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Abstract

Let Boo(X) be the complement of the union of all non-trivial finite-dimensional continua in the
infinite-dimensional hereditarily indecomposable continuiimi.e., the set of Bing points irX.
We construct examples showing that for countable-dimensional coninube variety of types
of Boo(X) is much greater than in the case of the set of Bing points in the finite-dimensional
case investigated in [R. Pol, M. Reka, Preprint]. A hereditarily indecomposable continukins
constructed such tha& is not strongly infinite-dimensional, bt (X) has this property.
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1. Introduction

Our terminology follows [8,9,4]. All our spaces are metrizable separable. A continuum
X is hereditarily indecomposable, abbreviated h.i., if for any two intersecting subcontinua
K,Lof X,eitherKk CLorL CK.

Bing [2] constructed h.i. continua separating the Hilbert cube. Therefore, there are h.i.
continua of every finite dimension and there are strongly infinite-dimensional h.i. continua
(see Section 2.4 for the definition).

Let X be a h.i. continuum of a finite dimensionor infinite dimensionco. We say
thatx is a Bing point inX if for any non-trivial subcontinuunk of X containingx the
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dimension ofK is equal to the dimension &f. Bing has shown that for amydimensional

h.i. continuumX, the setB,, (X) of Bing points is nonempty. Recently, it was demonstrated
in [20] that forn > 2 the setB, (X) is 1-dimensional and not of typ&;, (being always a
Gss5-set). A theorem of Henderson [6] shows also that the set of Bing points in a strongly
infinite-dimensional h.i. continuum contains a strongly infinite-dimensional continuum (cf.
Remark 6.2).

We shall discuss in this paper the sBts (X) of Bing points in infinite-dimensional h.i.
continuaX.

An important class of infinite-dimensional spaces distinguished by Hurewicz is the class
of countable-dimensional spaces (abbreviated c.d.), i.e., of those spaces that are countable
unions of finite-dimensional subspaces. The c.d. compacta are the ones for which the
transfinite extension ind of the inductive Menger—Urysohn dimension (or the extension
Ind of the Brouwer dimension) is defined.

In Section 4 we describe, for eagh< w1, h.i. continua with ind or Ind equal i@ (the
transfinite dimensions ind and Ind can differ for h.i. continua, cf. Remark 4.7).

We shall show in Section 5 that the sétg (X) for X with infinite transfinite dimensions
display a much greater variety of types than in the finite-dimensional case. However, we
shall leave open the problem whether there are such continua witBgitk) > 2. An
important role in our constructions is played by a method of condensation of singularities,
described in Section 3.

Countable-dimensional spaces are not strongly infinite-dimensional. Of coursés if
a h.i. continuum that is c.dB.(X) is also c.d.

We shall describe in Section 6 an example (obtained jointly with R. Pol) of a h.i.
continuumX that is not strongly infinite-dimensional, but the 9%, (X) is strongly
infinite-dimensional.

This example also shows that there are uncountable-dimensional h.i. contimlla
of whose composants are countable-dimensional (stotannot be strongly infinite-
dimensional).

2. Preliminaries

2.1. A continuumX is indecomposabile if it is not the union of two proper subcontinua;
otherwiseX is called decomposable. A continuuxnis hereditarily indecomposable (h.i.)
if every subcontinuum oX is indecomposable.

A pseudo-arcP is a hereditarily indecomposable 1-dimensional chainable continuum
(unique, up to a homeomorphism); see [9, 8§48, X].

2.2. Bing proved [2, Theorem 6] that for every disjoint pair of closed gétsand F»

of a continuumX there exists a closed partitiah betweenF; and F> in X such that
each component of. is hereditarily indecomposable. Partitions without decomposable
subcontinua will be called Bing partitions.
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2.3. Let us recall thaiB (X) is the set of points in a continuui that do not belong to
any non-trivial finite-dimensional subcontinuumX®f Givenr € N, let B, (X) denote the
set of all points in a continuum¥ that belong to some-dimensional subcontinuum of
but avoid every non-trivial subcontinuum of dimension less thdhwas demonstrated in
[20] that for anyr-dimensional h.i. continuunX, dimB, (X) =n — (r — 1); in particular,
dimB,(X) =1.

2.4. We gave the definition of countable-dimensional spaces in the Introduction. The small
(large) transfinite dimension ind (Ind) is the transfinite extension of the classical small
(large) inductive dimension (see [4, Definitions 7.1.1 and 7.1.11]). A sEaisestrongly
infinite-dimensional (shortly, s.i.d.), if there exists a sequetxg B1), (A2, B2), ... of

pairs of disjoint closed subsets &f such that for every sequenéa, Lo, ..., whereL;

is a partition betweem; and B;, we haveﬂioil L; # . Otherwise the space is called
weakly infinite-dimensional (shortly, w.i.d.). A spageis a C-space if for each sequence
U1,Us, ... of open covers oK there exists a sequentg, Vs, ... of families of pairwise
disjoint open subsets of such that eacl; refinesls; andU;’il V; coversX. Every c.d.
space is &-space and everg-space is w.i.d. (see [4, Theorems 6.3.8 and 6.3.10]).

