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Abstract

Let B∞(X) be the complement of the union of all non-trivial finite-dimensional continua in the
infinite-dimensional hereditarily indecomposable continuumX, i.e., the set of Bing points inX.
We construct examples showing that for countable-dimensional continuaX, the variety of types
of B∞(X) is much greater than in the case of the set of Bing points in the finite-dimensional
case investigated in [R. Pol, M. Reńska, Preprint]. A hereditarily indecomposable continuumX is
constructed such thatX is not strongly infinite-dimensional, butB∞(X) has this property.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Our terminology follows [8,9,4]. All our spaces are metrizable separable. A continuum
X is hereditarily indecomposable, abbreviated h.i., if for any two intersecting subcontinua
K,L of X, eitherK ⊂ L orL⊂K.

Bing [2] constructed h.i. continua separating the Hilbert cube. Therefore, there are h.i.
continua of every finite dimension and there are strongly infinite-dimensional h.i. continua
(see Section 2.4 for the definition).

Let X be a h.i. continuum of a finite dimensionn or infinite dimension∞. We say
thatx is a Bing point inX if for any non-trivial subcontinuumK of X containingx the
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dimension ofK is equal to the dimension ofX. Bing has shown that for anyn-dimensional
h.i. continuumX, the setBn(X) of Bing points is nonempty. Recently, it was demonstrated
in [20] that forn� 2 the setBn(X) is 1-dimensional and not of typeGδσ (being always a
Gδσδ-set). A theorem of Henderson [6] shows also that the set of Bing points in a strongly
infinite-dimensional h.i. continuum contains a strongly infinite-dimensional continuum (cf.
Remark 6.2).

We shall discuss in this paper the setsB∞(X) of Bing points in infinite-dimensional h.i.
continuaX.

An important class of infinite-dimensional spaces distinguished by Hurewicz is the class
of countable-dimensional spaces (abbreviated c.d.), i.e., of those spaces that are countable
unions of finite-dimensional subspaces. The c.d. compacta are the ones for which the
transfinite extension ind of the inductive Menger–Urysohn dimension (or the extension
Ind of the Brouwer dimension) is defined.

In Section 4 we describe, for eachα < ω1, h.i. continua with ind or Ind equal toα (the
transfinite dimensions ind and Ind can differ for h.i. continua, cf. Remark 4.7).

We shall show in Section 5 that the setsB∞(X) forX with infinite transfinite dimensions
display a much greater variety of types than in the finite-dimensional case. However, we
shall leave open the problem whether there are such continua with dimB∞(X) � 2. An
important role in our constructions is played by a method of condensation of singularities,
described in Section 3.

Countable-dimensional spaces are not strongly infinite-dimensional. Of course, ifX is
a h.i. continuum that is c.d.,B∞(X) is also c.d.

We shall describe in Section 6 an example (obtained jointly with R. Pol) of a h.i.
continuumX that is not strongly infinite-dimensional, but the setB∞(X) is strongly
infinite-dimensional.

This example also shows that there are uncountable-dimensional h.i. continuaX all
of whose composants are countable-dimensional (suchX cannot be strongly infinite-
dimensional).

2. Preliminaries

2.1. A continuumX is indecomposable if it is not the union of two proper subcontinua;
otherwiseX is called decomposable. A continuumX is hereditarily indecomposable (h.i.)
if every subcontinuum ofX is indecomposable.

A pseudo-arcP is a hereditarily indecomposable 1-dimensional chainable continuum
(unique, up to a homeomorphism); see [9, §48, X].

2.2. Bing proved [2, Theorem 6] that for every disjoint pair of closed setsF1 andF2

of a continuumX there exists a closed partitionL betweenF1 andF2 in X such that
each component ofL is hereditarily indecomposable. Partitions without decomposable
subcontinua will be called Bing partitions.
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2.3. Let us recall thatB∞(X) is the set of points in a continuumX that do not belong to
any non-trivial finite-dimensional subcontinuum ofX. Givenr ∈N , let Br(X) denote the
set of all points in a continuumX that belong to somer-dimensional subcontinuum ofX
but avoid every non-trivial subcontinuum of dimension less thanr. It was demonstrated in
[20] that for anyn-dimensional h.i. continuumX, dimBr(X)= n− (r − 1); in particular,
dimBn(X)= 1.

2.4. We gave the definition of countable-dimensional spaces in the Introduction. The small
(large) transfinite dimension ind (Ind) is the transfinite extension of the classical small
(large) inductive dimension (see [4, Definitions 7.1.1 and 7.1.11]). A spaceX is strongly
infinite-dimensional (shortly, s.i.d.), if there exists a sequence(A1,B1), (A2,B2), . . . of
pairs of disjoint closed subsets ofX such that for every sequenceL1,L2, . . . , whereLi
is a partition betweenAi andBi , we have

⋂∞
i=1Li �= ∅. Otherwise the space is called

weakly infinite-dimensional (shortly, w.i.d.). A spaceX is aC-space if for each sequence
U1,U2, . . . of open covers ofX there exists a sequenceV1,V2, . . . of families of pairwise
disjoint open subsets ofX such that eachVi refinesUi and

⋃∞
i=1Vi coversX. Every c.d.

space is aC-space and everyC-space is w.i.d. (see [4, Theorems 6.3.8 and 6.3.10]).

Lemma 2.5. Let K be the class of weakly infinite-dimensional spaces or the class ofC-
spaces. ThenK has the following properties:

(i) if X ∈ K andY is homeomorphic to a closed subset ofX, thenY ∈K,
(ii) a space which is a countable union of members ofK is in K,
(iii) if f :X→ Y is a perfect mapping,Y is zero-dimensional, and all fibersf−1(y) are

in K, thenX ∈K,
(iv) if Y ⊂X, Y ∈ K and all closed inX sets disjoint fromY are inK, thenX ∈K.
The classK of countable-dimensional spaces satisfies conditions(i) and(ii) .

