m � hm�X� 6= 0�;
where hi�X� is the ith cohomology of X. Each X ∈ K−�A� has a free, in
particular, a projective and a flat resolution. The resolution can be cho-
sen to consist of modules vanishing above supX. If A is left noetherian
then each X ∈ K−f �A� has a finitely generated projective resolution and if,
further, A is semiperfect, then each X ∈ K−f �A� has a finitely generated
minimal projective resolution. This resolution can also be chosen to consist
of modules vanishing above supX. The projective dimension of X is

pdX = min
Y
�−min�i � Yi 6= 0��;

where Y ranges over all projective resolutions of X. If X has a minimal
projective resolution Y , then pdX = −min�i � Yi 6= 0�. Each X ∈ K+�A�
has a minimal injective resolution and the resolution can be chosen to
consist of modules vanishing below infX. The injective dimension of X is

idX = max�i � Yi 6= 0�;
where Y is the minimal injective resolution of X.

The right derived functor of Hom:K�A�op ×K�A� → K�Ab� is denoted
by RHom and the left derived functor of ⊗x K�A� × K�A� → K�Ab� is
denoted by L⊗. As usual,

ExtiA�X;Y � x= hiRHomA�X;Y � and TorAi �X;Y � x= h−i�X L⊗A Y �:
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It follows from the standard arguments that

idX = max�i � ExtiA�M;X� 6= 0 for some M ∈ModA�
and if A is left noetherian we only need to consider the finite A-modules
M . Similarly

pdX = max�i � ExtiA�X;M� 6= 0 for all M ∈ModA�
and if A is left noetherian and pdX <∞ then

pdX = max�i � ExtiA�X;A� 6= 0�:
Next we introduce a version of the χ condition which is suitable for our

purpose. The original χ condition is given in [AZ, 3.2 and 3.7] for graded
algebras.

Definition 2.1. Let A be a left noetherian semilocal algebra.

(1) We sayM satisfies the χ condition, or χ�M� holds, if ExtiA�A0;M�
is an A-module of finite length for any i. We say an algebra A satisfies
the χ condition, or χ holds for A, if every finite A-module satisfies the χ
condition.

(2) Let d = depthA. We say A satisfies the weak χ condition if
ExtdA�A0;A� contains a simple Aop-submodule. If depthA = ∞, the weak
χ condition is vacuous.

The χ condition holds for several classes of rings [AZ, Sect. 8; SZ1, 3.5].
But not every noetherian local algebra satisfies χ or weak χ (see 9.4
and 9.6).

Lemma 2.2. Let A be a noetherian local algebra such that the χ�A� holds.
Then A satisfies the weak χ condition.

Proof. If d = depthA is finite, ExtdA�A0;A� is nonzero. By χ�A�,
ExtdA�A0;A� has finite length. Since it is right noetherian, by Lenagan’s
lemma [GW, 7.10], it is right artinian. Hence ExtdA�A0;A� contains a
simple right A-module.

Lemma 2.3. Let A be a left noetherian semilocal algebra such that the χ
condition holds. Then ExtiA�A/Ín;X� is of finite length for all X ∈ Db

f �A�,
all i and all n.

Proof. Since RHomA�A0;−�:D�A� → D�A� is a way-out right functor,
it follows from the χ condition and [Ha2, I.7.3 (ii)] that ExtiA�A0;X� is of
finite length for all X ∈ D+fg�A� and all i. Let E�M� denote the injective
hull of any A-module M . Let Tn = HomA�A/Ín; E�A0��. We claim that
Tn is of finite length. It is trivial for n = 1 because T1 = A0. Now suppose
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n > 1 and suppose Tn−1 is of finite length. Consider the minimal injective
resolution of Tn−1,

0 −→ Tn−1 −→ E�A0� −→ E�E�A0�/Tn−1� −→ · · · y
one obtains Ext1

A�A0; Tn−1� = soc�E�E�A0�/Tn−1�� = Tn/Tn−1. By χ,
Tn/Tn−1 is of finite length. Therefore so is Tn.

Let Y be a minimal injective resolution of X and I the Í-torsion sub-
complex of Y . By the first paragraph, soc�Ii� = Exti�A0;X� is of finite
length. This implies that each Ii is a submodule of some finite direct sum
of E�A0�. Let In = HomA�A/Ín; I�. Then Iin is a submodule of some fi-
nite direct sum of Tn, which is of finite length by the last paragraph. Thus
ExtiA�A/Ín;X� = hi�In� is of finite length.

In the rest of this section we recall some facts on the completion. Let M̂
denote lim←−M/Í

nM .

Lemma 2.4. Let �A;Í� be a left noetherian semilocal algebra. Then

(1) There is a natural isomorphism M̂ ∼= Â ⊗A M for all finite A-
modules M .

(2) The completion functor M → M̂ is exact on finite A-modules if and
only if ÂA is flat.

(3) If ÂA is flat then it is faithfully flat.
(4) If Í satisfies the AR (Artin–Rees) property [CH, p. 140], then the

completion functor is exact on finite A-modules.
(5) The kernel of the map M → M̂ is

⋂
n ÍnM .

(6) If A is complete and
⋂
n ÍnM = 0, then M is finite if and only if

M/ÍM is.

Proof. (2) follows immediately from (1). (3) holds because A is
semilocal. We now prove (1). Let M be a finite A-module. Then M/ÍnM
is artinian. Hence the inverse system �M/ÍnM� satisfies the Mittag–Leffler
condition [We, 3.5.6]. Thus lim←− is exact on such systems [We, 3.5.7]. Since
M → M/ÍnM is a right exact functor, the completion functor M → M̂
is right exact. By Watts’ theorem [Rot, 3.34] M̂ ∼= Â ⊗A M for all finite
A-modules M .

(4) Let 0 → L → M → N → 0 be an exact sequence of finite A-
modules. For each n,

0→ L/�L ∩ÍnM� →M/ÍnM → N/ÍnN → 0

is an exact sequence of artinian A-modules. Hence lim←− is exact and we have
an exact sequence

0→ lim←− L/�L ∩ÍnM� → M̂ → N̂ → 0:
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If Í satisfies the AR property, then the induced filtration �L ∩ ÍnM�
and the adic filtration �ÍnL� are cofinal. Hence lim←− L/�L ∩ÍnM� ∼=
lim←− L/Í

nL = L̂.

(5) is trivial. It remains to prove (6). One direction is clear. For
the other direction we suppose M/ÍM is finite. By (5) and the hypoth-
esis

⋂
n ÍnM = 0 we only need to show M̂ is finite. Let P be a finite

free A-module and let f0:P → M/ÍM be a surjective map. By pro-
jectivity of P the map f0 can be lifted to fn:P → M/ÍnM inductively.
By Nakayama’s lemma, each fn is surjective, which induces a surjective
map P/ÍnP → M/ÍnM . Thus there is an epimorphism from system
�P/ÍnP � n ≥ 1� to system �M/ÍnM � n ≥ 1�. These two systems and the
kernel system satisfy the Mittag–Leffler condition. This implies the map
P = lim←− P/Í

nP → lim←−M/Í
nM is surjective [We, 3.5.7]. Therefore M̂ is

finite.

If A is a noetherian semilocal PI algebra, then Í satisfies the AR-
property [CH, 11.3]. The following is due to Vámos [Va].

Lemma 2.5 [Va]. Let A be a noetherian semilocal PI algebra. Then Â is
noetherian, semilocal, and faithfully flat over A on both sides.

3. THE AUSLANDER–BUCHSBAUM FORMULA

Let Ae be the enveloping algebra A ⊗k Aop. An A-bimodule can be
viewed as a left Ae-module. The following lemma is easy to check directly
from the definition of the derived functors RHomA�−;−� and − L⊗A−.
See [Jo2, 2.1] for the graded case.

Lemma 3.1. Let A be a left noetherian algebra and let X ∈ Db
f �A�; Y ∈

Db�Ae�; Z ∈ Db�A�: Suppose either that X is quasi-isomorphic to a bounded
complex consisting of finite free modules or that Z is quasi-isomorphic to a
bounded complex of flat modules. Then

RHomA�X;Y L⊗A Z� = RHomA�X;Y � L⊗A Z:
Definition 3.2. Let A be an algebra and A0 = A/Í.