Lemma 2.5. Let K be the class of weakly infinite-dimensional spaces or the claés of
spaces. Thel has the following properties
(i) if X € K andY is homeomorphic to a closed subsetgfthenY € I,
(i) a space which is a countable union of memberk of in /C,
(i) if f:X — Y is a perfect mapping/ is zero-dimensional, and all fibegg1(y) are
in IC, thenX € IC,
(iv) if Y C X, Y € K and all closed inX sets disjoint front are in K, thenX € K.
The classC of countable-dimensional spaces satisfies conditfgremd (ii) .

The proof can be found in [4, Chapters 5 and 6].

2.6. Recall that a subcontinuuik of a continuumX is terminal, if every subcontinuum
of X which intersects botlk and its complement must contakh A continuous mapping
from X ontoY is called atomic, if the inverse image of every pointlofis a terminal
subcontinuum ofX; equivalently, if f is monotone and for every subcontinuumof X
such that the sef (K) is non-degenerate we haie= f 1 f(K) (see [13, Proposition 4]).

2.7. If x is a point in a continuunX, the composan€ (x) of x in X is the union of all
proper subcontinua af containingx. The composants are connected and dense itf
X is a non-trivial indecomposable continuum, then (see [9, 848, VI])
(i) every composant oX is an F, boundary subset of,
(ii) different composants ok are disjoint, and
(iif) (Mazurkiewicz’s theorem [15]) there exists a Cantor setXnwhich contains
at most one point of each composant; in particuldr,has continuum many
composants.
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Lemma 2.8. Let f:X — Y be an atomic mapping from a continuu onto a
(nondegenerajecontinuumy. Then the imagef (C(x)) of the composant of in X is
the composant (f(x)) of f(x)inY and f~1(C(f(x))) = C(x).

Proof. Let L be a proper subcontinuum df containing f(x). Since every atomic
mapping is monotone, thefi—1(L) is a proper subcontinuum o containingx. Thus
FHC(f(x)) C C(x) andC(f(x)) C f(C(x)). On the other handf (C(x)) C C(f(x)).
Indeed, ifz € C(x) then f(z) = f(x) or there exists a proper subcontinuurh of X
containingr andz such thatf (L) \ { f (x)} # . Since f is atomic, thenf =1 f (L") = L’,
hence f(L') # Y. Thus f(L') is a proper subcontinuum of containing f(x) and
f(z) and thusf(z) € C(f(x)). This shows thatf (C(x)) c C(f(x)) and alsoC(x) C
L (x)) c F~XC(f(x))), which ends the proof. O

3. A method of condensation of singularities

In this section we generalize some techniques described in [3, Section 2], based on a
classical idea of condensation of singularities (see [1]).
We shall use the following theorem of Mkowiak.

Theorem 3.1 ([13, Theorem 15] and [14, 1.14])et X be a continuumA be a compact
zero-dimensional set ik and letZ be a compactum that admits a continuous map ento
with connected fibers. Then there exists a continﬁultmntainingz as aboundary subset,
which admits an atomic mapfrom X onto X such that-|X \ Z is a homeomorphism onto
X\ A andr~1(a) is a component of for everya € A.

We shall denote by (X, Z, A) and call a pseudosuspensionfbverX at A any space
X satisfying conditions of Theoregl The mapping : M (X, Z, A) — X will be called
a natural projection.

Theorem 3.2. Let X be a continuum{Z;: i € N} a sequence of compactg;: i € N}
a sequence of-dimensional compact disjoint subsets X¥fand let eachZ; admit a
continuous map ontd; with connected fibers. Then there exist a continuuik, Z;, A;)
and a mapping : L(X, Z;, A;) — X such that
(i) pis atomic,
(i) plp XX \UZLAD  p X\ UZ, A — X\ U2, A; is a homeomorphism,
(i) the setp=(X \ U2, A)) is dense inL(X, Z;, A;),
(iv) p~1(A;) is homeomorphic t@; for everyi € N (hencep—1(a) is homeomorphic
to acomponentd;, if a € A;), and if ;2 A; is dense inX then every non-empty
open subset df (X, Z;, A;) containsp—1(a) for someu € U, A,
(v) if n andw are ordinal numbers such thtttd X <n <wpandn <IndZ; <o < w1
for everyi € N thenindL(X, Z;, A;) < «,
(vi) if n andw are ordinal numbers such th&id X <n < wp andn <indZ; <o < w1
for everyi € N thenind L(X, Z;, A;) < «.
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Proof. We shall define an inverse sequeride, pj., N U {0}} such thatLg =X, L; =
M(Li_1, Zi, (p5 ™)~ 2(A))) is a pseudosuspensionf over L;_1 at (p ) ~1(A:), pi_,
is a natural projection froni; onto L;,_1 and pz. = p§+l o---opl  fori>j. Let
L(X, Z;, A;) be the inverse limit of the inverse sequence gt L(X, Z;, A;) — L, be
the projection and lep = pg be the projection of the limit space onig = X. It is easy
to see that the conditions (ii) and (iv) are satisfied. Since the projepg'joﬁ,- —Zjisa
composition of finitely many atomic mappings then it is atomic (see [13, (1.4)]). bhisis
atomic (see [1, Theorem Il]).

To prove (iii) it suffices to show that

(1) the set

o 3)

is denseirnL, for everyn € N.

Observe tha6,, = (PS)_l(X\U?il A;);inparticular,Go = X\ |2, A; isdense inLg
as the complement of a 0-dimensional set in the contingnSuppose that,,—1 is dense
in L,_1 and putV,_1 = L,_1\ (p§~H*(A,). From the construction af,, andp"_, it
follows thatp”_, restricted to(p”_;)~1(V,—1) is @ homeomorphism ang” _;)~1(V,_1)
isdense in,. SinceG,_1 is adense subset &,_1 andG,, = (pZ_l)_l(Gn—l). thenG,,
is dense ir(p;:_l)‘l(Vn_l) and thus inL,,. This ends the inductive proof of (1).