The proof can be found in [4, Chapters 5 and 6].

2.6. Recall that a subcontinuumK of a continuumX is terminal, if every subcontinuum
of X which intersects bothK and its complement must containK. A continuous mapping
from X onto Y is called atomic, if the inverse image of every point ofY is a terminal
subcontinuum ofX; equivalently, iff is monotone and for every subcontinuumK of X
such that the setf (K) is non-degenerate we haveK = f−1f (K) (see [13, Proposition 4]).

2.7. If x is a point in a continuumX, the composantC(x) of x in X is the union of all
proper subcontinua ofX containingx. The composants are connected and dense inX. If
X is a non-trivial indecomposable continuum, then (see [9, §48, VI])

(i) every composant ofX is anFσ boundary subset ofX,
(ii) different composants ofX are disjoint, and
(iii) (Mazurkiewicz’s theorem [15]) there exists a Cantor set inX which contains

at most one point of each composant; in particular,X has continuum many
composants.
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Lemma 2.8. Let f :X → Y be an atomic mapping from a continuumX onto a
(nondegenerate) continuumY . Then the imagef (C(x)) of the composant ofx in X is
the composantC(f (x)) of f (x) in Y andf−1(C(f (x)))= C(x).

Proof. Let L be a proper subcontinuum ofY containingf (x). Since every atomic
mapping is monotone, thenf−1(L) is a proper subcontinuum ofX containingx. Thus
f−1(C(f (x)))⊂ C(x) andC(f (x))⊂ f (C(x)). On the other hand,f (C(x))⊂ C(f (x)).
Indeed, if z ∈ C(x) then f (z) = f (x) or there exists a proper subcontinuumL′ of X
containingx andz such thatf (L′) \ {f (x)} �= ∅. Sincef is atomic, thenf−1f (L′)= L′,
hencef (L′) �= Y . Thus f (L′) is a proper subcontinuum ofY containingf (x) and
f (z) and thusf (z) ∈ C(f (x)). This shows thatf (C(x)) ⊂ C(f (x)) and alsoC(x) ⊂
f−1f (C(x))⊂ f−1(C(f (x))), which ends the proof. ✷

3. A method of condensation of singularities

In this section we generalize some techniques described in [3, Section 2], based on a
classical idea of condensation of singularities (see [1]).

We shall use the following theorem of Maćkowiak.

Theorem 3.1 ([13, Theorem 15] and [14, 1.14]).LetX be a continuum,A be a compact
zero-dimensional set inX and letZ be a compactum that admits a continuous map ontoA

with connected fibers. Then there exists a continuumX̃, containingZ as a boundary subset,
which admits an atomic mapr from X̃ ontoX such thatr|X̃ \Z is a homeomorphism onto
X \A andr−1(a) is a component ofZ for everya ∈A.

We shall denote byM(X,Z,A) and call a pseudosuspension ofZ overX atA any space
X̃ satisfying conditions of Theorem3.1. The mappingr :M(X,Z,A)→X will be called
a natural projection.

Theorem 3.2. LetX be a continuum,{Zi : i ∈ N} a sequence of compacta,{Ai : i ∈ N}
a sequence of0-dimensional compact disjoint subsets ofX and let eachZi admit a
continuous map ontoAi with connected fibers. Then there exist a continuumL(X,Zi,Ai)
and a mappingp :L(X,Zi,Ai)→X such that:

(i) p is atomic,
(ii) p|p−1(X \⋃∞

i=1Ai) :p
−1(X \⋃∞

i=1Ai)→X \⋃∞
i=1Ai is a homeomorphism,

(iii) the setp−1(X \⋃∞
i=1Ai) is dense inL(X,Zi,Ai),

(iv) p−1(Ai) is homeomorphic toZi for everyi ∈ N (hencep−1(a) is homeomorphic
to a component ofZi , if a ∈Ai ), and if

⋃∞
i=1Ai is dense inX then every non-empty

open subset ofL(X,Zi,Ai) containsp−1(a) for somea ∈⋃∞
i=1Ai ,

(v) if n andα are ordinal numbers such thatIndX � n < ω0 andn� IndZi � α < ω1

for everyi ∈N thenIndL(X,Zi,Ai)� α,
(vi) if n andα are ordinal numbers such thatindX � n < ω0 andn� indZi � α < ω1

for everyi ∈N thenindL(X,Zi,Ai)� α.
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Proof. We shall define an inverse sequence{Li,pij ,N ∪ {0}} such thatL0 = X, Li =
M(Li−1,Zi, (p

i−1
0 )−1(Ai)) is a pseudosuspension ofZi overLi−1 at (pi−1

0 )−1(Ai), pii−1

is a natural projection fromLi onto Li−1 and pij = p
j+1
j ◦ · · · ◦ pii−1 for i > j . Let

L(X,Zi,Ai) be the inverse limit of the inverse sequence, letpn :L(X,Zi,Ai)→ Ln be
the projection and letp = p0 be the projection of the limit space ontoL0 = X. It is easy
to see that the conditions (ii) and (iv) are satisfied. Since the projectionpij :Zi → Zj is a
composition of finitely many atomic mappings then it is atomic (see [13, (1.4)]). Thusp is
atomic (see [1, Theorem II]).

To prove (iii) it suffices to show that
(1) the set

Gn = pn
(
p−1

(
X \

∞⋃
i=1

Ai

))
is dense inLn for everyn ∈N .

