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We show that dust matter–dark energy combined phases can be achieved by the exact solution derived
from a power law f (R) cosmological model. This example answers the query by which a dust-dominated
decelerated phase, before dark-energy accelerated phase, is needed in order to form large scale structures.

© 2008 Elsevier B.V. Open access under CC BY license.
Very recently, alternative theories of gravity are playing an in-
teresting role to describe the today observed Universe. Although
being the best fit to a wide range of data [1], the �CDM model
is affected by strong theoretical shortcomings [2] that have moti-
vated the search for alternative models [3,4].

Dark energy models mainly rely on the implicit assumption that
Einstein’s GR is the correct theory of gravity indeed. Nevertheless,
its validity on large astrophysical and cosmological scales has never
been tested but only assumed [5], and it is therefore conceivable
that both cosmic speed up and missing matter are nothing else but
signals of a breakdown of GR. In this sense, GR could fail in giving
self-consistent pictures both at ultraviolet scales (early universe)
and at infrared scales (late universe).

Following this line of thinking, the “minimal” choice could be
to take into account generic functions f (R) of the Ricci scalar R .
The task for this extended theories should be to match the data
under the “economic” requirement that no exotic dark ingredients
have to be added, unless these are going to be found by means of
fundamental experiments [6,7]. This is the underlying philosophy
of what are referred to as f (R)-gravity (see [4,8,9] and references
therein).
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Although higher order gravity theories have received much at-
tention in cosmology, since they are naturally able to give rise to
the accelerating expansion (both in the late and in the early uni-
verse [7]), it is possible to demonstrate that f (R) theories can
also play a major role at astrophysical scales. In fact, modifying
the gravity Lagrangian affects the gravitational potential in the low
energy limit. Provided that the modified potential reduces to the
Newtonian one on the Solar System scale, this implication could
represent an intriguing opportunity rather than a shortcoming for
f (R) theories. In fact, a corrected gravitational potential could of-
fer the possibility to fit galaxy rotation curves without the need
of huge amounts of dark matter [10–16]. In addition, it is possi-
ble to work out a formal analogy between the corrections to the
Newtonian potential and the usually adopted galaxy halo models
which allow to reproduce dynamics and observations without dark
matter [12].

However, extending the gravitational Lagrangian could give rise
to several problems. These theories could have instabilities [17],
ghost-like behaviors [18], and they have to be matched with the
low energy limit experiments which quite fairly test GR.

In summary, it seems that the paradigm to adopt f (R)-gravity
leads to interesting results at cosmological, galactic and Solar Sys-
tem scales but, up to now, no definite physical criterion has been
found to select the final f (R) theory (or class of theories) capa-
ble of matching the data at all scales. Interesting results have been
achieved in this line of thinking [19–22] but the approaches are all
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phenomenological and are not based on some fundamental princi-
ple as the conservation or the invariance of some quantity or some
intrinsic symmetry of the theory.

In some sense, the situation is similar to that of dark mat-
ter: we know very well its effect at large astrophysical scales but
no final evidence of its existence has been found, up to now, at
fundamental level. In the case of f (R)-gravity, we know that the
paradigm is working: in principle, the missing matter and acceler-
ated cosmic behavior can be addressed taking into account gravity
(in some extended version), baryons and radiation but we do not
know a specific criterion to select the final, comprehensive theory.

In this Letter, we want to show that a general exact solution,
coming from the request of the existence of a Noether symmetry
for f (R) cosmological models, matches the two main important
requirements that a cosmological solution should achieve to agree
with data: a transient Friedmann dust-like phase, needed for struc-
ture formation, and an asymptotic accelerated behavior. Far to be
the final model to explain the cosmic speed up, the presence of
the Noether symmetry could be a physically motivated approach
to select viable cosmological models.