Let us check (v). First note that eathis the union of a closed subspace homeomorphic
to the free uniord®’_; Z; and an open subspace Bt If « is a finite number then (v)
follows from the countable sum theorem and the fact that the limit operation does not
increase the dimension (see [4, Theorems 1.5.3 and 1.13.4]). Suppose nawthat
and letA, B be a pair of disjoint closed subsetsiofX, Z;, A;). Then there exists € N
such thatp, (A) N p,(B) =@. The setD = U?inJrl(pg)—l(A,-) is homeomorphic to the O-
dimensional subspad;g?i,1+l A; of X and the sef = U;’zl(pg)‘l(A,-) is a closed subset
of L, homeomorphicto the free unig®);_; Z;. Therefore, Ind" < . Let T be a partition
in F between the setg, (A) N F andp,(B) N F such that Ind” < «. Take a partitior?”’
between the setg,(A) andp,(B) in L, suchthatr’' N F =T andT’ N D =@. ThenT’
is the union of the closed subsEtwith IndT < « and an open finite-dimensional subset.
Therefore, the inequality I’ < « follows from the following fact, which can be readily
justified by transfinite induction:

(») if a (metrizable, separabjespaceZ’ is the union of an oper-dimensional set

and a closed subsét such thatindZ = 8 > n (respectivelyindZ = 8 > n) then
IndZ’ = B (respectivelyind Z’' = B).

The setp~1(T”"), which is homeomorphic witlf”, is a partition betweer and B in
L(X, Z;i, A;) with Ind p~1(T") < «, which ends the proof.

The proof of (vi) is similar to the proof of (v). O

Remark 3.3. If, for some continuunk, everyZ; is homeomorphic tX, everyA; is a
singleton{a;} and A = {a1, a2, ...}, thenL(X, Z;, A;) is the space(X, K, A) described
in Section 2 of [3].
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Proposition 3.4. LetX, {Z;: i e N} and{A;: i € N} be as in Theorer.2
(@) If X is hereditarily indecomposable and n@; contains any decomposable
subcontinuum, then the continuuniX, Z;, A;) is hereditarily indecomposable.
(b) If X and all Z; are countable-dimensional then soli$X, Z;, A;).

Proof. The proof of (a) follows from Proposition 11(ii) in [13]. The proof of (b) follows
instantly from the fact thal (X, Z;, A;) is the union of topological copies df; for
i =1,2,...and a subspace homeomorphickta | 2, A;. O

Remark 3.5. If X is a continuum, A is a 0-dimensional closed subseXadnd Z is a
compactum then

(a) if X is hereditarily indecomposable aril does not contain any decomposable

subcontinuum, then the continuui(X, Z, A) is hereditarily indecomposable,

(b) if X andZ are countable-dimensional then soUs X, Z, A),

(c) ifIndX < wp and IndZ > Ind X, then IndM (X, Z, A) =Ind Z,

(d) in (c), Ind can be replaced by ind.

Indeed, (a) follows from Proposition 11(ii) in [13]. Note th&t(X, Z, A) is the union
of a closed subspace homeomorphi&tand an open subspace homeomorphi&toA.
This implies (b), while (c) and (d) follow from the fa¢t) given at the end of the proof of
Theorem 3.2.

4. Bing partitionsin Smirnov and Hender son compacta

In this section, for everg < w1, we shall describe hereditarily indecomposable continua
X, Y with IndX =indY = «. We will construct such continua as Bing partitions between
“opposite faces” of some of Henderson’s compacta. Other constructions of such spaces,
with some additional properties, are given in the next section.

Letus recall that Smirnov’s compadig, for ¢ < w1, are defined by transfinite induction
in the following way:S,, = I" is the Euclideam-cube,S,+1 = S, x I and, for a limit
ordinale, Sy is the one-point compactification of the free un@{Ss: g < a}.

For every countable ordinal, IndS, = « andsS, has only countably many components,
each being a finite-dimensional cube (see [4, Example 7.1.33]).

Henderson’s compactuid,,, for « < w1, is an absolute retract topologically containing
Sq With Ind Hy = @ and such thatH, 1 = Hy x I (see [5]).

Let us notice that not every countable-dimensional continuum contains a h.i. infinite-
dimensional subcontinuum. Indeed, Af is a continuum containing a copy ¢f, with
K \ S, being the countable union of open arcs, then any hereditarily indecomposable
continuum ink is finite-dimensional.

Theorem 4.1. If L is a Bing partition betweeX x {0} andX x {1} in X x I, where X is
either a Smirnov compactufy or a Henderson compactufd,, thenindL = Ind X.
In addition, ifind(X x I) =ind X + 1, thenind L =ind X.
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In the proof the following lemma will be used (recall that a mappjnig light if every
fiber of f is O-dimensional).

Lemmad4.2. Let f:Z — X be a light mapping, wher¥ is either a Smirnov compactum
Sy or a Henderson compactufd, andZ is a compact space. ThéndZ < Ind X = «.

