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An equivalent formulation of the von Neumann inequality states that the back-
ward shift Sg on a2 is extremal, in the sense that if T is a Hilbert space contraction,
then ||p(T)|| [ ||p(Sg)|| for each polynomial p. We discuss several results of the
following type: if T is a Hilbert space contraction satisfying some constraints, then Sg

restricted to a suitable invariant subspace is an extremal operator. Several operator
radii are used instead of the operator norm. Applications to inequalities of coeffi-
cients of rational functions positive on the torus are given. © 2002 Elsevier Science (USA)

Key Words: Hilbert space operators; (constrained) von Neumann inequalities;
operator radii; inequalities for positive trigonometric polynomials.

0. INTRODUCTION

Let T be a Hilbert space contraction, that is a bounded linear operator
of norm at most one on a complex, separable Hilbert space H. A well-
known inequality due to von Neumann [vN] asserts that

||p(T)|| [ ||p||., (0.1)

for every polynomial p ¥ C[X]. Here

||p||.=sup{|p(z)|: z ¥ C, |z| [ 1}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82223074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is the supremum norm of p, while

||p(T)||=||p(T)||B(H)

is the operator norm of p(T) in B(H), the Cg-algebra of all bounded linear
operators on H. The same inequality extends for functions in the disc
algebra A(D) and, if T is a completely non-unitary (c.n.u.) contraction, it
extends to bounded analytic functions f ¥H.(D) [NF]. Recall that a
c.n.u. operator is one which has no unitary direct summand [NF].

Denote by S the forward unilateral shift on a2,

S(x0, x1, ...)=(0, x0, x1, ...),

and by Sg ¥ B(a2),

Sg(x0, x1, ...)=(x1, x2, ...),

its adjoint (the backward shift).
An equivalent formulation of the von Neumann inequality (0.1) is the

following: for every Hilbert space contraction T and every polynomial p we
have

||p(T)||B(H) [ ||p(Sg)||B(a2). (0.2)

We say that Sg is extremal. A proof of the inequality (0.2) will be sketched
in Section 2.

We will discuss several results of the following type: if T is a Hilbert
space contraction satisfying some constraints and w is an operator radius,
then there exists a suitable invariant subspace E of Sg such that

w(p(T)) [ w(p(Sg | E));

that is Sg restricted to a suitable invariant subspace is an extremal opera-
tor.

Several results of this type are known in the literature. The following
result was proved by Pták [P1, P2] in a particular case; the general case
was proved by Pták and Young [PY]. Suppose that p and q are arbitrary
analytic polynomials. Let T be a Hilbert space contraction of spectral
radius smaller than one and suppose that q(T)=0. Then

||p(T)|| [ ||p(Sg |Ker q(Sg))||.

The following extension was given by Sz.-Nagy [N]. Let f and g be two
functions in H.(D). Let T be a Hilbert space c.n.u. contraction such that
g(T)=0. Then

||f(T)|| [ ||f(Sg |Ker g(Sg))||.
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An equivalent form of Sz.-Nagy’s result was stated by Williams [W];
Williams’ proof is given in the survey paper [P3].

An apparently unrelated inequality due to Haagerup and de la Harpe
[HH] asserts that each bounded linear nilpotent contraction T with Tn=0,
n \ 2, satisfies the inequality

w2(T) [ cos
p

n+1
. (0.3)

Here w2(T) denotes the numerical radius of T defined by

w2(T)=sup{|OTx | xP|: x ¥H, ||x||=1}.

To see how the Haagerup–de la Harpe inequality fits into the present
framework, let Sg

n be the nilpotent Jordan cell

Sg
n=R

0 1 0 · · · 0 0

0 0 1 · · · 0 0

x x x z x x

0 0 0 · · · 0 1

0 0 0 · · · 0 0

S
on the standard Euclidean space Cn. Then [GR] cos(p/(n+1))=w2(S

g
n )

and Sg
n is unitarily equivalent to Sg |Cn=Sg |Ker un(Sg), where un(z)=zn.

Therefore the inequality of Haagerup and de la Harpe states that if
un(T)=0, then

w2(T) [ w2(Sg |Ker un(Sg)).

We refer to [Wu, Su, Po] for recent papers related to this inequality.
In [HH], inequality (0.3) is shown to be equivalent to an inequality, due

to Fejer (1915), for the first coefficient c1 of a positive trigonometric poly-
nomial ;n−1

j=−n+1 cje
ijt, namely

|c1 | [ c0cos 1 p
n+1
2 .