The general features of the theory are the following. Let

A=
∫

d4x
√−g f (R) +Am, (1)

be the gravitational action where f (R) is a generic function of
the Ricci scalar R . GR is recovered in the particular case f (R) =
−R/16πG , and Am is the action for a perfect fluid minimally cou-
pled with gravity

In the metric formalism, this action leads to 4th order differen-
tial equations

f R Rμν − 1

2
f gμν − f R;μν + gμν� f R = −1

2
T m
μν, (2)

where a subscript R denotes differentiation with respect to R and
T m
μν is the matter fluid stress-energy tensor.

In order to derive the cosmological equations in a Friedmann–
Robertson–Walker (FRW) metric, one can define a canonical La-
grangian L = L(a, ȧ, R, Ṙ), where Q = {a, R} is the configuration
space and T Q= {a, ȧ, R, Ṙ} is the related tangent bundle on which
L is defined. The variables a(t) and R(t) are the scale factor and
the Ricci scalar in the FRW metric, respectively. One can use the
method of the Lagrange multipliers to set R as a constraint of the
dynamics. Selecting the suitable Lagrange multiplier and integrat-
ing by parts, the Lagrangian L becomes canonical. In our case, we
have

A= 2π2
∫

dt a3
{

f (R) − λ

[
R + 6

(
ä

a
+ ȧ2

a2
+ k

a2

)]}
. (3)

It is straightforward to show that, for f (R) = −R/16πG , one ob-
tains the usual Friedman equations.

The variation with respect to R of the Lagrange multiplier gives
λ = f R . Therefore, integrating by parts, the point-like FRW La-
grangian is

L= a3( f − f R R) + 6a2 f R R Ṙȧ + 6 f Raȧ2 − 6kf Ra, (4)

which is a canonical function of two coupled fields, R and a, both
depending on time t . The total energy EL , corresponding to the
{0,0}-Einstein equation, is

EL = 6 f R Ra2ȧṘ + 6 f Raȧ2 − a3( f − f R R) + 6kf Ra = D, (5)

where D represents the standard amount of dust fluid as, for ex-
ample, measured today. The equations of motion for a and R are
respectively

f R R

[
R + 6H2 + 6

ä

a
+ 6

k

a2

]
= 0, (6)
6 f R R R Ṙ2 + 6 f R R R̈ + 6 f R H2 + 12 f R
ä

a

= 3( f − f R R) − 12 f R R H Ṙ − 6 f R
k

a2
, (7)

where H ≡ ȧ/a is the Hubble parameter. Considering R and a as
independent variables, we have, for consistency, that R coincides
with the definition of the Ricci scalar in the FRW metric.

The form of the function f (R) and the solution of the sys-
tem (5), (6) and (7) can be achieved by asking for the existence
of Noether symmetries. On the other hand, the existence of the
Noether symmetries guarantees the reduction of dynamics and the
eventual solvability of the system [23–25]. Here, we want to seek
for viable f (R) cosmological models.

We shall focus our attention on the fact that we need a cos-
mological solution of the field equations which exhibits not only
an accelerated phase in recent universe, but also a decelerated
period, which lasts for a long time, sufficient to allow the forma-
tion of structures. This issue has recently been argument of debate
since the validity of f (R) cosmology, which claims to avoid un-
known ingredient as dark energy, strictly lies on this possibility
[26]. Several works on f (R)-gravity have been devoted to the ac-
celeration and the reconstruction of the models starting from data
[7]. Numerical treatment is almost obliged and some educated, al-
though arbitrary, guess on the functional form is often necessary.
On the other hand, f (R)-cosmology should give rise to standard
Friedmann dust-dominated phase, which is necessary for the struc-
ture formation mechanism, widely accepted and properly working.
A first answer to this issue was given by means of a numerical re-
construction of the f (R) function [19]. Here, we want to present a
general exact solution of the equations, obtained by means of the
so-called “Noether symmetry approach”. A summary of the method
can be found in [23–25].