Proof. Let D be the D-dimension as defined in [4, Section 7.3]. From the definition
of D-dimension and from the theorem on dimension lowering mappings (see [4,
Theorem 1.12.4]) it easily follows thd?(Z) < D(X). Thus, by Theorems 7.3.17, 7.3.18
and Problem 7.3.D of [4] we have i< D(Z) < D(X) =«. O

We shall need also the following fact, whose standard proof is included for the reader’s
convenience.

Lemma4.3. Let f: Z — X be a light mapping from a compactumonto a compactum
X withind X < «. ThenindZ < «.

Proof. We proceed by induction or. For @ < wg this is a classical result, cf. [4,
Theorem 1.12.4]. Suppose that it is true for ev@ryx o, wherea > wp. Let Z=
{(f(z) 2):zeZ}C X xZandletf = p|Z wherep : X x Z — X is the projection. Then
Zis homeomorphic t& andf is light. Letz be a point ofZ andU be an arb|trary open
neighbourhood of in X x Z. Since mdf l(f(z)) =0 andf l(f(z)) = ({f(z)} x Z)N
Z, there exists an open subsét Vi x Vo of X x Z containingz, whereVy Cc X, Vo C Z,
such thafy c U and(X x Frvz) N f=1(f(z)) = ¥. We havef (z) ¢ p((X x FrV2) N Z)
and hence there exists an open ¥etof X containing f (z) with ind (FrVs) < « and
such thatVs ¢ Vi \ p((X x FrV) N Z). Therefore F{Vs x Vo) N Z = (FrVa x Vo) N Z.
Applying the inductive assumption to the restrictionfofo Fr(Va x V2) N Z, we conclude
thatindFr(Va x Vo) NZ) <a. 0O

Proof of Theorem 4.1. The inequalities 2" follow from [16, Theorem 2.1] and [17,
Theorem 2.1]. To prove the inequalities™ observe that the restrictiofi : L — X of the
projection of X x I onto X to the subspaceé is light. Indeed, for every € X we have
f~1(x) c {x} x I and f~1(x) does not contain any subset homeomorphi¢,tsinceL

is a Bing partition. Therefore Infi—1(x) < 0. Applying Lemma 4.2. (Lemma 4.3) to the
mappingf : L — X we get the inequality<” for Ind (respectively, for ind). O

Remark 4.4. For every ordinal numbe& there exist ordinal numberg, y such that
indSg =indHy =« and indSgy1 =indH, ;1 =« + 1 (see [4, Example 7.2.12]; the
proof for Henderson’s compacta can be found, for example, in [16,17]).

Lemma 4.5. If X is a locally connected continuum then there exists a connected Bing
partition K betweenX x {0} andX x {1} in X x I.

Proof. Let L be a Bing partition betweeX x {0} andX x {1} in X x I. Since the cone over
X is unicoherent (see [9, 857, |, Theorem 9 and lll, Theorem 3]) and locally connected,
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there exists a connected partiti&c L betweenX x {0} andX x {1} in X x I (asK one
can take any irreducible partition betwegnx {0} andX x {1} in X x I contained inL),
see [9, 857, lll, Theorem 1]. This completes the proof of the lemnma.

Theorem 4.6. For every countable infinite ordinal there exist hereditarily indecompos-
able continuak, L withIndK =« =indL.

Proof. Let 8 be an ordinal such that ifdg + 1 =ind Hg+1 = « + 1 (see Remark 4.4).

The Henderson continua are locally connected and hence Lemma 4.5 provides a connected
Bing partitionK (respectivelyl) between the top and the bottom of the cylindgr x 1
(respectively,Hg x I). By Theorem 4.1, we have Irid = indL = o, which ends the

proof. O

Remark 4.7. Notice that the transfinite dimensions ind and Ind may differ for h.i.
continua. Indeed, there exist ordingdsand « such that inddg + 1 =ind Hgy1 =
a+1<pB+1(see [12]; cf. [17]). As we showed in the proof of Theorem 4.6, there
exists a connected h.i. partitioh betweenHg x {0} and Hg x {1} in Hg x I and
INdL =8 >indL =«.

5. The set of Bing pointsin countable-dimensional spaces

For anyn-dimensional hereditarily indecomposable continukinr > 2, the setB,, (X)
of Bing points is 1-dimensional and not of tyges, in X (being always aG;,s-set,
see [20]). For infinite-dimensional hereditarily indecomposable contkwéth defined
transfinite dimensions, the corresponding sk{s(X) of Bing points display a greater
variety of types. The aim of this section is to illustrate with examples tBat{X) may
be a copy of any closed subset of the Cantor set (including the empty one), or it may be a
copy of the irrationals, or else it may be a 1-dimensiaghgiset inX. We did not succeed,
however, in constructing continug with B, (X) of dimension greater than 1. Notice
that for any countable-dimensional continuénthe setB.,(X) contains no non-trivial
continuum (otherwise it would contain a finite-dimensional subcontinuum, contrary to the
definition of By (X); cf. [4, 5.2.5]). Moreover, if a continuuri is the union of countably
many closed finite-dimensional subsets, then theBsgtX) is at most 0-dimensional (see
Proposition 5.13).

Concerning the hereditarily indecomposable contiXuaith finite dimX =» > 2, we
shall show that the Baire category Bf (X) depends orX .

We start from the following example.