(1) For X ∈ D+�A�, the depth of X is defined to be

depthX = inf RHomA�A0;X� = inf� i � ExtiA�A0;X� 6= 0� ∈ � ∪ �∞�:
(2) For X ∈ D−�A�, the grade or the j-number of X is defined to be

j�X� = inf RHomA�X;A� = inf� i � ExtiA�X;A� 6= 0� ∈ � ∪ �∞�:
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Following the commutative proof, Jørgensen proved a graded version of
the Auslander–Buchsbaum formula for noetherian connected graded alge-
bras satisfying χ�A� [Jo2, 3.2]. The essential properties used in his proof
are (a) existence of the minimal free (or projective) resolution of X and
(b) the weak χ condition. The same idea works in the local case.

Recall that A is called semiperfect if A/Í is artinian and A has idem-
potent lifting property [AF, p. 303]. Scalar local algebras and left artinian
algebras are semiperfect. If A is local and semiperfect, then A ∼= Mn�B�
for some scalar local algebra B [Row, 2.7.21]. Hence A is Morita equiva-
lent to B. It is easy to check that Mn�B� satisfies the weak χ if and only if
B does. If A is semiperfect and left noetherian, then every finite A-module
M admits a minimal projective resolution.

Theorem 3.3. Let A be a left noetherian semiperfect local algebra satis-
fying the weak χ condition. Then the Auslander–Buchsbaum formula holds.
Namely, if X ∈ Db

f �A� with pdX <∞, then

pdX + depthX = depthA:

Proof. We first assume A is scalar local. View A as an object in D�Ae�.
Let X ∈ Db

f �A� with pdX <∞. By 3.1, we have

RHomA�A0;X� = RHomA�A0;A
L⊗A X� = RHomA�A0;A� L⊗A X:

Let Y be a minimal free resolution of X, which exists because A is scalar
local. By definition,

RHomA�A0;A� L⊗A X = RHomA�A0;A� ⊗A Y:
If depthA = inf RHomA�A0;A� = ∞, then RHomA�A0;A� is

acyclic. This implies that RHomA�A0;A� ⊗A Y is acyclic. Hence
depthX = inf RHomA�A0;A� ⊗A Y = ∞. If depthA = d < ∞, then
RHomA�A0;A� → σ≥dRHomA�A0;A� is a quasi-isomorphism where
σ≥d is the truncation at d as in [Ha2, p. 69]. Let T = σ≥dRHomA�A0;A�.
Hence

RHomA�A0;X� = T L⊗A X = T ⊗A Y:
The lowest nonzero module in the complex T ⊗A Y is the mod-
ule Td ⊗A Y−pdX at position d − pdX. It follows that depthX =
inf RHomA�A0;X� ≥ d − pdX and depthX + pdX = d if and only
if the cohomology of T ⊗A Y at position d − pdX is nonzero.

Let l = d − pdX. By the weak χ condition, hd�T � = ExtdA�A0;A� has a
simple right A-submodule S. Since hd�T � ⊂ Td, S ⊗A Y−pdX is a nonzero
submodule of �T ⊗A Y �l. By the minimality of Y , the image of S⊗A Y−pdX

in �T ⊗A Y �l+1 is in S ⊗A ÍY−pdX+1, which is zero because SÍ = 0. It
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follows that hl�T ⊗A Y � 6= 0: This completes the proof in the scalar local
case.

Now we assume A is semiperfect. Then there is a left noetherian scalar
local algebra B such that A ∼=Mn�B�. The weak χ condition passes from A
to B. Hence the Auslander–Buchsbaum formula holds for B. By the Morita
equivalence between A and B, the Auslander–Buchsbaum formula holds
for A.

Corollary 3.4. The Auslander–Buchsbaum formula holds for the follow-
ing algebras:

(1) left noetherian scalar local algebras satisfying the weak χ condition,

(2) Noetherian semiperfect local algebras satisfying χ.

The Auslander–Buchsbaum formula may not hold for a finite dimen-
sional algebra nor a noetherian complete scalar local domain not satisfying
χ (see 9.1 and 9.6).

There are many noetherian local, even PI, algebras which are not
semiperfect and the proof of 3.3 does not work for non-semiperfect local
algebras. In the case of PI algebras we use completion to overcome this
difficulty. A complete local ring is semiperfect because it has idempotent
lifting property.

4. PASSING TO COMPLETION

It is reasonable to conjecture that if A is noetherian and semilocal then
Â is noetherian and faithfully flat over A on both sides. This is true for
noetherian semilocal PI rings [Va]. There are some partial results for FBN
semilocal rings and for rings with enough normal elements [Br, CH]. How-
ever, very little is known in general.

Let A be a left noetherian semilocal algebra and Â its completion. Then
Â is semilocal and Â0 = A0. By 2.4(1), if M is finite, then M̂ ∼= Â⊗M . If
M is not finite, then the completion does not behave well. For convenience
M̂ denotes sometimes the tensor product Â⊗A M even if M is not finite.

If ÂA is flat, the exact functor Â ⊗A −: ModA → Mod Â can be ex-
tended to the derived categories directly; namely, if X is an object in D�A�
represented by a complex X ., then Â⊗A X is defined to be the object in
D�Â� represented by the complex Â⊗A X ..

The following lemma was proved in [BL, 1.6]. We need it in the language
of derived category.

Lemma 4.1. Let A and B be left noetherian rings and A→ B a ring ho-
momorphism such that AB and BA are flat. Suppose N is an �A;A�-bimodule
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such that the �A;B�-bimodule N ⊗A B has a natural �B;B�-bimodule struc-
ture. Then for all X ∈ D−f �A� and all i ≥ 0,

ExtiA�X;N� ⊗A B ∼= ExtiB�B⊗A X;N ⊗A B�
as right B-modules.

Proof. If AP is free and finite,

HomA�P;N� ⊗A B
θ→HomB�B⊗A P;N ⊗A B�

is an isomorphism where θ is the map defined by θ�f ⊗ b�: b′ ⊗ m →
b′�f �m� ⊗ b�: This θ is also natural on P . Hence the result follows by
taking a finite free resolution of X.

Lemma 4.2. Let A be a left noetherian semilocal algebra. Suppose that Â
is flat over A on both sides. Then the following hold.

(1) j�X� = jÂ�X̂� for all X ∈ D−f �A�.
(2) depthA = depthÂ Â.
(3) If X ∈ D−f �A� and pdX <∞, then pdX = pdÂ X̂.

Proof. (1) This follows from the definition of j-number, 4.1, and the
fact that AÂ is faithfully flat.

(2) This follows from (1) and the facts depthA = j�A0� and
depthÂ Â = jÂ�Â0�:

(3) This follows from 4.1 and the facts that pdX = max�i �
ExtiA�X;A� 6= 0� and that ÂA and AÂ are faithfully flat.

Lemma 4.3. Let A be a left noetherian semilocal algebra such that ÂA is
flat. Let X ∈ D�A� and let X̂ = Â⊗A X. Then for any i,

ExtiA�A0; X̂� ∼= Exti
Â
�Â0; X̂�:

This isomorphism is natural with respect to X.

Proof. This follows from the flatness of ÂA and the natural isomor-
phisms

RHomA�Q; X̂� ∼= RHomA�Q;HomÂ�Â; X̂�� ∼= RHomÂ�Â⊗A Q; X̂�
for any Q ∈ D−�A�.

For any complex X, the canonical homomorphism X → X̂ induces a
natural homomorphism RHomA�A0;X� → RHomA�A0; X̂�. Combining
this with the morphism given in 4.3, we have a natural homomorphism

ηX :RHomA�A0;X� −→ RHomA�A0; X̂� −→ RHomÂ�Â0; X̂�
and associated natural homomorphisms

ηiX : ExtiA�A0;X� −→ Exti
Â
�Â0; X̂�:
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Proposition 4.4. Let A be a noetherian local algebra satisfying χ�A�.
Suppose Â is flat over A on both sides. For every X ∈ Dbf �A� with pdX <∞,
we have

(1) ηiX is an isomorphism for all i;

(2) depthX = depthÂ X̂.