Observe thatGn = (pn0)−1(X\⋃∞
i=1Ai); in particular,G0 =X\⋃∞

i=1Ai is dense inL0

as the complement of a 0-dimensional set in the continuumL0. Suppose thatGn−1 is dense
in Ln−1 and putVn−1 = Ln−1 \ (pn−1

0 )−1(An). From the construction ofLn andpnn−1 it
follows thatpnn−1 restricted to(pnn−1)

−1(Vn−1) is a homeomorphism and(pnn−1)
−1(Vn−1)

is dense inLn. SinceGn−1 is a dense subset ofVn−1 andGn = (pnn−1)
−1(Gn−1), thenGn

is dense in(pnn−1)
−1(Vn−1) and thus inLn. This ends the inductive proof of (1).

Let us check (v). First note that eachLi is the union of a closed subspace homeomorphic
to the free union

⊕n
i=1Zi and an open subspace ofX. If α is a finite number then (v)

follows from the countable sum theorem and the fact that the limit operation does not
increase the dimension (see [4, Theorems 1.5.3 and 1.13.4]). Suppose now thatα � ω0

and letA, B be a pair of disjoint closed subsets ofL(X,Zi,Ai). Then there existsn ∈ N
such thatpn(A)∩pn(B)= ∅. The setD =⋃∞

i=n+1(p
n
0)

−1(Ai) is homeomorphic to the 0-
dimensional subspace

⋃∞
i=n+1Ai ofX and the setF =⋃n

i=1(p
n
0)

−1(Ai) is a closed subset
of Ln homeomorphic to the free union

⊕n
i=1Zi . Therefore, IndF � α. LetT be a partition

in F between the setspn(A)∩ F andpn(B) ∩ F such that IndT < α. Take a partitionT ′
between the setspn(A) andpn(B) in Ln such thatT ′ ∩ F = T andT ′ ∩D = ∅. ThenT ′
is the union of the closed subsetT with IndT < α and an open finite-dimensional subset.
Therefore, the inequality IndT ′ < α follows from the following fact, which can be readily
justified by transfinite induction:
($) if a (metrizable, separable) spaceZ′ is the union of an openn-dimensional set

and a closed subsetZ such thatIndZ = β � n (respectively, indZ = β � n) then
IndZ′ = β (respectively, indZ′ = β).

The setp−1(T ′), which is homeomorphic withT ′, is a partition betweenA andB in
L(X,Zi,Ai) with Indp−1(T ′) < α, which ends the proof.

The proof of (vi) is similar to the proof of (v). ✷
Remark 3.3. If, for some continuumK, everyZi is homeomorphic toK, everyAi is a
singleton{ai} andA= {a1, a2, . . .}, thenL(X,Zi,Ai) is the spaceS(X,K,A) described
in Section 2 of [3].
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Proposition 3.4. LetX, {Zi : i ∈N} and{Ai : i ∈N} be as in Theorem3.2.
(a) If X is hereditarily indecomposable and noZi contains any decomposable

subcontinuum, then the continuumL(X,Zi,Ai) is hereditarily indecomposable.
(b) If X and allZi are countable-dimensional then so isL(X,Zi,Ai).

Proof. The proof of (a) follows from Proposition 11(ii) in [13]. The proof of (b) follows
instantly from the fact thatL(X,Zi,Ai) is the union of topological copies ofZi for
i = 1,2, . . . and a subspace homeomorphic toX \⋃∞

i=1Ai . ✷
Remark 3.5. If X is a continuum, A is a 0-dimensional closed subset ofX andZ is a
compactum then

(a) if X is hereditarily indecomposable andZ does not contain any decomposable
subcontinuum, then the continuumM(X,Z,A) is hereditarily indecomposable,

(b) if X andZ are countable-dimensional then so isM(X,Z,A),
(c) if IndX <ω0 and IndZ � IndX, then IndM(X,Z,A)= IndZ,
(d) in (c), Ind can be replaced by ind.
Indeed, (a) follows from Proposition 11(ii) in [13]. Note thatM(X,Z,A) is the union

of a closed subspace homeomorphic toZ and an open subspace homeomorphic toX \A.
This implies (b), while (c) and (d) follow from the fact($) given at the end of the proof of
Theorem 3.2.

4. Bing partitions in Smirnov and Henderson compacta

In this section, for everyα < ω1, we shall describe hereditarily indecomposable continua
X, Y with IndX = indY = α. We will construct such continua as Bing partitions between
“opposite faces” of some of Henderson’s compacta. Other constructions of such spaces,
with some additional properties, are given in the next section.

Let us recall that Smirnov’s compactaSα , forα < ω1, are defined by transfinite induction
in the following way:Sn = In is the Euclideann-cube,Sα+1 = Sα × I and, for a limit
ordinalα, Sα is the one-point compactification of the free union

⊕{Sβ : β < α}.
For every countable ordinalα, IndSα = α andSα has only countably many components,

each being a finite-dimensional cube (see [4, Example 7.1.33]).
Henderson’s compactumHα , for α < ω1, is an absolute retract topologically containing

Sα with IndHα = α and such thatHα+1 =Hα × I (see [5]).
Let us notice that not every countable-dimensional continuum contains a h.i. infinite-

dimensional subcontinuum. Indeed, ifK is a continuum containing a copy ofSα with
K \ Sα being the countable union of open arcs, then any hereditarily indecomposable
continuum inK is finite-dimensional.

Theorem 4.1. If L is a Bing partition betweenX× {0} andX× {1} in X× I , where X is
either a Smirnov compactumSα or a Henderson compactumHα , thenIndL= IndX.

In addition, if ind(X× I)= indX+ 1, thenindL= indX.
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In the proof the following lemma will be used (recall that a mappingf is light if every
fiber off is 0-dimensional).

Lemma 4.2. Let f :Z→X be a light mapping, whereX is either a Smirnov compactum
Sα or a Henderson compactumHα andZ is a compact space. ThenIndZ � IndX = α.