Example 5.1. For every ordinal numbet < w; there exist hereditarily indecomposable
continuaX, andY, such that Ind{, = « = indY, and every composant &, or Y, is
finite-dimensional; in particulaBc (Xy) =¥ = Boo (Yy).
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First we will constructX,. Let Z be a Bing partition betwees, x {0} and S, x {1}
in the productS, x I of the Smirnov compacturfi, and the interval. By Theorem 4.1,
IndZ = «. Since every component 6}, is finite-dimensionalZ has the same property.

Let A be a 0-dimensional compact subspace of the pseudbhmmeomorphic with the
decomposition space of into components. By 2.7(iii) we can assume tHatontains at
most one point from each composant®fLet

Xe=M(P,Z,A)
be a pseudosuspensionbiover P at A and
p:Xqg— P

be the natural projection. TheX, is a h.i. continuum satisfying Ind, = «, by
Remark 3.5 (a) and (c). I€(x) is the composant of in X,, then, by Lemma 2.8,
C(x) = p~X(C(p(x))), where C(p(x)) is the composant op(x) in P. HenceC(x)
is homeomorphic to the composa@i p(x)) of p(x) or else it is the union of some
componento¥ and a set homeomorphic with a subse€¢p(x)). Since every component
of Z is finite-dimensional, every composant &f, is finite-dimensional, which implies
Boo(Xo) = 0.

The spaceY,, can be constructed similarly, starting from a Bing partitiorbetween
Sg x {0} andSg x {1}, whereg is an ordinal such that ingg + 1=ind Sg+1 = + 1.

Example 5.2. Let D be any 0-dimensional non-empty compactum an@n infinite
countable ordinal. Then there exist hereditarily indecomposable conkinaiad Y with
INdX =« =indY =« such thatB, (X) and B (Y) are homeomorphic t®.

We shall assume thad is embedded into the pseudoaPc Take a sequencEi D
U; D --- of neighborhoods of the sé in P such thaty; 1 C U;, indFrU; =0 andU; is
contained in the Ai-neighbourhood ob. For everyi € N, let A; = FrU; and letX,, be the
continuum such that In¥, = « and B (X,) = @, constructed in Example 5.1. Finally,
let X = L(P, Xy X Aj, A;) and p: X — P be a continuum and a mapping satisfying
conditions (i)—(vi) of Theorem 3.2. By Proposition 3.4(&)js h.i.

We will show thatB.,(X) = p~1(D) and hence is homeomorphic . Since the set
DU(J2, Ajis closed inP, every pointx not belonging top~X(D U UZ,Aj) hasal-
dimensional neighbourhood ik and thusx ¢ Boo(X). If x € p~1(a) for somea € A;,
thenx ¢ Bso(X), since p~1(a) is homeomorphic taX, and every composant of,,
is finite-dimensional. Suppose now thatx) € D and letL be an arbitrary non-trivial
continuum inX containingx. Thenp(L) is a non-degenerate continuumihcontaining
p(x), and hence (L) N A, # @ for somen. Leta € p(L)N A,,. Sincep~1(a) is a terminal
continuum (see 3.2(i)) i homeomorphict,, L topologically containg, . This shows
thatx € By (X).

The proof that IndX < « follows from condition (v) of Theorem 3.2. Sincé contains
a closed copy ok, then IndX > Ind X, = «.
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The spaceY can be constructed in a similar way using the spEgeconstructed in
Example 5.1.

Example 5.3. Let o be an infinite countable ordinal. Then there exists a hereditarily
indecomposable continuud with IndZ = @ (indZ = «) such thatB,(Z) is a 0-
dimensional densé€ s-subset ofZ, homeomorphic with the irrationals.

Let X, (Yy) be the continuum constructed in Example 5.1. Let us split the pseudoarc
into a 0-dimensionalis-setG and a 0-dimensiondi,;-set F disjoint with G. Decompose
F into a sequencds, Ao, ... of disjoint compact 0-dimensional subsets.

Let Z = L(P,Xy x Aj,A;) (Z=L(P,Yy, x Aj,A;)) and p:Z — P be as in
Theorem 3.2. By Proposition 3.4(&),is h.i.

We will show thatB..(Z) = p~1(G). Indeed, since& does not contain any non-trivial
continuum and every1(a), for a € F, is terminal (see 3.2(i))p~*(G) C Bxo(Z). On
the other hand, every composant &f, (Y,) is finite-dimensional, hence every point
x € p~1(F) belongs to a finite-dimensional continuum and theref®gZ) c p~1(G).

By conditions (ii) and (iii) of Theorem 3.28,,(Z) is a 0-dimensional dens@&;-subset
of Z, homeomorphic taG. It follows that B (Z) is homeomorphic with the irrationals
(cf. [4, Problem 1.3.E(b)]).

We have InZ < o (indZ < «) by conditions (v) and (vi) of Theorem 3.2, while
INdZ >IndX, =« (indZ > indY, = ).

Recall that a space is punctiform if it does not contain any non-trivial subcontinuum.

Lemma 5.4. There exists d-dimensional punctiforn@s-setG in the pseudoard® such
that the setP \ G is 0-dimensional.