We will prove other inequalities for coefficients of rational functions posi-
tive on the torus or for coefficients of positive trigonometric polynomials
which are related to our constrained von Neumann inequalities. In partic-
ular, we obtain (Theorem 5.3) the following inequality for the sum of the
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absolute values of two coefficients of a positive trigonometric polynomial
of degree n,

|ck |+|cl | [ c0 R1+cos
p

5n−1
k+l
6+2
S1/2 R1+cos

p

5 n−1
|k−l|
6+2
S1/2,

for any distinct numbers k and l among {0, ..., n−1}.

Organization of the paper. We consider in the first section two classes of
operator radii, called admissible and strongly admissible radii. The opera-
tor norm and the numerical radius belong to both classes as well as the
more general radii wr for r [ 2. We prove in Section 2 some constrained
and unconstrained von Neumann inequalities for (strongly) admissible
radii using the construction of analytic models of [AEM]. In Section 3 we
prove some constrained von Neumann inequalities for radii which are
associated to some bundles of operators; these radii are not necessarily
admissible. The constraints in Section 2 are of algebraic type (p(T)=0 or
P(Tg, T)=0) while in Section 3 they are of the type u(T)=0 for an inner
function u. Several applications of the above general constrained von
Neumann inequalities are given in Section 4. Applications to bounds of
positive rational functions are presented in Section 5. In the last section we
discuss constrained von Neumann inequalities with different types of
constraints.

1. ADMISSIBLE AND STRONGLY ADMISSIBLE
OPERATOR RADII

Admissible operator radii. In this paragraph w denotes a family of so-
called operator radii w={wH}, one for each separable Hilbert space under
consideration. An operator radius wH is a map from B(H) to [0,+.].
For T ¥B(H) we simply write w(T) instead of the more correct wH(T)
and say that w is an operator radius, or simply a radius.

Definition 1.1. A radius w defined for all Hilbert space operators with
values in [0,+.] is called an admissible radius if it satisfies

(i) (unitary invariance) w(UgTU)=w(T) for each unitary U: KQH
and each T ¥B(H);

(ii) (isotonicity for restrictions) if T ¥B(H) and E …H is invariant
for T, then w(T | E) [ w(T);

(iii) (ampliation) if T (.) denotes the countable orthogonal sum T À
T À · · · , then w(T(.))=w(T).
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The order on the extended interval [0,+.] uses the usual conventions.
In most examples we are looking for radii with finite values.

Remark 1.1. Suppose condition (i) holds. Then the ampliation axiom
(iii) is equivalent to

(iii’) w(T(n))=w(T), for n finite or n=.,

where T (n) denotes the orthogonal sum of n copies of T. Indeed, there is a
unitary equivalence between (T (n)) (.) and T (.). By [FH, Lemma 15], the
ampliation condition is also equivalent to w(T é IE)=w(T), where
T ¥B(H) and T é IE ¥B(H é E). Here IE is the identity on E. We refer to
[FH] for other possible axioms of operator norms and several examples.

Note also that half of condition (iii), namely w(T) [ w(T(.)), is implied
by conditions (i) and (ii).

Let F={FH} be a collection of Hilbert space operators, that is for each
considered separable Hilbert space H, FH=F 5B(H) is a given set.

Definition 1.2. Let F be a collection of Hilbert space operators. We
say that F is admissible if it satisfies

(i) (unitary invariance) if T ¥F 5B(H) and U: KQH is unitary,
then UgTU ¥F 5B(K);

(ii) (stability for restrictions) if T ¥F 5B(H) and E …H is
invariant for T, then T | E ¥F;

(iii) (ampliation) if T ¥F 5B(H), then T (.) ¥F.

Radius associated to a collection of operators. Let F be a collection of
Hilbert space operators. Define the radius wF associated to F by setting,
for T ¥B(H),

wF(T) :=inf 3r > 0 : 1
r
T ¥F 5B(H)4 .

Proposition 1.1. The radius associated to an admissible collection is an
admissible radius.

Proof. Let F be an admissible collection. In order to show the unitary
invariance of wF let T ¥B(H) and let U: KQH be a unitary operator. Fix
e > 0. There exists r=r(e) such that 0 < r < wF(T)+e and 1

r T ¥

F 5B(H). By the unitary invariance of F, we have 1r U
gTU ¥F 5B(K).