Proof. Let D be theD-dimension as defined in [4, Section 7.3]. From the definition
of D-dimension and from the theorem on dimension lowering mappings (see [4,
Theorem 1.12.4]) it easily follows thatD(Z) �D(X). Thus, by Theorems 7.3.17, 7.3.18
and Problem 7.3.D of [4] we have IndZ �D(Z)�D(X)= α. ✷

We shall need also the following fact, whose standard proof is included for the reader’s
convenience.

Lemma 4.3. Let f :Z→X be a light mapping from a compactumZ onto a compactum
X with indX � α. ThenindZ � α.

Proof. We proceed by induction onα. For α < ω0 this is a classical result, cf. [4,
Theorem 1.12.4]. Suppose that it is true for everyβ < α, where α � ω0. Let Ẑ =
{(f (z), z): z ∈ Z} ⊂X×Z and letf̂ = p|Ẑ, wherep :X×Z→X is the projection. Then
Ẑ is homeomorphic toZ andf̂ is light. Let z be a point of̂Z andU be an arbitrary open
neighbourhood ofz in X×Z. Since indf̂−1(f̂ (z))= 0 andf̂−1(f̂ (z))= ({f̂ (z)} ×Z)∩
Ẑ, there exists an open subsetV = V1 ×V2 ofX×Z containingz, whereV1 ⊂X, V2 ⊂Z,
such thatV ⊂ U and(X × FrV2) ∩ f̂−1(f̂ (z))= ∅. We havef̂ (z) /∈ p((X × FrV2) ∩ Ẑ)
and hence there exists an open setV3 of X containingf̂ (z) with ind (FrV3) < α and
such thatV3 ⊂ V1 \ p((X × FrV2) ∩ Ẑ). Therefore Fr(V3 × V2) ∩ Ẑ = (FrV3 × V2) ∩ Ẑ.
Applying the inductive assumption to the restriction off̂ to Fr(V3 ×V2)∩ Ẑ, we conclude
that ind(Fr(V3 × V2)∩ Ẑ) < α. ✷
Proof of Theorem 4.1. The inequalities “�” follow from [16, Theorem 2.1] and [17,
Theorem 2.1]. To prove the inequalities “�” observe that the restrictionf :L→X of the
projection ofX × I ontoX to the subspaceL is light. Indeed, for everyx ∈ X we have
f−1(x) ⊂ {x} × I andf−1(x) does not contain any subset homeomorphic toI , sinceL
is a Bing partition. Therefore Indf−1(x)� 0. Applying Lemma 4.2. (Lemma 4.3) to the
mappingf :L→X we get the inequality “�” for Ind (respectively, for ind). ✷
Remark 4.4. For every ordinal numberα there exist ordinal numbersβ,γ such that
indSβ = indHγ = α and indSβ+1 = indHγ+1 = α + 1 (see [4, Example 7.2.12]; the
proof for Henderson’s compacta can be found, for example, in [16,17]).

Lemma 4.5. If X is a locally connected continuum then there exists a connected Bing
partitionK betweenX× {0} andX× {1} in X× I .

Proof. LetL be a Bing partition betweenX×{0} andX×{1} inX×I . Since the cone over
X is unicoherent (see [9, §57, I, Theorem 9 and III, Theorem 3]) and locally connected,
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there exists a connected partitionK ⊂ L betweenX×{0} andX×{1} in X× I (asK one
can take any irreducible partition betweenX× {0} andX× {1} in X× I contained inL),
see [9, §57, III, Theorem 1]. This completes the proof of the lemma.✷
Theorem 4.6. For every countable infinite ordinalα there exist hereditarily indecompos-
able continuaK, L with IndK = α = indL.

Proof. Let β be an ordinal such that indHβ + 1 = indHβ+1 = α + 1 (see Remark 4.4).
The Henderson continua are locally connected and hence Lemma 4.5 provides a connected
Bing partitionK (respectively,L) between the top and the bottom of the cylinderHα × I
(respectively,Hβ × I ). By Theorem 4.1, we have IndK = indL = α, which ends the
proof. ✷
Remark 4.7. Notice that the transfinite dimensions ind and Ind may differ for h.i.
continua. Indeed, there exist ordinalsβ and α such that indHβ + 1 = ind Hβ+1 =
α + 1 < β + 1 (see [12]; cf. [17]). As we showed in the proof of Theorem 4.6, there
exists a connected h.i. partitionL betweenHβ × {0} and Hβ × {1} in Hβ × I and
IndL= β > indL= α.

5. The set of Bing points in countable-dimensional spaces

For anyn-dimensional hereditarily indecomposable continuumX, n� 2, the setBn(X)
of Bing points is 1-dimensional and not of typeGδσ in X (being always aGδσδ-set,
see [20]). For infinite-dimensional hereditarily indecomposable continuaX with defined
transfinite dimensions, the corresponding setsB∞(X) of Bing points display a greater
variety of types. The aim of this section is to illustrate with examples that:B∞(X) may
be a copy of any closed subset of the Cantor set (including the empty one), or it may be a
copy of the irrationals, or else it may be a 1-dimensionalGδ-set inX. We did not succeed,
however, in constructing continuaX with B∞(X) of dimension greater than 1. Notice
that for any countable-dimensional continuumX the setB∞(X) contains no non-trivial
continuum (otherwise it would contain a finite-dimensional subcontinuum, contrary to the
definition ofB∞(X); cf. [4, 5.2.5]). Moreover, if a continuumX is the union of countably
many closed finite-dimensional subsets, then the setB∞(X) is at most 0-dimensional (see
Proposition 5.13).

Concerning the hereditarily indecomposable continuaX with finite dimX = n� 2, we
shall show that the Baire category ofBn(X) depends onX.

We start from the following example.

Example 5.1. For every ordinal numberα < ω1 there exist hereditarily indecomposable
continuaXα andYα such that IndXα = α = indYα and every composant ofXα or Yα is
finite-dimensional; in particular,B∞(Xα)= ∅ = B∞(Yα).
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First we will constructXα . Let Z be a Bing partition betweenSα × {0} andSα × {1}
in the productSα × I of the Smirnov compactumSα and the intervalI . By Theorem 4.1,
IndZ = α. Since every component ofSα is finite-dimensional,Z has the same property.