Proof. (1) If X = A, ηiA is the natural map from ExtiA�A0;A� to
Exti

Â
�Â0; Â�. By χ�A� and Lenagan’s lemma, ExtiA�A0;A� is right artinian

and hence ExtiA�A0;A� ⊗ Â = ExtiA�A0;A�. Therefore 4.1 shows that ηiA
is an isomorphism for all i. Since η is natural, ηiP is an isomorphism for
every i and every finite projective A-module P . Now the statement follows
by the induction argument on the length of projective resolution of X.

(2) follows from (1).

As a consequence we have the following.

Theorem 4.5. Let A be a noetherian local algebra satisfying χ�A�. Sup-
pose Â is left noetherian and flat over A on both sides. Then

(1) the Auslander–Buchsbaum formula holds for Â;

(2) the Auslander–Buchsbaum formula holds for A.

Proof. (1) By 2.2, A satisfies the weak χ. By 4.4(1) ηdA is an isomor-
phism; whence Â satisfies the weak χ. Since the completion Â is semiper-
fect and local, by 3.3, the Auslander–Buchsbaum formula holds for Â.

(2) Follows from (1), 4.4(2), and 4.2(2,3).

It is unclear if 3.3 holds for general non-semiperfect local algebra satis-
fying χ or weak χ because we do not know if Â satisfies the hypotheses in
4.5. If A is PI, the hypotheses do hold. The following lemma is a special
case of [SZ1, 3.5].

Lemma 4.6. Every noetherian semilocal PI algebra satisfies the χ
condition.

Corollary 4.7. Let A be a noetherian local PI algebra. Then the
Auslander–Buchsbaum formula holds.

Proof. By 4.6, A satisfies χ and χ�A�. By 2.5, Â is flat over A on both
sides. Hence the result follows from 4.5.

Theorem 1.1 follows from 3.4(1) and 4.7.
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5. GLOBAL DIMENSION AND INJECTIVE DIMENSION

In this section we show that homological invariants such as global dimen-
sion and injective dimension are preserved under completion.

Lemma 5.1. Let A be a noetherian semilocal PI algebra. If I is an ideal
of A, then ηiA/I is an isomorphism for all i.

Proof. (1) By [Br, 7], Î = ÂI = ÂIÂ. Hence we have

Â/I = A/I ⊗A Â = Â⊗A A/I = Â/Î
as Â-bimodules. By 4.1, we have

ExtiA�A0;A/I� ⊗A Â ∼= Exti
Â
�Â⊗A A0;A/I ⊗A Â� = Exti

Â
�Â0; Â/I�:

Since noetherian local PI algebras satisfy χ (see 4.6), ExtiA�A0;A/I� is
an A-module of finite length. By Lenagan’s lemma, ExtiA�A0;A/I� is of
finite length as a right A-module. Hence

ExtiA�A0;A/I� ⊗A Â = ExtiA�A0;A/I�:
It follows that ηiA/I : ExtiA�A0;A/I� → Exti

Â
�Â0; Â/I� is an isomorphism.

The following lemma is well known and see [SZ1, 2.1] for a proof.

Lemma 5.2. Let A be a noetherian PI ring and M a finite A-module.
Then there exists a chain of submodules

M =Mw ⊃Mw−1 ⊃ · · · ⊃M0 = 0

such that the following hold.

(1) For each i, set Mi = Mi/Mi−1 and Pi = ann�Mi�. Then Pi is a
prime ideal and Mi is a torsion-free, uniform A/Pi-module.

(2) Each Mi is isomorphic to a uniform left ideal of A/Pi. There exist
an integer ri and a short exact sequence

0 −→ A/Pi −→M
⊕ri
i −→ Hi −→ 0;

where Hi is a torsion A/Pi-module.
(3) If A is prime and M is a torsion A-module, then zM = 0 for some

regular central element z ∈ A.

Next is 4.4 for PI rings without the hypothesis pdX <∞.

Proposition 5.3. Let A be a noetherian semilocal PI algebra and Â its
completion. Let X ∈ Dbf �A�. Then
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(1) ηiX is an isomorphism for all i;

(2) depthX = depthÂ X̂.

Proof. (2) follows directly from (1) and we now prove (1). By the trunca-
tion triangle argument as in [Ha2, I.7.1] we only need to show the statement
when X is an A-module M .

In the rest of this proof we assume that M is a finite A-module and
prove that ηiM is an isomorphism for all i by induction on KdimM . If
KdimM = 0, then M = M̂ . Hence ηiM is an isomorphism for all i by 4.3.
Now suppose that KdimM = d > 0: By noetherian induction and 5.2 we
may further assume that (a) M is critical, (b) P x= ann�M� is prime, (c)
there is an integer r such that

0 −→ A/P −→M⊕r −→ H −→ 0

is exact, and (d) H is A/P-torsion. This short exact sequence gives rise to
a commutative diagram with exact rows

Ei−1
A �A0;H�−→EiA�A0;A/P�−→EiA�A0;M

⊕r�−→EiA�A0;H�−→Ei+1
A �A0;A/P�y y y y y

Ei−1
Â
�Â0; Ĥ�−→EiÂ�Â0; Â/P�−→EiÂ�Â0; M̂

⊕r�−→Ei
Â
�Â0; Ĥ�−→Ei+1

Â
�Â0; Â/P�

where E stands for Ext. By [GW, 13.7], KdimH < KdimM . By 5.1 and
induction assumption, the left two maps and right two maps in the above
are isomorphisms. Hence the middle map ηiM⊕r is an isomorphism by the
5-lemma. Therefore ηiM is an isomorphism as required.

The first part of the following lemma can be proved easily by using
Nakayama’s lemma and the minimal projective resolution of a finite mod-
ule, and the second part is a special case of [Ra, 8].

Lemma 5.4. Let A be a noetherian semilocal algebra.

(1) If A is semiperfect, then gldimA = pdA0.

(2) If A is PI, then gldimA = pdA0.

Proposition 5.5. If A is a noetherian semilocal PI algebra, then
gldimA = gldim Â.

Proof. If pdA0 <∞, then by 4.2(3), pdA0 = pdÂ Â0. If pdÂ Â0 <∞,
then by 5.3(1), pdA0 <∞ and hence pdA0 = pdÂ Â0. Therefore pdA0 =
pdÂ Â0 in all cases. Thus the result follows by 5.4.
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Definition 5.6. Let A be a left noetherian semilocal algebra. For every
X ∈ D+�A�, we define the A0-injective dimension of X to be

id0X = max�i � Exti�A0;X� 6= 0�:

It is clear that id0X ≤ idX. We show next that the equality holds for
noetherian semilocal PI algebras.

Proposition 5.7. Let A be a noetherian semilocal PI algebra and X ∈
Dbf �A�. Then

(1) idX = id0X.

(2) idX = idÂ X̂.

(3) idA = idÂ Â.

Proof. It follows from 5.3(1) that id0X = id0
Â
X̂. Hence (2) follows from

(1). (3) is a special case of (2). So it remains to show (1). Let w = id0X.
It suffices to show that Exti�M;X� = 0 for all i > w and for all finite A-
modules M . We use induction on KdimM . If KdimM = 0, the statement
follows easily. If d = KdimM > 0. By 5.2 and noetherian induction, we only
need to consider the case when M = A/P for some prime ideal P ⊂ A.
Since B x= A/P is PI, there is a regular central element x in the Jacobson
radical of B. Hence we have a short exact sequence

0 −→ B −→ B −→ B/�x� −→ 0

and an associated long exact sequence

· · · −→Exti�B/�x�;X� −→ Exti�B;X� −→ Exti�B;X�
−→Exti+1�B/�x�;X� −→ · · · :

If i > w, by induction hypothesis, Exti�B/�x�;X� = Exti+1�B/�x�;X� = 0.
Note that the map Exti�B;X� → Exti�B;X� is the left multiplication by x.
By [SZ1, 3.5] Exti�B;X� is a noetherian B-module. ([SZ1, 3.5] is stated for
the case when X is a finite module M , but it can be easily extended to the
case when X is a complex in Dbf �A�.) Since x is in the Jacobson radical of
B, Exti�B;X� is zero by Nakayama’s lemma. Therefore

idX = max
{
i � Exti�M;X� 6= 0; for finite modules M

} = w:
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6. LOCAL COHOMOLOGY AND FINITISTIC DIMENSION

A graded version of the following definition was given in [AZ, Ye].