Proof. We shall begin with the construction of a 1-dimensional punctifarsasubsetdd
of C x P, following [4, Example 6.2.4].
Let p1:1I x P — I be the projection and

S = |k €2"*P): K is a continuum joining0} x P and{1} x P},

a subspace of the hyperspaé&?”. SinceS is closed in 2/ %) there exists a continuous
mappingf of C c I ontoS. Note that every sqbl‘l(x) N f(x) is non-empty and the set
Y = U{pl‘l(x) N f(x): x € C}is closed inC x P; hence there exists @s-setH C Y
which intersects each fibrpl‘l(x) in exactly one point (see [4, Theorem 6.2.3]). Since
p1lH : H — C is one-to-one, the séf is punctiform. The equality inédl = 1 follows from

a version of the classical Mazurkiewicz theorem stating that if dsetI x X intersects
every continuum in/ x X joining {0} x X and{1} x X, whereX is ann-dimensional
compactum, then in8 > n (see, for example, [20, Theorem 2.2]).

Now, let D be any O-dimensional¥s-set in P such thatP \ D is 0-dimensional and let
H'= HU(C x D). ThenH' is punctiform, sincepl_l(x) N H' is 0-dimensional for every
xeC.

Now, going back to the pseudoarc, we shall use a theorem of Lelek [10] providing an
embedding : (C x P) — P (see Remark 5.5 below). L&t be any 0-dimensionals-
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subset of P \ i(C x P) such that(P \ i(C x P))\ B is 0-dimensional. Then the set
G =i(H’) U B satisfies the required conditionst

Example5.5. For every countable ordinal > wg there exists a hereditarily indecompos-
able continuun¥ such thatB. (Z) is a 1-dimensional denggs-subset ofZ and IndZ = o
(respectively, in = «).

By Lemma 5.4, there exists a 1-dimensional punctiféfsasubseiG of P such that the
setP \ G is O-dimensional. Let us decompoBe\ G into a sequence of disjoint compact
O-dimensional setd, Ao, .... Let X, (Y,) be the space constructed in Example 5.1. Let
Z=L(P,Xy X A;j,A;) (Z=L(P,Y, x A;,A;)) andp:Z — P be as in Theorem 3.2.
Similarly as in Example 5.3 one shows thatis a h.i. continuum such th&8.(Z) =
p~1(G) is a dens& s-set inZ homeomorphic t&; and IndZ = « (indZ = «).

Remark 5.6. Letus notice that in Example 5.5 we can replace the pseudbarcG c P

by a continuumX andG’ c X constructed in the following way. Let be a subset oP
homeomorphic to the Cantor set andXet= M (P, A x P, A). ThenX is a 1-dimensional
h.i. continuum containing a copy @ x P. ThusX contains a 1-dimensional punctiform
Gs-set G’ such thatX \ G’ is 0-dimensional. The proof of this fact is analogous to the
proof of Lemma 5.4 but does not require the use of the theorem of Lelek cited above.

The next two examples concern the Baire category of the set of Bing points in finite-
dimensional h.i. continua (see Section 2.3).

Example 5.7. For everyn = 1,2,... there exists a hereditarily indecomposahle
dimensional continuunZ,, such that the seB, (Z,,) of Bing points ofZ, is residual, i.e.,
it contains a dens€s-subset ofZ,,.

Indeed, letG ¢ P and A1, Ag, ... be as in Example 5.3 (or 5.5) and I&t be any
n-dimensional h.i. continuum. Lef, = L(P, K x A;, A;) andp:Z, — P be asin Theo-
rem 3.2. By condition (v) of Theorem 3.2 and Proposition 3.4(a), the spaéeann-di-
mensional h.i. continuum. Sinag does not contain any non-trivial continuum and every
p~L(a), wherea € U2, Ay, is terminal, thenp=1(G) ¢ B.(Z,). By condition (iv) of
Theorem 3.2, the set™1(G) = Z, \ p~1(U2, Ai) is a denseGs-subset ofZ, and thus
B, (Z,) is residual inZ,,.

Example5.8. For everyn =2, 3,... there exists a h.k-dimensional continuuri, such
that the seff}, \ B,(T},) is residual.

Indeed, leta be any point of the pseudoarB and let K be anyr-dimensional
h.i. continuum. Then the pseudosuspensipr= M (P, K, {a}) is ann-dimensional h.i.
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continuum such that~1(P \ {a}) is a dense&s-subset off;, disjoint with B, (7;,) (where
p:T, — P isthe natural projection).

Remark 5.9. Obviously, if B (X) is nonempty, thenX has an infinite-dimensional
composant. The converse is not true. Indeed, if we take a poiit P and the
continuumX, constructed in Example 5.1 for ary> wp, then the pseudosuspension
Z=M(P, Xy, {a}) has an infinite-dimensional composant B4t (Z) = ¢.

Remark 5.10. Suppose that d is the small transfinite dimension ind or the large transfinite
dimension Ind. Then every countable dimensional h.i. contindumith dX= « can be
decomposed into the laye{8z(X): 1< 8 < «a}, whereBg(X) is the set of points in

X which belong to a subcontinuurki of X with dK = 8 but avoid every non-trivial
subcontinuumL of X with dL < 8. If wp < dX < w1 then X contains subcontinua

of all finite dimensions; in particularB,(X) is infinite-dimensional for everys € N

by [20, Remark 4.1]. Example 5.1 demonstrates that all layaeX) may be empty

for wo < B < dX. Spaces constructed in Examples 5.2, 5.3 and 5.5 show that for every
countable infinite ordinak there exist space¥ such that X = « and B (X) = By (X),

S0 Bg(X) =0 for all wp < B < a. The method of condensation of singularities yields also
easily examples of h.i. continug with dX = « for which all the layers (or some given
layers)Bg, for < «, are nonempty.