LetA be a 0-dimensional compact subspace of the pseudoarcP homeomorphic with the
decomposition space ofZ into components. By 2.7(iii) we can assume thatA contains at
most one point from each composant ofP . Let

Xα =M(P ,Z,A)
be a pseudosuspension ofZ overP atA and

p :Xα → P

be the natural projection. ThenXα is a h.i. continuum satisfying IndXα = α, by
Remark 3.5 (a) and (c). IfC(x) is the composant ofx in Xα , then, by Lemma 2.8,
C(x) = p−1(C(p(x))), whereC(p(x)) is the composant ofp(x) in P . HenceC(x)
is homeomorphic to the composantC(p(x)) of p(x) or else it is the union of some
component ofZ and a set homeomorphic with a subset ofC(p(x)). Since every component
of Z is finite-dimensional, every composant ofXα is finite-dimensional, which implies
B∞(Xα)= ∅.

The spaceYα can be constructed similarly, starting from a Bing partitionZ between
Sβ × {0} andSβ × {1}, whereβ is an ordinal such that indSβ + 1 = indSβ+1 = α + 1.

Example 5.2. Let D be any 0-dimensional non-empty compactum andα an infinite
countable ordinal. Then there exist hereditarily indecomposable continuaX andY with
IndX = α = indY = α such thatB∞(X) andB∞(Y ) are homeomorphic toD.

We shall assume thatD is embedded into the pseudoarcP . Take a sequenceU1 ⊃
U2 ⊃ · · · of neighborhoods of the setD in P such thatUi+1 ⊂ Ui , indFrUi = 0 andUi is
contained in the 1/i-neighbourhoodofD. For everyi ∈N , letAi = FrUi and letXα be the
continuum such that IndXα = α andB∞(Xα) = ∅, constructed in Example 5.1. Finally,
let X = L(P ,Xα × Ai,Ai) andp :X → P be a continuum and a mapping satisfying
conditions (i)–(vi) of Theorem 3.2. By Proposition 3.4(a),X is h.i.

We will show thatB∞(X) = p−1(D) and hence is homeomorphic toD. Since the set
D ∪⋃∞

i=1Aj is closed inP , every pointx not belonging top−1(D ∪⋃∞
i=1Aj) has a 1-

dimensional neighbourhood inX and thusx /∈ B∞(X). If x ∈ p−1(a) for somea ∈ Ai ,
then x /∈ B∞(X), sincep−1(a) is homeomorphic toXα and every composant ofXα
is finite-dimensional. Suppose now thatp(x) ∈ D and letL be an arbitrary non-trivial
continuum inX containingx. Thenp(L) is a non-degenerate continuum inP containing
p(x), and hencep(L)∩An �= ∅ for somen. Leta ∈ p(L)∩An. Sincep−1(a) is a terminal
continuum (see 3.2(i)) inX homeomorphic toXα ,L topologically containsXα . This shows
thatx ∈B∞(X).

The proof that IndX � α follows from condition (v) of Theorem 3.2. SinceX contains
a closed copy ofXα , then IndX � IndXα = α.
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The spaceY can be constructed in a similar way using the spaceYα constructed in
Example 5.1.

Example 5.3. Let α be an infinite countable ordinal. Then there exists a hereditarily
indecomposable continuumZ with IndZ = α (indZ = α) such thatB∞(Z) is a 0-
dimensional denseGδ-subset ofZ, homeomorphic with the irrationals.

LetXα (Yα) be the continuum constructed in Example 5.1. Let us split the pseudoarcP

into a 0-dimensionalGδ-setG and a 0-dimensionalFσ -setF disjoint withG. Decompose
F into a sequenceA1,A2, . . . of disjoint compact 0-dimensional subsets.

Let Z = L(P ,Xα × Ai,Ai) (Z = L(P , Yα × Ai,Ai)) and p :Z → P be as in
Theorem 3.2. By Proposition 3.4(a),Z is h.i.

We will show thatB∞(Z)= p−1(G). Indeed, sinceG does not contain any non-trivial
continuum and everyp−1(a), for a ∈ F , is terminal (see 3.2(i)),p−1(G) ⊂ B∞(Z). On
the other hand, every composant ofXα (Yα) is finite-dimensional, hence every point
x ∈ p−1(F ) belongs to a finite-dimensional continuum and thereforeB∞(Z)⊂ p−1(G).

By conditions (ii) and (iii) of Theorem 3.2,B∞(Z) is a 0-dimensional denseGδ-subset
of Z, homeomorphic toG. It follows thatB∞(Z) is homeomorphic with the irrationals
(cf. [4, Problem 1.3.E(b)]).

We have IndZ � α (indZ � α) by conditions (v) and (vi) of Theorem 3.2, while
IndZ � IndXα = α (indZ � indYα = α).

Recall that a space is punctiform if it does not contain any non-trivial subcontinuum.

Lemma 5.4. There exists a1-dimensional punctiformGδ-setG in the pseudoarcP such
that the setP \G is 0-dimensional.

Proof. We shall begin with the construction of a 1-dimensional punctiformGδ-subsetH
of C × P , following [4, Example 6.2.4].