Definition 6.1. Let A be a left noetherian semilocal algebra with Ja-
cobson radical Í.

(1) For M ∈ModA, the Í-torsion functor 0Í is defined to be

0Í�M� =
{
x ∈M � Ínx = 0; for n� 0

}
:

(2) The derived functor R0Í is defined on the derived category
D+�A�. We define the ith local cohomology of X ∈ D+�A� to be

Hi
Í�X� = Ri0Í�X�:

(3) For X ∈ D+�A�, the local cohomological dimension of X is de-
fined to be

lcd�X� = sup�i � Hi
Í�X� 6= 0�:

(4) The cohomological dimension of 0Í is defined to be

cd�0Í� = sup�i � Hi
Í�M� 6= 0; for some A-module M�;

which is also called the local cohomological dimension of A and is also
denoted by cd�A�.

For any X ∈ D+�A�, Hi
Í�X� is always Í-torsion. Clearly 0Í�M� =

lim−→ HomA�A/Ín;M� for all M ∈ModA. Hence

Hi
Í�X� = lim−→

n
ExtiA�A/Ín;X�:

If Í has the AR property, then the injective hull E�A0� of A0 is Í-
torsion [MR, 4.2.2]. Hence the injective hull of any Í-torsion module is
Í-torsion. In this case, if M is Í-torsion, H0

Í�M� = M and Hi
Í�M� = 0

for i > 0.
Since Hi

Í commutes with direct limits, we have

cd�A� = sup�i � Hi
Í�M� 6= 0; for some finite A-module M�:

If cd�A� is finite, then cd�A� = lcd�A� because Hcd�A�
Í �−� is a right exact

functor.

Proposition 6.2. Let A be a left noetherian semilocal algebra. Then

depthX = inf�i � Hi
Í�X� 6= 0�

for all X ∈ D+�A�.
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Proof. Let Y be a minimal injective resolution of X. By the minimality
of Y ,

depthX = inf�i � Yi contains a simple submodule�:
Since the boundary map sends simple submodules to zero, we also have

inf�i � Hi
Í�X� 6= 0� = inf�i � hi0Í�Y � 6= 0�

= inf�i � Yi contains a simple submodule�:
Therefore the result follows.

Proposition 6.3. Let A be a left noetherian semilocal algebra satisfying
the χ condition. Suppose that the injective hull of A0 is artinian. Then Hi

Í�X�
is artinian for all i and all X ∈ D+f �A�.

Note that if A is noetherian, semilocal, and PI, then E�A0� is
artinian [Va].

Proof. Let Y be a minimal injective resolution of X and I is the Í-
torsion part of Y . By definition, Hi

Í�X� = hi�I�. By χ, soc�Ii� is ar-
tinian and hence of finite length. This implies that Ii is artinian. Therefore
Hi

Í�X� = hi�I� is artinian.

In the commutative and the graded case, local cohomology has the nice
property that if M is a B-module for B = A/I then Hi

Í�M� can be com-
puted as A-module or as B-module. We now prove the same statement in
the noncommutative ungraded case.

Lemma 6.4. Let A be a right noetherian semilocal algebra such that
AÂ is flat. Then for any finite right A-module M and any i, the inverse
system �TorAi �M;A/Ín�� satisfies the trivial Mittag–Leffler condition;
namely, for each n there is a j > n such that the map TorAi �M;A/Íj�→
TorAi �M;A/Ín� is zero.

Proof. Define Fi�M� = lim←− TorAi �M;A/Ín�. Hence F0�M� = M̂ . Since
TorAi �M;A/Ín� is artinian for all i ≥ 0, the inverse system �TorAi
�M;A/Ín� � n ≥ 1� satisfies the Mittag–Leffler condition [We, 3.5.6].
Therefore lim←− TorAi �−;A/Ín� is exact when applied to finite modules
[Ha1, II.9.1]. This implies that �Fi � n ≥ 0� is a covariant δ-functor [Ha1,
p. 205]. By definition, Fi�P� = 0 for all i > 0 and for all projective mod-
ules P . By the right module version of 2.4(2), F0�−� is an exact functor on
finite modules M . It follows from the long exact sequence and induction
that Fi�M� = 0 for all i > 0. That is, lim←− TorAi �M;A/Ín� = 0 for all i > 0.
Since the inverse system �TorAi �M;A/Ín�� satisfies the Mittag–Leffler
condition, it satisfies the trivial Mittag–Leffler condition.
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Let A→ B be an algebra map such that the image of Í, denoted by Í̄,
is contained in ÍB, the Jacobson radical of B. If A is noetherian, and if AB
and BA are finite, then �Ín

B � n ≥ 0� and �Í̄n � n ≥ 0� are cofinal where
Í̄n = BÍ̄n. Hence Hi

ÍB
�−� = lim−→ ExtiB�B/Í̄n;−�.

Proposition 6.5. Let A be a noetherian semilocal algebra such that AÂ
is flat. Let A→ B be an algebra map such that the image of Í is in ÍB and
that AB and BA are finite. Then, for every X ∈ Db�B�, Hi

Í�AX� = Hi
ÍB
�BX�.

Proof. It suffices to prove the assertion for any B-module M . The re-
striction map BM → AM is an exact functor. It is clear that 0Í�AM� =
0ÍB
�BM�. To prove the statement we only need to show that �Hi

Í�A−� �
i ≥ 0� is a universal δ-functor on B-modules [Ha1, pp. 205–206]. This fol-
lows if Hi

Í�A−� vanishes on injective B-modules for i > 0. Let E be an
injective B-module; we have the standard isomorphism

HomB�TorAq �B;A/Ín�; E� ∼= ExtqA�A/Ín; E�:
For every q > 0, by 6.4, �TorAq �B;A/Ín�� satisfies the trivial Mittag–Leffler
condition. This implies that lim−→ HomB�TorAq �B;A/Ín�; E� = 0 for all q >
0. Therefore Hq

Í�E� = lim−→ ExtqA�A/Ín; E� = 0 for all q > 0 as required.

The following lemma is not hard to see.

Lemma 6.6. Let A be a left noetherian semilocal algebra and x a central
element in A. If x acts on bimodules N and M centrally, then x acts on
Exti�N;M� and Hi

Í�A� centrally.

Theorem 6.7. Let A be a noetherian, semilocal, PI algebra. Then

(1) lcd�M� ≤ KdimM for all finite A-modules M .
(2) 0 ≤ lcd�A� = cd�A� ≤ KdimA.

Proof. By [MR, 13.7.15 and 6.4.8], A has finite Krull dimension.

(1) We prove the statement by induction on d = KdimM . If d = 0,
then M is artinian and hence H0

Í�M� = M and Hi
Í�M� = 0 for all i >

0. Thus lcd�M� = KdimM . Suppose now KdimM = d > 0. By 5.2 and
induction, we only need to consider the case when M = A/P for some
prime ideal P ⊂ A. By 6.5, we may assume M = A and A is prime. Let x
be a regular central element in the Jacobson radical of A. Applying Hi

Í to
the short exact sequence

0→ A→ A→ A/�x� → 0;

we obtain a long exact sequence

· · ·Hi−1
Í �A/�x�� −→ Hi

Í�A� −→ Hi
Í�A� −→ Hi

Í�A/�x�� −→ · · · :
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If i > d, then by induction hypothesis, Hi−1
Í �A/�x�� = Hi

Í�A/�x�� = 0.
By 6.6, x acts on Hi

Í�A� as a left multiplication. But Hi
Í�A� is Í-torsion;

therefore Hi
Í�A� = 0 as required.

