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a b s t r a c t

This paper is an application of the variational derivative method to the derivation of
the conservation laws for partial differential equations. The conservation laws for (1+1)
dimensional compacton k(2, 2) and compacton k(3, 3) equations are studied viamultiplier
approach. Also the conservation laws for (2+1) dimensional compacton Zk(2, 2) equation
are established by first computing the multipliers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The conservation laws for partial differential equations are important in solution and reduction point of view. There are
many different approaches to the construction of conservation laws. For variational problems, the Noether theorem [1] can
be used for the derivation of conservation laws. The Laplace Direct method [2], Kara and Mahomed symmetry condition [3]
and partial Noether approach [4] are useful for the construction of conservation laws for both variational and non-variational
problems. There are some other approaches in which conservation laws are expressed in the form of characters [5–7].
Wolf [8,9], Göktas and Hereman [10], Hereman et al. [11–13] and Cheviakov [14] developed powerful software packages
to compute conservation laws for partial differential equations.

The multiplier approach (also known as the variational derivative method) is adopted in this paper. It was successfully
applied to the construction of conservation laws for nonlinear partial differential equations [15,16]. In [17], conservation
laws for Zk equation were derived. The compacton k(2, 2) equation, the compacton k(3, 3) equation and the compacton
Zk(2, 2) equation [18–20] are considered in this work. To the best of our knowledge, the conservation laws for these
equations are not computed and are the subject of this paper.

The detailed outline of the paper is as follows. In Section 2, some definitions related with the multiplier approach
are given. In Section 3, conservation laws for the k(2, 2) equation are derived by first computing the multipliers. The
conservation laws for the compacton k(3, 3) equation and the compacton Zk(2, 2) equation are established in Sections 4
and 5, respectively. Finally, conclusions are summarized in Section 6.

2. Preliminaries

Let xi, i = 1, 2, . . . , n be n independent variables and u be the dependent variable.
1. The total derivative operator with respect to xi is

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2, . . . , n, (1)

where ui denotes the derivative of uwith respect to xi. Similarly uij denotes the derivative of u with respect to xi and xj.
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2. The Euler operator is defined by

δ

δu
=

∂

∂u
− Di

∂

∂ui
+ Dij

∂

∂uij
− Dijk

∂

∂uijk
+ · · · . (2)

Consider a kth-order partial differential equation of n independent and one dependent variable

E(x, u, u(1), u(2), . . . , u(k)) = 0. (3)

3. An n-tuple T = (T 1, T 2, . . . , T n), i = 1, 2 · · · n, such that

DiT i
= 0 (4)

holds for all solutions of (3) is known as the conserved vector of (3).
4. The multiplier Λ of system (3) has the property

DiT i
= ΛE, (5)

for arbitrary function u(x1, x2, . . . , xn) [5,6].
5. The determining equations for multipliers are obtained by taking the variational derivative of (5) (see [6]):

δ

δu
(ΛE) = 0. (6)

Eq. (6) holds for arbitrary function u(x1, x2, . . . , xn) not only for solutions of system (3).
Once the multipliers are computed from (6), the conserved vectors can be derived systematically using (5) as

the determining equation. But in some problems it is not difficult to construct the conserved vectors by elementary
manipulations after the determination of the multipliers.

The summation convention is adopted in which there is summation over repeated upper and lower indices.

3. Conservation laws for the compacton k(2, 2) equation

The compacton k(2, 2) equation [18,19], which takes the form

ut + (u2)x + (u2)xxx = 0, (7)

or alternatively

ut + 2uux + 6uxuxx + 2uuxxx = 0. (8)

We will derive the conservation laws for (8) by the multiplier approach. The determining equation for multiplier Λ(t, x, u),
from (6), is

δ

δu
[Λ(ut + 2uux + 6uxuxx + 2uuxxx)] = 0. (9)

The standard Euler operator δ/δu from (2) can be defined as

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx
+ DxDt

∂

∂utx
− · · · , (10)

and total derivative operators Dt and Dx using (1) are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · , (11)

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ utx

∂

∂ut
+ · · · . (12)

Eq. (9) after expansion and simplification takes the following form;

uxx[6uΛxu + 6uuxΛuu − 6uxΛu] + 2uu3
xΛuuu + 6uu2

xΛuux + 6uuxΛxxu + 2uΛxxx + 2uΛx + Λt = 0, (13)

which yields

Λ = c1 +
c2
2
u2

+ c3 sin x + c4 cos x. (14)



R. Naz / Applied Mathematics Letters 25 (2012) 257–261 259

From (5) and (14), we have
c1 +

c2
2
u2

+ c3 sin x + c4 cos x


(ut + 2uux + 6uxuxx + 2uuxxx)