We ask now for the existence of a vector field

X = α
∂

∂a
+ β

∂

∂ R
+ α̇

∂

∂ȧ
+ β̇

∂

∂ Ṙ
, (8)

such that the Lie derivative of the Lagrangian is zero, i.e. L is con-
served and X is a Noether symmetry. It is then possible to find

α = 1/a; β = −2R/a2; f (R) = −|R|3/2. (9)

The absolute value is needed, because (with our conventions)
we have R < 0. Once the symmetry is found, we have an additional
constant of the motion, and it is then easy to find a change of
variables {a, R} → {u, v}, such that one of the variables is cyclic.
We have in fact

u = a2|R|; v = a2/2 (10)

and the new Lagrangian is

L′ = u3/2

2
+ 9

2

u̇ v̇√
u

− 9k
√

u. (11)

The Noether charge is then Σ1 = u̇/
√

u, leading to immediate
integration for u. Introducing the solution into EL = D , and solving
for v we obtain

u = 1

4
(Σ1t + Σ0)

2, (12)

v = Σ2
1

288
t4 + Σ1Σ0

72
t3 +

(
Σ2

0

48
− k

2

)
t2

+
(

Σ3
0

72Σ1
− k

Σ0

Σ1
+ 2D

9Σ1

)
t + v0. (13)

The parameters Σ0, Σ1, D , and v0 are the integration constants
of the equations. They are four since this is a general solution of a
fourth order problem.
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Fig. 1. Scale factor versus time in Standard Model (dashed) and our model (contin-
uous).

Coming back to a(t), and setting, for the sake of simplicity
a(0) = 0, i.e. v0 = 0, we get

a =
√

a4t4 + a3t3 + a2t2 + a1t, (14)

with

a4 = Σ2
1

144
; a3 = Σ1Σ0

36
; a2 = Σ2

0

24
− k;

a1 = Σ3
0

36Σ1
− 2k

Σ0

Σ1
+ 4D

9Σ1
.

We see that this solution is a ∝ t2 for large t , and a ∝ t1/2,
for small t . There is thus room for a smooth transition, passing
through a period during which the solution approximates reason-
ably well a Friedmann dust-transient like a f ∝ t2/3. In order to see
this, we have to consider suitable values of the integration con-
stants ai . All computations and results are simplified if we fix the
time unit, by setting the current time t0 = 1. This will not affect
the results but the value of H0 has to be recast with respect to
physical units. We assume also H0 = 1 for simplicity. A unitary
value for a0 can be also set, if no restriction on the value of k is
imposed. Finally, we consider a value of the deceleration parameter
q0 = −0.4, which could describe a reasonable current acceleration.
These considerations yield a model depending only on one param-
eter. Taking a4 = 0.106, the scale factor turns out to be expressed
as

a =
√

t

5

[
2 + 0.53(t − 1)3 + t + 2t2

]
. (15)

Comparing this solution with a f = a0 f t2/3 and noting that a0 f
must be less than a0, we obtain the very good coincidence of Fig. 1.
The difference is close to 3% in the interval 2 � z � 4, enough for
a phase dominated by galaxies (see Fig. 2).

It is interesting to come back to the original parameters, in par-
ticular for what is concerning the spatial curvature. We have k �
−0.49, which yields Ωk,0 = kGeff/(3H2

0a2
0) � −0.02, with Geff =

1/[2 f ′(R)]. Therefore, this model describes a spatially open uni-
verse instead of a spatially flat k = 0. Indeed, what is physically
relevant is not the value of k, which is connected with the nor-
malization of a, but the dimensionless parameter Ωk . Moreover,
the alleged statement Ωk � 0, is obtained from the spectrum of
the CMBR radiation and strongly depends on the standard �CDM
model. Another relevant parameter is the matter content. With
our choice of the parameters we get D � 0.88, this value im-
plies Ωm,0 � 0.042, which is very close to the expected content of
baryonic matter in the Universe. One could consider an observer
living within a universe described by our model. If this observer
Fig. 2. Percentage difference δa of the two scale factors, for a range in time corre-
sponding to z = 2–4. It is less than 3%.