(2) By (1), 0 ≤ cd�A� ≤ KdimA. Since lcd�A� = cd�A�, the result
follows.

Corollary 6.8. Let A be a noetherian semilocal PI algebra. Then
depthA ≤ KdimA.

Proof. It is clear from 6.2 that depthA ≤ lcd�A�. The result follows
from 6.7(2).

Definition 6.9. Let A be an algebra. The left little finitistic dimension
of A is defined to be

lfPDA = sup�pdM �M finite A-module with pdM <∞�:

The finitistic dimension conjecture states that the little finitistic dimen-
sion of a finite dimensional algebra is finite. One can even ask if the little
finitistic dimension of a noetherian, semilocal, PI algebra is finite. First we
have the following easy observation as in the commutative case.

Proposition 6.10. Let A be a left noetherian local algebra such that the
Auslander–Buchsbaum formula holds. Then lfPDA ≤ depthA.

Proof. By the Auslander–Buchsbaum formula, pdM = depthA −
depthM , for any finite A-module M with pdM < ∞. It follows from the
definition that depthM ≥ 0. Therefore the result follows.

Corollary 6.11. Let A be a left artinian local algebra with soc�AA� 6= 0.
Then lfPDA = 0.

Proof. The result follows by 3.3, 6.10, and the fact that depthA = 0.

Corollary 6.12. Let A be a noetherian local PI algebra. Then

lfPDA ≤ depthA ≤ KdimA <∞:

Proof. The first inequality follows by 4.7 and 6.10 and the second by 6.8.

This is basically 1.2 and the last equality of 1.2 follows from 8.7(1). There
are other related invariants such as left big finitistic dimension lFPDA
defined to be the supremum of the projective dimensions pdM of left A-
module of finite projective dimension. Kirkman et al. proved that if A is a
noetherian semiprime PI ring then KdimA ≤ lFPDA+ 1 [KKS, 3.3].
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7. MORITA DUALITY

We say an �A;T �-bimodule AET induces a Morita duality if (a) AE and
ET are injective cogenerators and (b) the right and left multiplication in-
duces isomorphisms EndA�AE� ∼= T and EndT �ET � ∼= A. In this case we
say A has a (left) Morita duality and T has a right Morita duality. If T = A,
then we say A has a Morita self-duality. Basic properties about Morita du-
ality can be found in [Xue].

Not every noetherian (artinian) semilocal algebra admits a Morita du-
ality [AF, Ex 24.9] and not every local noetherian (artinian) ring having
Morita duality admits a Morita self-duality [Xue, Ex 12.9]. Vámos proved
the following theorem [Va].

Theorem 7.1. Let A be a complete noetherian semilocal PI ring and let
AE be the minimal injective cogenerator. Then

(1) T x= EndA�AE� is right noetherian and semiperfect,
(2) EndT �ET � = A,
(3) ET and AE are both artinian, and
(4) AET induces a Morita duality.

It is not clear from Vámos’ work that T is PI and left noetherian, and
one of the main results in the next section is to show that this is true. We
list some facts about Morita duality, most of which are copied from [Xue].

Lemma 7.2. Let A and T be two rings. Suppose AET defines a Morita
duality between A and T .

(1) If I is an ideal of A and F = annE�I�, then F defines a Morita
duality between A/I and T/J where J = annT �F�.

(2) The lattice of ideals of A is isomorphic to the lattice of ideals of T
via the map φ: I → J described in (1). We denote J by φ�I�.

(3) The centers of A and T are isomorphic and the isomorphism is
compatible with φ in (2). We denote this isomorphism also by φ. Then φ
maps the ideal �x� to the ideal �φ�x�� for any x in the center of A.

(4) φ maps the Jacobson radical of A to the Jacobson radical of T .
(5) Suppose E is artinian on both sides. Then A is prime if and only if

T is.
(6) Suppose E is artinian on both sides. Then φ defined in (2) maps

the prime radical of A to the prime radical of T .
(7) Suppose A is a noetherian, semilocal, prime, PI algebra and T is

right noetherian. Then every nonzero ideal of T contains a regular central
element.
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Proof. (1) is [Xue, 2.5] and (2), (3) are [Xue, 2.6(8)].

(4) By [Xue, 2.7], both A and T are semiperfect and hence semilocal.
In this case the Jacobson radical is the intersection of finitely many maximal
ideals. Thus the statement follows from (2).

(5) By duality, A is left noetherian and T is right noetherian. Sup-
pose T is prime and we need to show that A is prime. Let N be the
prime radical of A. Suppose that N 6= 0. Then φ�N� 6= 0 and KdimTT >
Kdim�T/φ�N��T because T is prime. Since A is left noetherian, there is an
integer s such that Ns = 0. Hence, there is a chain of submodules

E = E0 ⊃ E1 ⊃ · · · ⊃ Es−1 ⊃ Es = 0;

where Ei = NiE. Let Mi = Ei/Ei+1 and Li = E/Ei. For each i the sequence

0 −→Mi −→ Li+1 −→ Li −→ 0

is exact. For any A-module M , let M∗ denote the right T -module
HomA�M;E�. Applying ∗ to Ei, Mi, and Li we obtain a chain of sub-
modules

T = E∗ = L∗s ⊃ L∗s−1 ⊃ · · · ⊃ L∗1 ⊃ L∗0 = 0

and short exact sequences

0 −→ L∗i −→ L∗i+1 −→M∗i −→ 0

for all i. SinceMi is an artinianA/N-module,M∗i = HomA/N�Mi;annE�N��
is a noetherian right T/φ�N�-module. Thus

KdimTT = maxi�KdimL∗i+1/L
∗
i � = maxi�KdimM∗i �

≤ Kdim�T/φ�N��T < KdimTT :

This is a contradiction. Therefore N = 0 and A is semiprime. Since T is
prime, by (2), the intersection of two nonzero ideals is nonzero. Hence the
intersection of two nonzero ideals of A is nonzero, which implies that A is
prime. By symmetry, if A is prime, so is T .

(6) Follows from parts (2) and (5).
(7) By (5) T is prime and hence every nonzero central element is

regular. For every nonzero ideal Q ⊂ T , there is a nonzero ideal P ⊂ A
such that Q = φ�P�. Since A is PI, there is a regular central element x in
P . By (3) there is a central elememt φ�x� in Q.

Let B be an artinian ring. We say B is weakly symmetric if

[WS1] for any bimodules CMB and LNB of finite length on both sides,
where C and L are algebras, HomB�M;N� is of finite length on both sides,
and

[WS2] the above condition holds after exchanging B and Bop.
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Note that, in condition [WS1], it is automatic that HomB�M;N� is of finite
length as a left L-module. It is easy to see that B is weakly symmetric if
and only if B/ÍB is and that the matrix algebra Mn�B� is weakly symmetric
if and only if B is. There are division rings which are weakly symmetric
[SZ1, 3.1].

Proposition 7.3. Every artinian PI algebra is weakly symmetric.

Proof. By symmetry, we only prove [WS1]. Let B be artinian and PI.
Suppose bimodules CMB and LNB are of finite length on both sides for
some algebras C and L. By using exact sequences we may assume M and
N are simple bimodules. Factoring by the annihilators, we may assume that
M and N are faithful on both sides and B, C, and L are simple artinian.
It is clear that HomB�M;N� is of finite length as a left L-module. To show
Hom�M;N� is of finite length as a right C-module we may forget the L-
module structure. Hence it suffices to show HomB�CMB;B� is of finite
length as a right C-module. Since B is PI, the result follows from [SZ1, 3.2].

Next we show that stratiform simple artinian rings introduced by
Schofield [Sc] are weakly symmetric. A simple artinian ring B is called
stratiform over the base field k if there is a chain of simple artinian rings

B = Bn ⊃ Bn−1 ⊃ Bn−1 ⊃ · · · ⊃ B1 ⊃ B0 = k;
where either Bi+1 is finite-dimensional over Bi on both sides or else Bi+1
is isomorphic to Bi�xi; σ; δ�. The stratiform length of B is defined to be the
number of steps in the chain that are infinite-dimensional. The Weyl skew
fields and quotient division rings of skew polynomial rings are stratiform.