Let p1 : I × P → I be the projection and

S = {
K ∈ 2(I×P ): K is a continuum joining{0} × P and{1} × P

}
,

a subspace of the hyperspace 2(I×P ). SinceS is closed in 2(I×P ), there exists a continuous
mappingf of C ⊂ I ontoS. Note that every setp−1

1 (x)∩ f (x) is non-empty and the set
Y =⋃{p−1

1 (x) ∩ f (x): x ∈ C} is closed inC × P ; hence there exists aGδ-setH ⊂ Y
which intersects each fibrep−1

1 (x) in exactly one point (see [4, Theorem 6.2.3]). Since
p1|H :H → C is one-to-one, the setH is punctiform. The equality indH = 1 follows from
a version of the classical Mazurkiewicz theorem stating that if a setH ⊂ I ×X intersects
every continuum inI × X joining {0} × X and {1} × X, whereX is ann-dimensional
compactum, then indM � n (see, for example, [20, Theorem 2.2]).

Now, letD be any 0-dimensionalGδ-set inP such thatP \D is 0-dimensional and let
H ′ =H ∪ (C ×D). ThenH ′ is punctiform, sincep−1

1 (x)∩H ′ is 0-dimensional for every
x ∈ C.

Now, going back to the pseudoarc, we shall use a theorem of Lelek [10] providing an
embeddingi : (C × P )→ P (see Remark 5.5 below). LetB be any 0-dimensionalGδ-
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subset ofP \ i(C × P ) such that(P \ i(C × P )) \ B is 0-dimensional. Then the set
G= i(H ′)∪B satisfies the required conditions.✷
Example 5.5. For every countable ordinalα � ω0 there exists a hereditarily indecompos-
able continuumZ such thatB∞(Z) is a 1-dimensional denseGδ-subset ofZ and IndZ = α
(respectively, indZ = α).

By Lemma 5.4, there exists a 1-dimensional punctiformGδ-subsetG of P such that the
setP \G is 0-dimensional. Let us decomposeP \G into a sequence of disjoint compact
0-dimensional setsA1,A2, . . . . LetXα (Yα) be the space constructed in Example 5.1. Let
Z = L(P ,Xα × Ai,Ai) (Z = L(P , Yα × Ai,Ai)) andp :Z→ P be as in Theorem 3.2.
Similarly as in Example 5.3 one shows thatZ is a h.i. continuum such thatB∞(Z) =
p−1(G) is a denseGδ-set inZ homeomorphic toG and IndZ = α (indZ = α).

Remark 5.6. Let us notice that in Example 5.5 we can replace the pseudoarcP andG⊂ P

by a continuumX andG′ ⊂ X constructed in the following way. LetA be a subset ofP
homeomorphic to the Cantor set and letX =M(P ,A× P ,A). ThenX is a 1-dimensional
h.i. continuum containing a copy ofC × P . ThusX contains a 1-dimensional punctiform
Gδ-setG′ such thatX \G′ is 0-dimensional. The proof of this fact is analogous to the
proof of Lemma 5.4 but does not require the use of the theorem of Lelek cited above.

The next two examples concern the Baire category of the set of Bing points in finite-
dimensional h.i. continua (see Section 2.3).

Example 5.7. For every n = 1,2, . . . there exists a hereditarily indecomposablen-
dimensional continuumZn such that the setBn(Zn) of Bing points ofZn is residual, i.e.,
it contains a denseGδ-subset ofZn.

Indeed, letG ⊂ P andA1,A2, . . . be as in Example 5.3 (or 5.5) and letK be any
n-dimensional h.i. continuum. LetZn = L(P ,K ×Ai,Ai) andp :Zn → P be as in Theo-
rem 3.2. By condition (v) of Theorem 3.2 and Proposition 3.4(a), the spaceZn is ann-di-
mensional h.i. continuum. SinceG does not contain any non-trivial continuum and every
p−1(a), wherea ∈ ⋃∞

i=1Ai , is terminal, thenp−1(G) ⊂ Bn(Zn). By condition (iv) of
Theorem 3.2, the setp−1(G) = Zn \ p−1(

⋃∞
i=1Ai) is a denseGδ-subset ofZn and thus

Bn(Zn) is residual inZn.

Example 5.8. For everyn= 2,3, . . . there exists a h.i.n-dimensional continuumTn such
that the setTn \Bn(Tn) is residual.

Indeed, leta be any point of the pseudoarcP and let K be any n-dimensional
h.i. continuum. Then the pseudosuspensionTn =M(P ,K, {a}) is ann-dimensional h.i.
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continuum such thatp−1(P \ {a}) is a denseGδ-subset ofTn disjoint withBn(Tn) (where
p :Tn → P is the natural projection).

Remark 5.9. Obviously, if B∞(X) is nonempty, thenX has an infinite-dimensional
composant. The converse is not true. Indeed, if we take a pointa in P and the
continuumXα constructed in Example 5.1 for anyα � ω0, then the pseudosuspension
Z =M(P ,Xα, {a}) has an infinite-dimensional composant butB∞(Z)= ∅.

Remark 5.10. Suppose that d is the small transfinite dimension ind or the large transfinite
dimension Ind. Then every countable dimensional h.i. continuumX with dX= α can be
decomposed into the layers{Bβ(X): 1 � β � α}, whereBβ(X) is the set of points in
X which belong to a subcontinuumK of X with dK = β but avoid every non-trivial
subcontinuumL of X with dL < β . If ω0 � dX < ω1 thenX contains subcontinua
of all finite dimensions; in particular,Bn(X) is infinite-dimensional for everyn ∈ N
by [20, Remark 4.1]. Example 5.1 demonstrates that all layersBβ(X) may be empty
for ω0 � β � dX. Spaces constructed in Examples 5.2, 5.3 and 5.5 show that for every
countable infinite ordinalα there exist spacesX such that dX = α andB∞(X)= Bα(X),
soBβ(X)= ∅ for all ω0 � β < α. The method of condensation of singularities yields also
easily examples of h.i. continuaX with dX = α for which all the layers (or some given
layers)Bβ , for β � α, are nonempty.

As we have already mentioned, we have no examples of c.d. spacesX with
indB∞(X) � 2. However, one can prove that indBα(X) � 1 for any h.i. continuumX
with indX = α. We shall precede a justification of this fact by a simple observation.