This shows that wF(UgTU) [ r < wF(T)+e. Since e > 0 is arbitrary, we
get

wF(UgTU) [ wF(T). (1.1)
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Replacing in this inequality T by UTUg we obtain wF(T) [ wF(UTUg);
replacing now U by Ug we get

wF(T) [ wF(UgTU). (1.2)

Using (1.1) and (1.2) we get that wF is unitarily invariant.
The inequalities wF(T | E) [ wF(T) and wF(T (.)) [ wF(T) can be

proved as (1.1) by using the stability for restrictions and the ampliation
axiom for F, respectively. Since T is unitarily equivalent to a restriction of
T (.) to an invariant subspace, we also obtain wF(T) [ wF(T (.)). Thus wF

is admissible. L

In order to present some examples of admissible collections, we intro-
duce the following notation. If z is the variable in the complex plane C, we
denote by P(C) the algebra of all complex polynomial functions in z̄ and z.
If T ¥B(H) and P ¥ P(C), P(z̄, z)=; a, b ca, b z̄azb, we set

P(Tg, T)=C
a, b
ca, bTgaTb.

This is part of the so-called hereditary functional calculus [A1] which is
briefly described in the next section. We denote by s(T) the spectrum of an
operator T ¥B(H).

Theorem 1.2. Let {Pl}l ¥ L be a family of elements in P(C).

(a) Let F be the collection of operators defined by the following posi-
tivity conditions

T ¥F 5B(H) if and only if Pl(Tg, T) \ 0 (l ¥ L).

ThenF is admissible.

(b) Define the collection G by

T ¥ G 5B(H) if and only if s(T) ı D̄ and Pl(Tg, T) \ 0 (l ¥ L).

Then G is admissible.

Proof. Let U: KQH be a unitary operator and let T ¥B(H). For each
l ¥ L we have Pl(UgTU)=UgPl(T) U. Therefore F is unitarily invariant.
If E is an invariant subspace for T, then (T | E)b=(Tb) | E and
(T | E)ga=PETga | E, where PE is the orthogonal projection onto E. This
shows that for each l ¥ L we have Pl(T | E)=PEPl(T) | E, yielding the
stability to restrictions property. The ampliation condition follows from the
equality Pl(T(.))=Pl(T) (.).
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For the second part, note that the spectrum satisfies s(UgTU)=s(T)
and s(T (.))=s(T). Let now T ¥B(H) with s(T) ı D̄. Let R=T | E ¥

B(E), where E is an invariant subspace of T. Thus the matrix of T with
respect to the decompositionH=E À E + has the form

T=RR f
0 f
S

and thus

Tn=RR
n f
0 f
S .

This implies ||Rn|| [ ||Tn||, so the spectral radius of R is at most one. This
completes the proof. L

Remark 1.2. Part (a) of the above Theorem also holds for more general
positivity conditions, obtained by considering polynomials in z̄ and z with
matrix coefficients. We omit the details. Bounded collections satisfying
such more general positivity conditions were characterized by Agler [A2]
as bounded collections which are closed with respect to direct sums, with
respect to unital Cg-algebraic representations and stable for restrictions.
We refer to [A2] for the exact definition and for several examples of such
collections.

Operators of class Cr. The main examples of operator radii we will use
are the operator radii associated to the collection of operators of class Cr.

Operators in the class Cr are defined as operators having r-dilations:
T ¥B(H) is in Cr, r > 0, if there exist a larger Hilbert space K ‡H and a
unitary operator U ¥B(K) such that

Tnh=rPHUnh, h ¥H.

Contractions are operators of class C1 and operators in C2 coincides with
numerical radius contractions, that is operators T such that w2(T) [ 1. We
refer to [NF] and [R] for more information.

The operator radius wr associated to the class Cr is then defined by

wr(T)=inf 3r: r > 0, 1
r
T ¥ Cr 4 .

It is determined by the conditions that it is homogeneous (wr(zT)=
|z| wr(T) for all complex z) and that wr(T) [ 1 if and only if T ¥ Cr. Then
w1(T)=||T|| and w2 is the numerical radius. It can also be proved that the
limit of wr(T) as rQ. is the spectral radius of T.
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The radius wr is a (Banach space) norm if and only if r [ 2. It is not an
algebra norm; however, we always have [NF] wr(Tn) [ wr(T)n.

Corollary 1.3. The radius wr is admissible for any r > 0.