Proposition 7.4. Every stratiform simple artinian ring is weakly sym-
metric.

Proof. If B is stratiform, then so is Bop. So it suffices to prove [WS1].
Suppose bimodules CMB and LNB are of finite length on both sides and

we may assume that C and L are simple artinian. Then B is a subring of
Mn�C� and C is a subring of Mm�B� for some n;m ∈ �. Hence we have
injective homomorphisms B → Mn�C� → Mnm�B�. Since B and Mnm�B�
are stratiform of the same stratiform length, it follows from [Sc, Theorem
24] that Mnm�B� is of finite length over B on both sides via the map above.
Hence Mn�C� is of finite length over B on both sides. Thus Mn�C� is strat-
iform. Replace C by Mn�C� and M by M⊕n; we may assume B ↪→ C and
both are stratiform of the same length. Similarly, we may assume B ↪→ L
and both are stratiform of the same length. Hence C and L are stratiform
with the same length. Since it is automatic that HomB�M;N� is of finite
length as a left L-module, by [Sc, Theorem 24], it is of finite length as a
right C-module.
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The next proposition is used in the proof of 1.4.

Proposition 7.5. Suppose a two-sided artinian �A;T �-bimodule AET in-
duces a Morita duality between A and T . Suppose that A0 is weakly symmetric
and that A/N is noetherian where N is the prime radical of A. Then A is
noetherian.

Proof. Let E0 = HomA�A0; E�. Then E0 induces a Morita duality be-
tween A0 and T0 x= T/ÍT . If we write A0 =

⊕
i Mni
�Di� for finite integers

ni and division rings Di, then T0
∼= ⊕iMmi

�Di� for some integer mi. Hence
A0 is weakly symmetric if and only if T0 is.

By duality, A is left noetherian and T is right noetherian and both are
complete. Since A is complete and AE is artinian,

⋂
n Ín = 0 by 1.4(4). If

A is not noetherian, then N is not finite as a right A-module. Since A is
left noetherian, there is an integer s such that Ns = 0. Hence Ni/Ni+1 is
not finite as a right A-module for some i. Factoring by Ni+1 we may assume
Ni+1 = 0. By 7.2(1,2) we still have a Morita duality. Now Ni = Ni/Ni+1 is
not a finite right A/N-module. Let Í̄ = Í/N . We have⋂

n

NiÍ̄n =⋂
n

NiÍn ⊂⋂
n

Ín = 0:

With this equality 2.4(6) shows that Ni/NiÍ is not finite. Further, factoring
by NiÍ we may assume NiÍ = 0. Since Ni is a sub-bimodule of A, Q x=
HomA�ANi;A E� is a bimodule factor of E. Since NiÍ = 0, ÍQ = 0; i.e., Q
is a left A0-module. By the hypothesis AE is artinian, so AQ is artinian and
of finite length. This together with the fact that QT is artinian implies that
QT is of finite length. Thus there is an integer s such that QÍs

T = 0. By the
first paragraph T0 is weakly symmetric, which implies that HomT �QT ;EsT �
is a finite right A-module where Es = HomT �T/Ís

T ; ET �. Finally

Ni = HomT �QT ;ET � = HomT �QT ;EsT �;

which is finite on the right, a contradiction.

Xue asked the following question [Xue, 11.18]: if A is a left artinian ring
with a duality induced by AET and if T is right artinian, is A also right
artinian? By 7.5, if A0 (or equivalently T0) is weakly symmetric (e.g., PI),
then A and T are artinian. Hence we partially answer Xue’s question.

Proposition 7.6. Let A be a left noetherian complete semilocal alge-
bra such that A0 x= A/Í is weakly symmetric, and let D be a two-sided
noetherian complete semilocal algebra. Suppose that a two-sided artinian
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�A;T �-bimodule AET induces a Morita duality. Then for any two-sided
artinian �A;D�-bimodule M , M∗ x= HomA�AM;A E� is a noetherian
�D;T �-bimodule.

Proof. By [Xue, 2.6(12)] M∗ is right noetherian. It remains to show it is
left noetherian. Let Mn = HomD�D/Ín

D;MD�. Then Mn is a sub-bimodule
of M . Because M is artinian, Mn is of finite length as a right D-module and
M = ⋃n Mn = lim−→n Mn. Thus

M∗ = HomA�M;E� = HomA�lim−→ Mn;E� = lim←− HomA�Mn;E�:

For any bimodule M and any injective left module E, for any finite right
D-module F , there is a canonical isomorphism [Rot, 3.34]

HomA�HomD�FD; AMD�; AE� ∼= F ⊗D HomA�AMD;AE�:
Hence we have

M∗n x= Hom�Mn;E� = Hom�Hom�D/Ín
D;M�; E�

∼= D/Ín
D ⊗Hom�M;E� ∼=M∗/Ín

DM
∗:

Therefore M∗ = lim←−M
∗/Ín

DM
∗. Since M1 is of finite length as a right

module and M is left artinian, the bimodule M1 is of finite length as a
left module. Hence there exists an s such that ÍsM1 = 0. Thus M∗1 =
HomA�M1; Es� where Es = HomA�A/Ís; E�. Since Es is of finite length
on both sides, by the weak symmetry of A0, M∗1 is of finite length as a
D-module. It follows from 2.4(5,6) that M∗ is a finite left D-module.

8. LOCAL COHOMOLOGICAL DIMENSION

In this section we complete the proofs of 1.4 and 1.5.

Proposition 8.1. LetA andD be noetherian semilocal PI algebras and let
M be an �A;D�-bimodule noetherian on both sides. Then Hi

Í�M� is artinian
on both sides for all i.

Proof. By [Va, Theorem B and Corollary 3], the injective hull of a sim-
ple A-module is artinian. By 4.6 and 6.3, Hi

Í�M� is left artinian. By the χ
condition and 2.3, each Exti�A/Ín;M� is of finite length on the left. By
Lenagan’s lemma, Exti�A/Ín;M� is of finite length on the right. Therefore
Hi

Í�M� = lim−→ Exti�A/Ín;M� is ÍD-torsion on the right. By [Va] the injec-
tive hull of a simple right D-module is right artinian. Hence, to prove that
Hi

Í�M� is right artinian, it suffices to show that the right socle of Hi
Í�M�

is artinian.
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We prove this assertion by induction on KdimM . If KdimM = 0, then
M is left and right artinian and hence H0

Í�M� = M and Hi
Í�M� = 0 for

all i > 0. Then the assertion holds. Now suppose KdimM = d > 0. By
noetherian induction and [GW, 7.6], we may assume

(a) M is critical as a bimodule,
(b) l:ann�M� = P is a prime ideal of A and r:ann�M� = Q is a prime

ideal of D,
(c) A/PM and MD/Q are torsionfree.

By 6.5, we may further assume that P = 0 and Q = 0 and that A and D
are prime. Since D is PI, there is a central regular element x in ÍD. Hence
the short exact sequence

0 −→M −→M −→M/Mx −→ 0

induces a long exact sequence

· · · −→ Hi−1
Í �M/Mx� −→ Hi

Í�M� −→ Hi
Í�M� −→ Hi

Í�M/Mx� −→ · · · ;
where the maps M → M and Hi

Í�M� → Hi
Í�M� are right multiplica-

tion by x. Since x is in ÍD, the right socle of Hi
Í�M� is in the image

of Hi−1
Í �M/Mx�, which is artinian by induction on i. Therefore the right

socle of Hi
Í�M� is artinian as required.

Suppose bimodule AET induces a Morita duality between a noetherian
PI ring A and a ring T . By 7.1 and [Xue, 4.6(3)], T is right noetherian
complete semilocal and AET is artinian. For every left A-module M we
define

8i�M� = HomA�Hi
Í�M�; AE�:

Hence 8i�M� is a noetherian right T -module. Applying 8i to a short exact
sequence

0 −→M −→ N −→ L −→ 0

we obtain a long exact sequence

· · · ←− 8i−1�L� ←− 8i�M� ←− 8i�N� ←− 8i�L� ←− 8i+1�M� ←− · · · :
(8.2)

We say a module M is pure of Krull dimension d if d = KdimM = KdimN
for all nonzero submodules N ⊂M .