Fig. 3. Comparison of the distance modulus δ. Our model (continuous) and �CDM
(dashed). The agreement is almost perfect.

is unaware of the fact that the function f (R) in the Lagrangian
is f (R) = −|R|3/2 and not f (R) = R , he would perform all cal-
culations taking into account G N (and not with Geff), obtaining
Ω ′

m,0 ∼ 0.29. This value is the expected one for all the matter con-
tent in the Universe, included the dark matter. Therefore, in this
framework, it seems that taking into account dark matter could be
nothing else but an assumption due to the ignorance of the physi-
cal theory behind the cosmological model.

It can also be noted that Ωm,0 has nearly the same value of
−Ωk,0. Since we have Ωm,0 +Ωk,0 +ΩR,0 = 1, the current dynamic
of this universe results almost totally driven by the curvature, be-
ing ΩR,0 � 0.98.

In order to check our model in another way, we consider the
distance modulus given by the SNIa and we compare our solution
with the standard �CDM model, as we know that it fits data very
well. Taking as reference the standard solution for �CDM model,
with Ωm � 0.27, we get Fig. 3. The coincidence is very good and it
is difficult to distinguish between the two models.

Despite these good results, some comments are in order. As
we have seen, in our model, the dynamical history of the uni-
verse is described by the scale factor a(t) ∼ t1/2 at early epochs
and a(t) ∼ t2 at late times giving rise to a matter-dust-like stage at
intermediate times. This behavior addresses, in principle, the two
main issues of dark energy models: (i) producing a Friedmann-like
epoch suitable for LSS formation and (ii) an accelerated present
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Fig. 4. weff versus redshift derived from the model.

Fig. 5. Comparison of the effective equation of state parameter weff for our model
(continuous) and �CDM (dashed). For z larger than 4, the radiation epoch should
be carefully considered.

epoch stage. In Figs. 4 and 5, we have plotted the behavior of the
effective equation of state parameter

weff = −1 − 2

3

Ḣ

H2
, (16)

for our model and compared it with the �CDM model. Clearly, also
if the model is accelerating at present epoch (z ∼ 0), the power is
not enough to completely fit the prescription weff � −1 for the
cosmological constant (see Fig. 5). However also the �CDM model
does not produce exactly weff = 1 (since there is also the matter
component); in fact, if we consider Ωm � 0.27, we have weff �
−0.73 (in the case Ωm = 0.3, weff = −0.7). Therefore, the value of
our weff (absolute value) is smaller than the desiderated value, but
if we compare this with weff of the �CDM, it is not so far as if we
compare it with the pure Λ-case w� = −1.

Furthermore, radiation should be included into dynamics. This
fact could destroy the nice feature achieved here, i.e., the smooth
transition between an unstable dust epoch to a stable, asymptotic
accelerated phase. In this perspective, more accurate models, in-
cluding e.g., non-local gravitational corrections, should be taken
into account as done in [27].

Finally, our discussion takes into account only the background
while fluctuations are not considered. In fact, at the background
level, we are able to obtain matter-like regime but things could not
work when fluctuations are included so one should try to mimic
matter-like behavior by modifying gravity or including a dynam-
ical equation of state similar to the Chaplygin gas model which
well address this goal. This will be the argument of future investi-
gations.

In summary, we have shown that suitable values of the param-
eters in the presented general solution (14) allow to reproduce the
requested behavior of a Friedmann dust-like solution evolving into
an accelerated behavior as prescribed by observations. This model,
physically consistent, has been derived by asking for a Noether
symmetry in the f (R) function. The existence of such a symmetry
fixes the form of f (R) and allows physically viable models. How-
ever, starting from this approach, more accurate models should be
considered in order to address all the issues related to the theory
of perturbations and the observational data sets.
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