Proof. An operator T is in the class Cr [NF], [R] if and only if

||x||2−2 11−1
r
2 Re[zOTx | xP]+11−2

r
2 |z|2 ||Tx||2 \ 0

for every x ¥H and every z ¥ D̄. Therefore it suffices to set

Pl(z̄, z)=1−11−
1
r
2 l̄z̄−11−1

r
2 lz+11−2

r
2 |l|2 z̄z (l ¥ D̄)

in Theorem 1.2, Part (a). L

Strongly admissible operator radii. The following definition gives a
smaller class of admissible radii.

Definition 1.3. A radius n defined for all Hilbert space operators with
values in [0,+.] is called a strongly admissible radius if it satisfies

(ii’) (isometry growth condition) For any isometry V: KQH and
any T ¥ B(H), we have n(VgTV) [ n(T).

(iii) (ampliation) n(T (.))=n(T) for every T.

Proposition 1.4. An operator radius n is strongly admissible if and only
if it satisfies

(i) (unitary invariance) n(UgTU)=n(T) for each unitary U: KQH
and each T ¥B(H) ;

(ii’) (isotonicity for compressions) If T ¥B(H), if E is a closed sub-
space of H and R=PET | E, then n(R) [ n(T).

(iii) (ampliation) We have n(T (.))=n(T).

In particular, each strongly admissible radius is admissible.

Proof. Suppose that n is strongly admissible. Let T ¥B(H) and let
U: KQH be a unitary operator. Using the isometry growth condition for
the isometry U we obtain n(T1) [ n(T), where T1=UgTU. The isometry
growth condition for Ug yields n(UT1Ug) [ n(T1). Therefore

n(T)=n(UT1Ug) [ n(T1) [ n(T)
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showing the unitary invariance. The isotonicity for compressions is
obtained from R=JgTJ, where J: EQH is the inclusion Je=e.

For the converse implication, note that every isometry V: KQH can
be written as V=JU, where U: KQ V(K), Uk=Vk, is unitary and
J: V(K)QH is the inclusion map. Then

n(VgTV)=n(UgJgTJU)=n(JgTJ)=n(PV(K)T | V(K)) [ n(T).

The proof is now complete. L

A counterpart notion of strongly admissible collection of operators can be
introduced as a collection which satisfies the unitary invariance, the sta-
bility for compressions and the ampliation properties. The radius asso-
ciated to a strongly admissible collection is stongly admissible. We omit the
details.

Proposition 1.5. Let r > 0. The radius wr is stongly admissible if and
only if r [ 2, if and only if wr is a norm.

Proof. Suppose r [ 2. Recall that T ¥ Cr if and only if Pl(Tg, T) \ 0
for all l ¥ D̄, where

Pl(z̄, z)=1−11−
1
r
2 l̄z̄−11−1

r
2 lz+11−2

r
2 |l|2 z̄z.

The isometry growth condition for wr follows from the fact that VgTV ¥ Cr
whenever r [ 2, T ¥ Cr and V: KQH satisfies VgV=IK. Indeed, we have

Pl(VgTgV, VgTV)=I−11−1
r
2 l̄VgTgV−11−1

r
2 lVgV

+11−2
r
2 |l|2 VgTgVVgTV

=VgPl(Tg, T) V+1 2
r
−12 |l|2 Vg[Tg(I−VVg) T] V.

Suppose now r > 2 and let b > 0 be a fixed, arbitrary positive number.
Consider the following 2×2 matrix

T=R1 b
0 −1
S .

We have [AN, Theorem 6]

wr(T)=
1
r
5= |b|2

4
+1+= |b|

2

4
+1+r(r−2)6 ;
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in particular w2(T)=[|b|2/4+1]1/2. We can find a vector e ¥ C2 such that
||e||=1 and w2(T)=|OTe | eP|. Denote by V the isometry from C into C2

defined by V(z)=ze. We have VgTV=OTe | eP e é e. Therefore

wr(VgTV)=|OTe | eP|=`|b|2/4+1.