Theorem 8.3. Let A be a noetherian PI ring with a Morita duality in-
duced by an artinian bimodule AET . We use the notation 8i defined as above.
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(1) Let M be a finite A-module. Then

(a) lcd�M� = KdimM .
(b) If d = KdimM , then the right T -module 8d�M� is pure of Krull

dimension d.
(c) The right T -module 8i�M� has Krull dimension no more than i

for all i.

(2) T is PI.

The ideas of the following proof are from [SZ1, 3.10].

Proof. (1) By [MR, 13.7.15 and 6.4.8], A has finite Krull dimension.
We prove (a), (b), and (c) by the induction on d = KdimM .

If d = 0, then M is artinian and hence 80�M� = M∗ is artinian and
8i�M� = 0 for all i > 0. It is not hard to see (1) holds for M . If A is prime
with Kdim 0, then A is simple artinian and T = EndA�E�. Therefore T is
simple artinian and PI.

We now assume KdimM = d > 0. We first look at the case where M =
A/P for some prime P . By 6.5 we may assume that M = A and A is
prime. By 7.2(5), T is prime. For every regular central element x ∈ Í,
KdimA = KdimA/�x� + 1 by the principal ideal theorem [MR, 4.1.12].
Applying 8.2 to the short exact sequence

0 −→ A −→ A −→ A/�x� −→ 0

we obtain a long exact sequence

· · ·←−8i−1�A/�x�� ←− 8i�A� ←− 8i�A�
←−8i�A/�x�� ←− 8i+1�A� ←− · · · :

(8.4)

By 6.7(1), 8i�A� = 0 for all i > d. Next we show 8d�A� 6= 0 by contra-
diction. If 8d�A� = 0, then by 8.4 at i = d − 1, 8d−1�A/�x�� is a sub-
module of 8d−1�A�. Replacing x by xn, 8d−1�A/�xn�� is a submodule of
8d−1�A�. Therefore �8d−1�A/�xn��� is an ascending chain of submodules
of the noetherian right T -module 8d−1�A�. By the noetherian property,
8d−1�A/�xn�� → 8d−1�A/�xn+1�� is an isomorphism for n � 0. Applying
8.2 to the exact sequence

0 −→ A/�x� ·x
n

−→A/�xn+1� −→ A/�xn� −→ 0

and noting that 8d�A/�x�� = 0 by 6.7(1) we obtain

←−8d−2�A/�xn�� ←− 8d−1�A/�x��
←−8d−1�A/�xn+1�� ←− 8d−1�A/�xn�� ←− 0:
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This implies that 8d−1�A/�x�� is a submodule of 8d−2�A/�xn�� for
n � 0. But by the induction hypothesis, Kdim8d−1�A/�x�� = d − 1
and Kdim8d−2�A/�xn�� ≤ d − 2. This yields a contradiction. Therefore
8d�A� 6= 0 and we have proved (a). Note that x induces the map φ�x�
(see 7.2(3)) on 8d�A�. By Nakayama’s lemma, 8d�A�/8d�A�φ�x� 6= 0
for all regular central elements x ∈ Í. By 8.4 at i = d and the induction
hypothesis that 8d−1�A/�x�� is pure of Krull dimension d − 1, we have

Kdim8d�A� ≥ Kdim8d�A�/8d�A�φ�x� + 1

= Kdim8d−1�A/�x�� + 1 = �d − 1� + 1 = d:
By 8.1 and 7.6, 8d�A� is a left noetherian A-module and a right noetherian
T -module. Let L be the T -torsion submodule of 8d�A�. Then L is a sub-
bimodule and annT �L� is a nonzero ideal of T . By 7.2(6), there is a central
regular element φ�x� ∈ annT �L� ∩ÍT where x is a central regular element
of A. Since x induces the map φ�x�:8d�A� → 8d�A�, the kernel of φ�x�
is L. By 8.4 at i = d, and using the induction hypothesis 8d�A/�x�� = 0,
the kernel L is zero. Namely, 8d�A� is right T -torsionfree. It is similar to
show that 8d�A� is left A-torsionfree. Let QA be the left Goldie quotient
ring of A and QT be the right Goldie quotient rings of T . Then

QA ⊗A 8d�A� ∼= 8d�A� ⊗T QT ∼= QA ⊗A 8d�A� ⊗T QT
and it is artinian as a left QA-module and as a right QT -module. Therefore
QT is a subring of a matrix algebra over QA. Since A is PI, so are QA and
QT and T . Thus by [MR, 13.6.15] T is a noetherian prime PI ring and we
have proved (2) in the case when A is prime. By [MR, 6.4.12 and 6.4.13],

KdimT = Kdim8d�A�T = KdimA8
d�A� = KdimA = d:

The purity of 8d�A�T follows from the torsionfree property. Thus we have
proved (b). Next we consider 8i�A� for i < d. If Kdim8i�A� = α > i,
then there is a submodule V ⊂ 8i�A� such that Kdim8i�A�/V = α− 1 ≤
d− 1. Since T is PI, J x= annT �8i�A�/V � is nonzero. Let φ�x� be a central
regular element in J ∩ÍT which corresponds to a central element x in A.
Thus

Kdim8i�A�/8i�A�φ�x� ≥ Kdim8i�A�/V > i− 1:

By 8.4, 8i�A�/8i�A�φ�x� is a submodule of 8i−1�A/�x��. This contradicts
the inductive hypothesis. Therefore we proved (c).

For the general case, by 5.2 and long exact sequence 8.2 we may reduce
to the case when M is a uniform left ideal of A/P and there is a short
exact sequence

0 −→ A/P −→M⊕r −→ H −→ 0;

where KdimH < d. Then the statement follows by 8.2, the induction hy-
pothesis, and the case M = A/P . Therefore we proved (1).



930 wu and zhang

(2) In the proof of (1) we see that, for every prime ideal P ⊂ T , T/P
is PI. Therefore T/φ�N� is PI where φ�N� is the prime radical of T . Since
T is right noetherian, φ�N�s = 0 for some integer s. Therefore T is PI
[MR, 13.1.7].

We are now ready to prove 1.4.

Theorem 8.5. Let A be a PI ring and let T be a ring. If an artinian
bimodule AET induces a Morita duality between A and T , then both A and
T are noetherian and T is PI.

Proof. By duality, A is left noetherian, T is right noetherian, and both
are complete and semilocal. Let N be the prime radical of A. By [MR,
13.6.15] A/N is noetherian since A is left noetherian. Obviously A0 is PI.
By 7.3 and 7.5, A is noetherian. Since A is PI, by 8.3, T is PI. Exchanging
A and T , the above argument shows that T is noetherian.

If A is noetherian but not PI, it is still an open question if T is two-sided
noetherian [Xue, 17.7]. To prove 1.5 we need the following lemma.

Lemma 8.6. Let A be a noetherian semilocal PI algebra and Â its com-
pletion. Let Hi

Í̂�Y � = lim−→ Exti
Â
�Â/Í̂n; Y � for Y ∈ D+�Â�. Then for X ∈

Db
f �A�,

Hi
Í�X� ∼= Hi

Í̂�X̂�;
where X̂ = Â⊗X.

Proof. By 5.3(1), ExtiA�A0;X� ∼= Exti
Â
�Â0; X̂� for all i and all X ∈

Db
f �A�. By the proof of 5.3 one can also show that there is a natural iso-

morphism

ExtiA�A/Ín;X� ∼= Exti
Â
�Â/Í̂n; X̂�

for all i and all n and all X ∈ Db
f �A�. The assertion follows by taking lim−→ .

The dual Krull dimension is defined to be the Krull dimension of the
object in the dual category. The Krull dimension is defined for noetherian
modules; the dual Krull dimension is defined for artinian modules. Next
are 1.5 and 1.3(2).