As we have already mentioned, we have no examples of c.d. sp¥icedgth
ind B, (X) > 2. However, one can prove that iBd(X) < 1 for any h.i. continuumx
with ind X = «. We shall precede a justification of this fact by a simple observation.

Lemma 5.11. The setZ(X) of all points in a compactunX which belong to a trivial
component oX is at most0-dimensional.

Proof. Let g: X — ¢(X) be the quotient map aX onto the space of components Xf
(see[9, 846, Va]). Then|Z(X) is a homeomorphism, so il X) <0. O

Proposition 5.12. Given a compacturif, let Z(Y) be as in Lemm&.11and B,,(Y) be
the set of all points i which do not belong to any non-trivial subcontinuumyrofvith
ind < «.

If X is a compact space which does not contain any decomposable continuum and
indX < o + B, thenind(Z(X) U B, (X)) < 1+ B. In particular, if indX = « then
ind B (X) < 1.

Proof. We use induction with respect fh Assume first thag = 0 and let) be a base ok
suchthatindF¥ < « foreveryV € V. For everyV € V we have FV N (Z(X)UB, (X)) C
Z(FrV); hence the spacg&(X) U B, (X) has a base consisting of sets with 0-dimensional
boundaries. This ends the proof f6= 0. Suppose now that the theorem is true for every
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ordinal < 8 and let indX < « + 8. ThenX has a bas® such that indF¥V < o + g for
everyV € V. Observe that

Frv N (Z(X)UBL(X)) C B,(FrV)U Z(FrV)

for every V € V. From this and the inductive assumption it follows that the space
Z(X) U B, (X) has a base consisting of sets with boundaries having<iidt- . This
completes the proof. O

Proposition 5.13. If a continuum X is the union of countably many closed finite-
dimensional subsets, thérd B, (X) < 0.

Proof. Suppose thaX = 32, F;, whereF; is closed inX and indF; < oo for j =
1,2,....ThenF; N By (X) C Z(F}); hence indF; N By (X)) <0 by Lemma5.11. Thus
ind B (X) < 0 by the countable sum theorema

6. On Bing pointsand composantsin uncountable-dimensional spaces

Let X be a h.i. continuum. Then, by a theorem of Levin [11, Theorem 3],

(1) the union of all non-trivial finite-dimensional subcontinua, i.e., theXsgtBo, (X),
is countable-dimensional.
Thus, by the sum theorem, see Lemma 2.5(ii), it follows that

(2) the setB»(X) is uncountable-dimensional (respectively, s.i.d., respectively, not a
C-space) for any uncountable-dimensional (respectively, s.i.d., respectively, not a
C-space) h.i. continuurX.
It was also observed by Levin (see [11, Theorem 8]) that

(3) the union of all non-trivial w.i.d. subcontinua of a h.i. continuum is w.i.d.
This fact can be generalized as follows.

Proposition 6.1. Let K be a class of spaces satisfying conditigis(iii) of Lemma2.5.
Let B (X) denote the set of points in a h.i. continuumX such that no non-trivial
subcontinuum ok containingx belongs talC. Then the seX \ By (X) belongs tac.

Proof. We use the idea of Levin [11]. Ldl/;, U, ... be a countable base &. For
everyn € N let W, be the union of all non-trivial components 6f, which belong to
K. Considering the restriction| W, of the quotient mapping of U, onto the space of
components ot/,,, we deduce from (iii) thaW, belongs tok. By (ii), the setnoq Wa
is in K. Thus to end the proof it suffices to show that Bic(X) = jeq Wa. If x € W,
for somen, thenx lies in a non-trivial continuum belonging 16 and sox € X \ Bx(X).
Suppose now that ¢ [ Jo-; W, and letK be any non-trivial continuum itX containing
x. TakeU, containingx with diamU, < diamK. Since the componer#t of x in U, is
non-trivial andx ¢ W,,, S does not belong té&. Sincex € S N K and dianS < diamKkK,
S C K, X being hereditarily indecomposable. Thus, by g)does not belong téC. This
shows thate € Bx-(X) and the proof is completed.O
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Remark 6.2. A theorem of Henderson [6] stating that every s.i.d. continuum contains
an s.i.d. continuum without any non-trivial finite-dimensional subcontinua implies that
for every h.i. continuumX that is s.i.d., the seB,(X) contains a s.i.d. continuum.
This fact is also an easy consequence of Levin’s result (3) (see [11]). In fact, Proposi-
tion 6.1 immediately implies that i is a class of spaces satisfying conditions (i)—(iv) of
Lemma 2.5, then for every h.i. continuukhnot belonging tdC the setB.(X) contains a
continuum which is not irC.

Corollary 6.3. Let X be a hereditarily indecomposable continuum. Then
(a) if every composant of is finite-dimensional, theX is countable-dimensional,
(b) if every composant of is weakly infinite-dimension@lespectively, is &-space,
thenX is weakly infinite-dimensionétespectively, is a C-spage

Proof. (a) If X is not c.d. then, by (2)B..(X) is not c.d.; hence it contains a poiry.
Then the composarit(xg) of xg is infinite-dimensional.

(b) The case of w.i.d. spaces follows similarly from (3). SupposeXhatnot aC-space.
If K is the class ofC-spaces then, by Proposition 6.1, the Bgt(X) is not aC-space, in
particular, there exists a poinp € B (X). It follows that the composant ofy is not a
C-space. O

We cannot claim, however, that every uncountable-dimensional space has a composant
which is uncountable-dimensional. This is illustrated by the following example, obtained
jointly with R. Pol.