= Dt


c1u +

c2
6
u3

+ c3u sin x + c4u cos x


+ Dx

[
c1(u2

+ 2uuxx + 2u2
x) + c2


u4

4
+ u3uxx


+ c3(2uuxx sin x + 2u2

x sin x − 2uux cos x) + c4(2uuxx cos x + 2u2
x cos x + 2uux sin x)

]
, (15)

for arbitrary functions u(t, x) and v(t, x). When u(t, x) and v(t, x) are solutions of Eq. (8) then left hand side of (15) vanishes
and we obtain

Dt


c1u +

c2
6
u3

+ c3u sin x + c4u cos x


+ Dx

[
c1(u2

+ 2uuxx + 2u2
x) + c2


u4

4
+ u3uxx


+ c3(2uuxx sin x + 2u2

x sin x − 2uux cos x) + c4(2uuxx cos x + 2u2
x cos x + 2uux sin x)

]
= 0. (16)

Therefore the conserved vectors for k(2, 2) equation (8) are

T 1
1 = u, T 2

1 = u2
+ 2uuxx + 2u2

x , (17)

T 1
2 =

u3

6
, T 2

2 =
u4

4
+ u3uxx, (18)

T 1
3 = u sin x, T 2

3 = 2uuxx sin x + 2u2
x sin x − 2uux cos x, (19)

T 1
4 = u cos x, T 2

4 = 2uuxx cos x + 2u2
x cos x + 2uux sin x. (20)

The variational derivative approach for the compacton k(2, 2) equation gives four multipliers of the form Λ(t, x, u) and
hence four conserved vectors are obtained. The first-order multipliers Λ(t, x, u, ut , ux) and the higher order multipliers
determining equations are too complicated and cannot be separated manually. The computer program in [8,9] can be used
to search for the higher order multipliers.

4. Conservation laws for the compacton k(3, 3) equation

Consider the compacton k(3, 3) equation [18,19] which have the form

ut + (u3)x + (u3)xxx = 0, (21)

or

ut + 3u2ux + 6u3
x + 18uuxuxx + 3u2uxxx = 0. (22)

The determining equation for multiplier Λ(t, x, u) after expansion takes the following form:

Λu(ut + 3u2ux + 6u3
x + 18uuxuxx + 3u2uxxx) + 6uuxΛ + 18uxuxxΛ + 6uuxxxΛ

−Dt(Λ) − Dx[Λ(3u2
+ 18u2

x + 18uuxx)] + D2
x(18uuxΛ) − D3

x(3u
2Λ) = 0. (23)

Eq. (23) is separated according to different combinations of derivatives of u and an overdetermined system of equations for
multiplier Λ is obtained which gives

Λ = c1 +
c2
3
u3

+ c3 sin x + c4 cos x. (24)

From (5) and (24), we obtain following conserved vectors:

T 1
1 = u, T 2

1 = u3
+ 3u2uxx + 6uu2

x , (25)

T 1
2 =

u4

12
, T 2

2 =
u6

6
+ u5uxx +

1
2
u4u2

x , (26)

T 1
3 = u sin x, T 2

3 = 3u2uxx sin x + 6uu2
x sin x − 3u2ux cos x, (27)

T 1
4 = u cos x, T 2

4 = 3u2uxx cos x + 6uu2
x cos x + 3u2ux sin x. (28)

The variational derivative approach for the compacton k(3, 3) equation gives four conserved vectors corresponding to four
multipliers of the form Λ(t, x, u). The computer program in [8,9] can be used to search for the higher order multipliers.
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5. Conservation laws for the compacton Zk(2, 2) equation

The compacton Zk(2, 2) equation [18,20], which takes the form

ut + (u2)x + (u2)xxx + +(u2)xyy = 0, (29)

or alternatively

ut + 2uux + 6uxuxx + 2uuxxx + 2uxuyy + 4uyuxy + 2uuxyy = 0. (30)

The determining equation for multiplier Λ(t, x, u), from (6), is

δ

δu
[Λ(ut + 2uux + 6uxuxx + 2uuxxx + 2uxuyy + 4uyuxy + 2uuxyy)] = 0, (31)

where δ/δu is the standard Euler operator which from (2) is given by
δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
− Dy

∂

∂uy
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx

+D2
y

∂

∂uyy
+ DxDt

∂

∂utx
+ DyDt

∂

∂uty
+ DxDy

∂

∂uxy
− · · · . (32)