Lemma 5.11. The setZ(X) of all points in a compactumX which belong to a trivial
component ofX is at most0-dimensional.

Proof. Let q :X→ q(X) be the quotient map ofX onto the space of components ofX
(see [9, §46, Va]). Thenq|Z(X) is a homeomorphism, so indZ(X)� 0. ✷
Proposition 5.12. Given a compactumY , let Z(Y ) be as in Lemma5.11andB ′

α(Y ) be
the set of all points inY which do not belong to any non-trivial subcontinuum ofY with
ind< α.

If X is a compact space which does not contain any decomposable continuum and
indX � α + β , then ind(Z(X) ∪ B ′

α(X)) � 1 + β . In particular, if indX = α then
indB ′

α(X)� 1.

Proof. We use induction with respect toβ . Assume first thatβ = 0 and letV be a base ofX
such that indFrV < α for everyV ∈ V . For everyV ∈ V we have FrV ∩(Z(X)∪B ′

α(X))⊂
Z(FrV ); hence the spaceZ(X) ∪B ′

α(X) has a base consisting of sets with 0-dimensional
boundaries. This ends the proof forβ = 0. Suppose now that the theorem is true for every
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ordinal< β and let indX � α + β . ThenX has a baseV such that indFrV < α + β for
everyV ∈ V . Observe that

FrV ∩ (Z(X) ∪B ′
α(X)

)⊂ B ′
α(FrV )∪Z(FrV )

for every V ∈ V . From this and the inductive assumption it follows that the space
Z(X) ∪ B ′

α(X) has a base consisting of sets with boundaries having ind< 1 + β . This
completes the proof. ✷
Proposition 5.13. If a continuumX is the union of countably many closed finite-
dimensional subsets, thenindB∞(X)� 0.

Proof. Suppose thatX = ⋃∞
j=1Fj , whereFj is closed inX and indFj < ∞ for j =

1,2, . . . . ThenFj ∩B∞(X)⊂Z(Fj ); hence ind(Fj ∩B∞(X))� 0 by Lemma 5.11. Thus
indB∞(X)� 0 by the countable sum theorem.✷

6. On Bing points and composants in uncountable-dimensional spaces

LetX be a h.i. continuum. Then, by a theorem of Levin [11, Theorem 3],
(1) the union of all non-trivial finite-dimensional subcontinua, i.e., the setX \B∞(X),

is countable-dimensional.
Thus, by the sum theorem, see Lemma 2.5(ii), it follows that

(2) the setB∞(X) is uncountable-dimensional (respectively, s.i.d., respectively, not a
C-space) for any uncountable-dimensional (respectively, s.i.d., respectively, not a
C-space) h.i. continuumX.
It was also observed by Levin (see [11, Theorem 8]) that

(3) the union of all non-trivial w.i.d. subcontinua of a h.i. continuum is w.i.d.
This fact can be generalized as follows.

Proposition 6.1. Let K be a class of spaces satisfying conditions(i)–(iii) of Lemma2.5.
Let BK(X) denote the set of pointsx in a h.i. continuumX such that no non-trivial
subcontinuum ofX containingx belongs toK. Then the setX \BK(X) belongs toK.

Proof. We use the idea of Levin [11]. LetU1,U2, . . . be a countable base ofX. For
everyn ∈ N let Wn be the union of all non-trivial components ofUn which belong to
K. Considering the restrictionq|Wn of the quotient mappingq of Un onto the space of
components ofUn, we deduce from (iii) thatWn belongs toK. By (ii), the set

⋃∞
n=1Wn

is in K. Thus to end the proof it suffices to show thatX \ BK(X)=
⋃∞
n=1Wn. If x ∈Wn

for somen, thenx lies in a non-trivial continuum belonging toK and sox ∈X \ BK(X).
Suppose now thatx /∈⋃∞

n=1Wn and letK be any non-trivial continuum inX containing
x. TakeUn containingx with diamUn < diamK. Since the componentS of x in Un is
non-trivial andx /∈Wn, S does not belong toK. Sincex ∈ S ∩K and diamS < diamK,
S ⊂K, X being hereditarily indecomposable. Thus, by (i),K does not belong toK. This
shows thatx ∈BK(X) and the proof is completed.✷
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Remark 6.2. A theorem of Henderson [6] stating that every s.i.d. continuum contains
an s.i.d. continuum without any non-trivial finite-dimensional subcontinua implies that
for every h.i. continuumX that is s.i.d., the setB∞(X) contains a s.i.d. continuum.
This fact is also an easy consequence of Levin’s result (3) (see [11]). In fact, Proposi-
tion 6.1 immediately implies that ifK is a class of spaces satisfying conditions (i)–(iv) of
Lemma 2.5, then for every h.i. continuumX not belonging toK the setB∞(X) contains a
continuum which is not inK.

Corollary 6.3. LetX be a hereditarily indecomposable continuum. Then
(a) if every composant ofX is finite-dimensional, thenX is countable-dimensional,
(b) if every composant ofX is weakly infinite-dimensional(respectively, is aC-space),

thenX is weakly infinite-dimensional(respectively, is a C-space).

Proof. (a) If X is not c.d. then, by (2),B∞(X) is not c.d.; hence it contains a pointx0.
Then the composantC(x0) of x0 is infinite-dimensional.

(b) The case of w.i.d. spaces follows similarly from (3). Suppose thatX is not aC-space.
If K is the class ofC-spaces then, by Proposition 6.1, the setBK(X) is not aC-space, in
particular, there exists a pointx0 ∈ BK(X). It follows that the composant ofx0 is not a
C-space. ✷

We cannot claim, however, that every uncountable-dimensional space has a composant
which is uncountable-dimensional. This is illustrated by the following example, obtained
jointly with R. Pol.