Theorem 8.7. Let A be a noetherian semilocal PI algebra and let M be
a finite A-module. Then

(1) lcd�M� = KdimM .
(2) If d = KdimM , then Hd

Í�M� has dual Krull dimension d.
(3) For all i, Hi

Í�M� has dual Krull dimension no more than i.
(4) KdimM = KdimÂ M̂ where ˆ is the completion.
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Proof. By faithful flatness of Â, Kdim M̂ ≥ KdimM . By 8.6, lcd�M� =
lcd�M̂�. Hence by 6.7 and 8.3,

lcd�M� ≤ KdimM ≤ Kdim M̂ = lcd�M̂� = lcd�M�:

Therefore these numbers are all equal and (1) and (4) follow.
By [Va, Theorem B(iv)], a left artinian A-module is a left artinian Â-

module and the category of left artinian A-module is equivalent to the
category of left artinian Â-module. Therefore (2) and (3) follow from (4),
8.6, and 8.3(1b,c).

9. EXAMPLES

Example 9.1. Let A =
(
k k
0 k

)
be the algebra of upper triangular 2× 2-

matrices over the field k. Hence A is a noetherian, semilocal, complete
PI ring. It is easy to see that A has two simple modules S1 = A/I and
S2 = A/J where I =

(
0 k
0 k

)
and J =

(
k k
0 0

)
. Direct computations show that

(1) depthA = depth S1 = depth S2 = 0.

(2) gldimA = 1.

(3) pd S1 = 0 and pd S2 = 1.

Thus A does not satisfy the Auslander–Buchsbaum formula.

Example 9.2. Let K be a field with a monomorphism f into itself such
that dimKf �K� = ∞. This can be done for a field of infinite transcen-
dence degree. Let M = K be a K-bimodule with an ordinary left multi-
plication and a right multiplication via the map f . Then the trivial exten-
sion A x= K ⊕M with M2 = 0 is local and left artinian, but not right
noetherian. Every left artinian local algebra satisfies the weak χ condition.
We want to show that A does not satisfies the χ condition. Let E�K� be
the injective hull of the simple module K = A/M . By [AF, Ex. 24.9(1)],
E�K�/K ∼= HomA�KM;K K�, which is not finite by the computation as in
[Xue, 12.1] or [RZ]. Hence Ext1

A�K;K� = HomA�KM;K K� is not of finite
length. Therefore A does not satisfy the χ condition. Also [Xue, 12.1] shows
that A does not have a Morita duality. Since soc�AA� 6= 0, A satisfies the
weak χ and lfPD �A� = 0 by 6.11.

Example 9.3. This is taken from [Mc, Sect. IV]. Let Ç be the 3-
dimensional nilpotent Lie algebra over a field k of characteristic 2 with
a basis x; y; z with �x; y� = z and other commutators zero, and let A be
the universal enveloping algebra of Ç. Then A is a noetherian PI domain
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of global dimension 3. By [Mc, Sect. IV] there is a localizable prime ideal
P ⊂ A such that the localization B x= AP has the following properties.

(1) B is a noetherian local PI domain of global dimension 2.
(2) B/ÍB is a 2 × 2-matrix algebra over a division ring.

Hence the matrix units of B/ÍB cannot be lifted to the ring B. Therefore
B is not semiperfect. The completion B̂ is a 2 × 2-matrix algebra over a
complete local ring. This example also shows that a completion of a domain
at a maximal ideal may not be a domain.

Example 9.4. Stafford [SZ2] gave an example of a noetherian graded
ring not satisfying the χ condition (or even the weak χ condition). We
modify his example into a local example. Ideas here are from [SZ2].

Let q be a nonzero element in the base field k with qn 6= 1 for all n ≥ 1.
Let V be the scalar local complete algebra k��x; y��/�yx− qxy − x2� where
k��x; y�� is the formal power series ring of two noncommuting variables.
Replacing y by y + �q − 1�−1x one sees that V ∼= k��x; y��/�yx − qxy�.
Therefore

(1) V is noetherian and scalar local.
(2) V is a domain of global dimension and Krull dimension 2.
(3) V is the completion of the connected graded algebra k�x; y�/

�yx− qxy − x2� with respect to the maximal graded ideal.

Let A = k+ Vy. Then A is a domain. For every element a ∈ Vy, 1+ a has
an inverse in A. Thus Vy is the Jacobson radical of A and A is scalar local.
Let În = Ín

V ∩A = Ín
V ∩ Vy. Then A = lim←−A/În; namely, A is complete

with respect to �În � n ≥ 0�. The associated graded ring
⊕

n≥0 În/În+1
is the graded ring R defined in [SZ2, 2.1]. Recall that U = k�x; y�/�yx −
qxy − x2� and R = k+Uy. By [SZ2, 2.3] R is noetherian. It follows by [NV,
IV.5] that A is noetherian. Let grR be the category of finite graded left R-
modules with morphism being graded homomorphisms of degree zero. The
completion functor F :M → lim←−M≤n with respect to the grading of M is
an exact functor from grR to ModA. Similar to 2.4(1) one sees that this
completion functor is equivalent to the tensor product A ⊗R − on grR,
whence AR is flat on the category grR. Similarly RA is flat on the category
of finite graded right R-modules. Similar to the proof of 4.1, one can show
the following.

Lemma 9.5. Let R and A be as above. Suppose N is a noetherian graded
R-bimodule such that N ⊗R A = A ⊗R N . Then for all M ∈ grR and all
i ≥ 0,

ExtiR�M;N� ⊗R A ∼= ExtiA�A⊗R M;N ⊗R A�
as right A-modules.
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We list below some other properties analogous to the results in [SZ2].

Proposition 9.6. Let A be defined as above. Then

(1) A is a noetherian, complete, scalar local domain of infinite global
dimension.

(2) A and Aop do not satisfy the χ condition or the weak χ condition.
(3) The Auslander–Buchsbaum formula does not hold for A and Aop.

Proof. (1) We have already seen that A is a noetherian scalar local
domain. It follows by [SZ2, 2.2(ii)] that �În � n ≥ 0� is cofinal with �Ín �
n ≥ 0� where Í is the Jacobson radical of A. Hence A is complete with
respect to its Jacobson radical. Since A0 = R0 = k, k denotes the trivial
A-module and the trivial graded R-module. Since R has infinite global
dimension, ExtiR�k; k� 6= 0 for all i. By 9.5, ExtiA�k; k� 6= 0 for all i. Hence
A has infinite global dimension.

We prove (2) and (3) for A. Because R, and hence A, has a kind
of symmetry described in the proof of [SZ2, 2.3], the same proofs work
for Aop. (2) follows by (3) and 3.3. It remains to show (3). Since A is
a domain, HomA�k;A� = 0. By the left-module version of [SZ2, 2.3],
Ext1

R�k;R� is an infinite-dimensional, noetherian, graded right R-module.
Hence, by 9.5, Ext1

A�k;A� = Ext1
R�k;R� ⊗R A is an infinite-dimensional,

noetherian, right A-module. This implies that depthA = 1. Also follows by
[SZ2, 2.3] that y is a non-zero-divisor on Ext1

R�k;R�. Let L = Ext1
R�k;R�.

Then the right multiplication by y induces a map ry :L≤�n−1��−1� → L≤n
with the kernel in degree n. By taking lim←− , we see that ry is an injec-
tive map from L̂ to L̂. Since L is finite, L̂ = L ⊗R A = Ext1

A�k;A�.
This proves that y is a non-zero-divisor on Ext1

A�k;A�. By the long ex-
act sequence HomA�k;A/Ay� is the kernel of the map ry : Ext1

A�k;A� →
Ext1

A�k;A�. Hence HomA�k;A/Ay� = 0. Using the above argument we
also have that the cokernel of the map ry : Ext1

A�k;A� → Ext1
A�k;A� is

1-dimensional. By the long exact sequence, the cokernel of ry is a submod-
ule of Ext1�k;A/Ay�. This implies that depthA/Ay = 1. It is clear that
pdA/Ay = 1. Thus

pdA/Ay + depthA/Ay = 2 > 1 = depthA

and the Auslander–Buchsbaum formula fails.

A similar statement of 9.6 holds in the connected graded case.
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