Eq. (31), after expansion and simplification, becomes

uxx[6uΛxu + 6uuxΛuu − 6uxΛu] + uxy[4uΛyu + 4uuyΛuu − 4uyΛu] + uyy[2uΛxu + 2uuxΛuu

− 2uxΛu] + 2uu3
xΛuuu + 2uuxu2

yΛuuu + 6uu2
xΛuux + 2uu2

yΛuux + 4uuxuyΛuuy

+ 6uuxΛxxu + 2uuxΛyyu + 4uuyΛuxy + 2uΛxxx + 2uΛxyy + 2uΛx + Λt = 0. (33)

Eq. (33) gives

Λ =
c1
2
u2

+ A(x, y), (34)

where A(x, y) is an arbitrary function which satisfies

Ax + Axxx + Axyy = 0. (35)

Thus there is an infinite number of multipliers Λ = A(x, y) satisfying (35).
A conserved vector for (30) has three components T 1, T 2, T 3. The conserved vector corresponding to multiplier u2/2 is

T 1
1 =

u3

6
, T 2

1 =
u4

4
+ u3uxx +

1
3
u3uyy, T 3

1 = u3uxy −
1
3
u3uxy. (36)

The conserved vector corresponding to multiplier Λ = A(x, y) is

T 1
A = uA(x, y), T 2

A = A(x, y)[u2
+ 2uuxx + 2u2

x ] + u2Axx − 2uuyAy − 2uuxAx

T 3
A = 2A(x, y)[uxuy + uuxy] + u2Axy, (37)

where A(x, y) satisfies (35). There is an infinite number of conserved vectors (37) for multipliers Λ = A(x, y) satisfying (35),
some of these are given in Table 1.

6. Conclusions

The conservation laws for the compacton k(2, 2) equation, the compacton k(3, 3) equation and the compacton Zk(2, 2)
equation were constructed by utilizing the multiplier approach. The multiplier approach on compacton k(2, 2) and k(3, 3)
equations yielded four multipliers and thus four local conserved vectors were obtained in each case. The conserved vectors
obtained here can be used in reductions and solutions of these partial differential equations. For the compacton Zk(2, 2)
equation, an infinite number of multipliers were obtained for arbitrary function A(x, y) satisfying relation (35), some of
which were given in Table 1.

The multiplier approach only yields the multipliers for the local conserved vectors and there exists a conserved vector
corresponding to eachmultiplier. In this paper, onlymultipliers of the formΛ(t, x, u)were considered since the higher order
multipliers determining equations are too complicated and cannot be separated manually. The higher order multipliers can
be found using the computer packages [8,9].
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Table 1
Multipliers and conserved vectors for the compacton Zk(2, 2) equation.

Multiplier Conserved vector

Λ = 1 T 1
2 = u, T 2

2 = u2
+ 2uuxx + 2u2

x , T 3
2 = 2uxuy + 2uuxy

Λ = f (y) T 1
3 = uf (y), T 2

3 = f (y)[u2
+ 2uuxx + 2u2

x ] − 2uuyf ′(y)
T 3
3 = 2f (y)[uxuy + uuxy]

Λ = sin x T 1
4 = u sin x, T 2

4 = sin x[2uuxx + 2u2
x ] − 2uux cos x

T 3
4 = 2 sin x[uxuy + uuxy]

Λ = cos x T 1
5 = u cos x, T 2

5 = cos x[2uuxx + 2u2
x ] + 2uux sin x

T 3
5 = 2 cos x[uxuy + uuxy]

Λ = x cos y T 1
6 = ux cos y, T 2

6 = x cos y[u2
+ 2uuxx + 2u2

x ] − 2uux cos y + 2xuuy sin y
T 3
6 = 2x cos y[uxuy + uuxy] − u2 sin y

Λ = x sin y T 1
7 = ux sin y, T 2

7 = x sin y[u2
+ 2uuxx + 2u2

x ] − 2uux sin y − 2xuuy cos y
T 3
7 = 2x sin y[uxuy + uuxy] + u2 cos y

Λ = x2 cos y T 1
8 = x2u cos y

T 2
8 = x2 cos y[u2

+ 2uuxx + 2u2
x ] − 4xuux cos y + 2x2uuy sin y + 2u2 cos y

T 3
8 = 2x2 cos y[uxuy + uuxy] − 2xu2 sin y

Λ = x2 sin y T 1
9 = x2u sin y

T 2
9 = x2 sin y[u2

+ 2uuxx + 2u2
x ] − 4xuux sin y − 2x2uuy cos y + 2u2 sin y

T 3
9 = 2x2 sin y[uxuy + uuxy] + 2xu2 cos y
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