Example 6.4. There exists a weakly infinite-dimensional hereditarily indecomposable
continuumM each composant of which is countable-dimensional (in fact, sup{indC: C
is a composant ofM} < ω1) such that the setB∞(M) is strongly infinite-dimensional.
Moreover,M is aC-space.

We will need the following variant of the example of a w.i.d. compactum which is not
countable-dimensional described in [18].

There exists a w.i.d. compact spaceS and aGδ-setH ⊂ S such that:
(4) indH = ∞ and each subset ofH of positive dimension is strongly infinite-

dimensional,
(5) S \H =⋃∞

j=1Aj , whereAj are compact and finite-dimensional,
(6) all components ofS are countable-dimensional (in fact, sup{indD: D is a com-

ponent ofS} � α0 for some infinite ordinalα0<ω1).
To be more specific, let us consider the projectionp :C × I∞ → C. As shown in [18],

there exists an s.i.d.Gδ-setX ⊂ C × I∞ which intersects each fiberp−1(t) in exactly one
point. LetZ be the closure ofX in C × I∞. Following the proof of Lemma 5.3.1 in [4]
one can find a continuous mapF :Z→ I∞ such that ifk is the mapping ofZ into C × I∞
defined byk(x)= (p(x),F (x)) then:

(7) k restricted toX is an embedding, and
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(8) Y \ k(X) is the union of countably many compact finite-dimensional subspaces,
whereY is the closure ofk(X) in C × I∞.

Let q be the restriction toY of the projection ofC × I∞ to C. Each fiberq−1(t)

is the union of the c.d. set(Y \ k(X)) ∩ q−1(t) and the one-point set{k(x)}, where
{x} = X ∩ p−1(t). Thus q−1(t) is c.d. for everyt ∈ C. Moreover, by Theorem 3.6
of [19], there exists a c.d. compactum which contains topologically every fiberq−1(t);
in particular, sup{indq−1(t): t ∈ C} � α0 for some infinite ordinalα0 < ω1. SinceY
admits a perfect mappingq with countable-dimensional fibers ontoC, thenY is a C-
space (see Lemma 2.5(iii)). In particular,Y is w.i.d. Since the spacek(X) is s.i.d. by
(7), then by a theorem of Rubin [21] it contains a closed s.i.d. subspaceH without any
w.i.d. subsets of positive dimension. LetS be the closure ofH in Y . ThenS is a w.i.d.
space (and aC-space) as a closed subspace of theC-spaceY (see Lemma 2.5(i)). Since
H = S ∩ k(X), thenS \ H = S ∩ (Y \ k(X)) is a closed subset ofY \ k(X). Therefore,
by (8), the complementS \H is the union of countably many compact finite-dimensional
setsA1,A2, . . . . Moreover, every componentD of S is a subset ofq−1(t) ∩ S for some
t ∈ C; hence indD � indq−1(t) � α0. It follows that sup{indD: D is a component of
S} � α0<ω1.

Having the spaceS constructed, one can find two disjoint closed subsetsF1 andF2 of S
such that each partition inS betweenF1 andF2 intersectsH in an infinite-dimensional set.
To show that such two sets exist suppose that this is not true. Then every point ofH has an
arbitrary small neighbourhoodU in S such that FrU ∩H is finite-dimensional. It follows
that the spaceH has a countable base of open sets with finite-dimensional boundaries,
which implies thatH is c.d., contrary to the fact that it is s.i.d.

Now, letK be a partition inS betweenF1 andF2 such that each component ofK is
hereditarily indecomposable (see 2.2). LetA be a 0-dimensional compact subset of the
pseudo-arcP homeomorphic with the decomposition space ofK into components such
that each composant ofP intersectsA in at most one point (see 2.7(iii)). Finally, let
M =M(P ,K,A) be a continuum containingK which admits an atomic mapr onto P

such thatr|r−1(P \A) is a homeomorphism andr−1(a) is a component ofK if a ∈A (see
Theorem 3.1). ThenM is a h.i. continuum by Remark 3.5.

Let C be a composant ofM. By Lemma 2.8,C is the preimage underr of some
composantC′ of P . If A∩C′ = ∅, thenC is homeomorphic toC′ and hence indC = 1. If
A∩C′ = {a}, thenC is the union of the 1-dimensional setr−1(C′ \ {a}) and the setr−1(a),
which is homeomorphic to some componentD of the spaceK. SinceK is a subspace of
S, then indD � α0 by (6), and thus indC � α0 (see the fact($) at the end of the proof of
Theorem 3.2). In particular, all composants ofM are countable-dimensional.

The spaceM is w.i.d. (even aC-space) as the union of a w.i.d. compactumK (which is
aC-space) and an open subset homeomorphic withP \A (see Lemma 2.5(ii)).

It remains to show thatB∞(M) is s.i.d. ConsiderG = H ∩ K andFj = Aj ∩ K as
subspaces ofM. By the choice ofK the setG is infinite-dimensional; hence it is s.i.d.
by (4). It follows thatM is not c.d. Since indFj < ∞, Fj ∩ B∞(M) ⊂ Z(Fj ) and so
ind(Fj ∩ B∞(M)) � 0 (see Lemma 5.11). Thus the setE = ⋃∞

j=1(Fj ∩ B∞(M)) is at
most 0-dimensional. LetE∗ be a zero-dimensionalGδ-set inM containingE. Since, by



522 E. Pol, M. Re´nska / Topology and its Applications 123 (2002) 507–522

(1), the setB∞(M) is not c.d., thenB∞(M) \ E∗ is an infinite-dimensional subset of
G⊂H . By (4),B∞(M) \E∗ must be strongly infinite-dimensional. ButB∞(M) \E∗ is
anFσ -subset of the spaceB∞(M), soB∞(M) is also s.i.d. (see Lemma 2.5(i) and (ii)).
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