Example 6.4. There exists a weakly infinite-dimensional hereditarily indecomposable
continuumM each composant of which is countable-dimensional (in fact{isdi: C

is a composant oM} < w1) such that the seB.. (M) is strongly infinite-dimensional.
Moreover,M is aC-space.

We will need the following variant of the example of a w.i.d. compactum which is not
countable-dimensional described in [18].

There exists a w.i.d. compact spatand aGs-setH C S such that:

(4) indH = oo and each subset off of positive dimension is strongly infinite-

dimensional,

(5) S\H = U?‘;l A;, whereA; are compact and finite-dimensional,

(6) all components of are countable-dimensional (in fact, gipd D: D is a com-

ponent ofS} < «g for some infinite ordinadg < w1).

To be more specific, let us consider the projectiarC x I1°° — C. As shown in [18],
there exists an s.i.dis-setX c C x I* which intersects each fiber(¢) in exactly one
point. LetZ be the closure oX in C x I°°. Following the proof of Lemma 5.3.1 in [4]
one can find a continuous méx Z — I°° such thatifk is the mapping o¥ into C x I*°
defined byk(x) = (p(x), F(x)) then:

(7) k restricted taX is an embedding, and
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(8) Y \ k(X) is the union of countably many compact finite-dimensional subspaces,

whereY is the closure ok(X) in C x I°°.

Let ¢ be the restriction ta/' of the projection ofC x I°° to C. Each fiberg~1(¢)
is the union of the c.d. setY \ k(X)) N ¢~1(r) and the one-point sefik(x)}, where
{x} = X N p~Y(r). Thusg~1(r) is c.d. for everyr € C. Moreover, by Theorem 3.6
of [19], there exists a c.d. compactum which contains topologically every 4ib&ft);
in particular, sufindg=1(¢): 1 € C} < g for some infinite ordinakg < w;. SinceY
admits a perfect mapping with countable-dimensional fibers ont®, thenY is a C-
space (see Lemma 2.5(iii)). In particuldt,is w.i.d. Since the spack(X) is s.i.d. by
(7), then by a theorem of Rubin [21] it contains a closed s.i.d. subsfae&thout any
w.i.d. subsets of positive dimension. L&tbe the closure off in Y. ThenS is a w.i.d.
space (and &-space) as a closed subspace ofdhspaceY (see Lemma 2.5(i)). Since
H=SNk(X),thenS\ H=SN(Y \ k(X)) is a closed subset df \ k(X). Therefore,
by (8), the complemert \ H is the union of countably many compact finite-dimensional
setsA1, Ao, .... Moreover, every componei of S is a subset of ~1(r) N S for some
t € C; hence ind) < indg~1(r) < «o. It follows that sugind D: D is a component of
S} <ap < w1.

Having the spacé constructed, one can find two disjoint closed subsgtand F> of S
such that each partition ifi betweenF1 and F» intersect€d in an infinite-dimensional set.
To show that such two sets exist suppose that this is not true. Then every pHiritax an
arbitrary small neighbourhodd in S such that F/ N H is finite-dimensional. It follows
that the spacdéd has a countable base of open sets with finite-dimensional boundaries,
which implies thatH is c.d., contrary to the fact that it is s.i.d.

Now, let K be a partition inS betweenF; and F> such that each component &f is
hereditarily indecomposable (see 2.2). lLete a 0-dimensional compact subset of the
pseudo-ard® homeomorphic with the decomposition spacekofnto components such
that each composant d intersectsA in at most one point (see 2.7(iii)). Finally, let
M= M(P, K, A) be a continuum containing which admits an atomic map onto P
such that|r—1(P \ A) is a homeomorphism and(a) is a component ok if a € A (see
Theorem 3.1). The is a h.i. continuum by Remark 3.5.

Let C be a composant oM. By Lemma 2.8,C is the preimage under of some
composant’ of P.If ANC’ =@, thenC is homeomorphic t&’ and hence ind = 1. If
ANC’ = {a}, thenC is the union of the 1-dimensional set'(C’\ {a}) and the set ~1(a),
which is homeomorphic to some componéntf the spacek. SincekK is a subspace of
S, then indD < g by (6), and thus ind’ < g (see the factx) at the end of the proof of
Theorem 3.2). In particular, all composantsidfare countable-dimensional.

The spaceM is w.i.d. (even aC-space) as the union of a w.i.d. compacti&nfwhich is
aC-space) and an open subset homeomorphic RithA (see Lemma 2.5(ii)).

It remains to show thaB., (M) is s.i.d. ConsideG = HNK andF; =A; N K as
subspaces oM. By the choice ofK the setG is infinite-dimensional; hence it is s.i.d.
by (4). It follows thatM is not c.d. Since in@; < oo, F; N Bso(M) C Z(F;) and so
ind(F; N Boo(M)) < 0 (see Lemma 5.11). Thus the det= U?‘;l(Fj N Bso(M)) is at
most O-dimensional. LeE* be a zero-dimensionals-set in M containingE. Since, by
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(1), the setB.. (M) is not c.d., thenB, (M) \ E* is an infinite-dimensional subset of
G C H. By (4), Boo(M) \ E* must be strongly infinite-dimensional. BBt (M) \ E* is
an F,, -subset of the spacg,, (M), SO0 Bs (M) is also s.i.d. (see Lemma 2.5(i) and (ii)).
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