We have wr(VgTV) > wr(T) for any r > 2. It follows that wr is not a
strongly admissible radius if r > 2. Recall [NF] also that wr is a norm if
and only if r [ 2. L

Remark 1.3. There are other interesting examples of admisible and
strongly admissible radii. For instance, if

W(T)={|OTx | xP|: x ¥H, ||x||=1}

denotes the numerical range of T, then the diameter ofW(T)

diamW(T)=sup{|l−m|: l, m ¥W(T)}

is a strongly admissible radius. Indeed (see for instance [GR] for proper-
ties of the numerical range), we have W(UgTU)=W(T), W(PET | E) ı
W(T) and W(T(.))=W(T). Note also that the sum, or even convex com-
binations, of (strongly) admissible radii are (strongly) admissible. For
instance, TQ ||T||+diamW(T) is strongly admissible.

2. (CONSTRAINED) VON NEUMANN INEQUALITIES
USING ANALYTIC MODELS

The existence of a model for contractions is a key result in Sz.-Nagy and
Foias dilation theory. In particular, a Hilbert space contraction with spec-
trum contained in the open unit disc is unitarily equivalent to a restriction
of the backward shift of infinite multiplicity to an invariant subspace. This
implies easily inequality (0.2) for strict contractions. If T is an arbitrary
contraction, then, for any real r < 1, inequality (0.2) holds for the strict
contraction rT. Making rQ 1 we obtain (0.2) for all contractions.

We show in this section how the existence of a model implies at once von
Neumann and constrained von Neumann inequalities for different admis-
sible radii. We use the recent construction of analytic models for n-tuples of
operators due to Ambrozie, Engliš and Müller [AEM].

Hilbert spaces associated to a domain. We recall the context of [AEM],
with some change of notation. We refer to [AEM] and the references cited
therein for more information.
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Let D be a nonempty open domain in Cn. Set Dg={z̄: z ¥ D}. Let H be
a D-space, that is H is a Hilbert space of functions analytic on D such that

(a) H is invariant under the operators Zj, j=1, ...n, of multiplica-
tion by the coordinate functions,

(Zjf)(z)=zjf(z); f ¥H, z=(z1, ..., zn) ¥ D.

(b) For each z ¥ D, the evaluation functional fQ f(z) is continuous
on H.

(c) C(w, z) ] 0 for all z ¥ D and w ¥ Dg.

Here C(w, z) is the reproducing kernel of H, that is C(w, z)=Cw̄(z), for
z ¥ D and w ¥ Dg, where Cz is a function in H such that f(z)=Of | CzP,
f ¥H (we use (b) and the Riesz representation theorem).

Let H be a Hilbert space. Denote by H éH the completed Hilbertian
tensor product. Consider the multiplication operators Mzj on H éH
defined by

Mzj=Zj é IH; j=1, ..., n.

Set

Z=(Z1, ..., Zn) ¥B(H)n; Mz=(Mz1 , ..., Mzn ) ¥B(H éH)n.

Let T=(T1, ..., Tn) be a commuting tuple of operators. Denote by s(T)
the Taylor spectrum of T, and let

MT=(LTg
1
, ...LTg

n
, RT1 , ...RTn ).

Here LA(X)=AX and RA(X)=XA are the left and right multiplication
operators by A on B(H). Let F be a analytic function on a neighborhood
of s(MT). Define F(Tg, T) ¥B(H) by F(Tg, T)=F(MT)(I).

If z=(z1, ..., zn) is the variable in complex Euclidean space Cn, we
denote by P(Cn) the algebra of all complex polynomial functions in
z̄1, ..., z̄n, z1, ..., zn. If F(w, z)=wazb, then F(Tg, T)=TgaTb=P(Tg, T)
for P(z̄, z)=F(z̄, z) ¥ P(Cn). We use the usual notation Tb=Tb11 · · ·T

bn
n for

b=(b1, ...bn) ¥ Zn+ and the like. Note that this differs slightly from
[AEM] where Tg is written on the right.

Axiom (AEM). We will sometimes suppose that H satisfies Axiom
(AEM), that is H is a D-space such that the polynomials are dense in H
and 1

C is a polynomial. Let (kk) be a fixed orthonormal basis for H
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consisting of polynomials such that any finite polynomial is a finite linear
combination of kk. Set

fm(w, z)= C
+.

k=m
kk(w̄)

1
C
(w, z) kk(z).

When D=D is the open unit disk and H is the Hardy space
H2=H2(D) of the unit disk, then C(w, z)=(1−wz)−1 and Mg

z is the
backward shift of multiplicity dimH. In this case H satisfies axiom (AEM)
with kk(z)=zk and fm(w, z)=wmzm. We refer to [AEM] for other
examples.

Unconstrained von Neumann inequalities for operator radii. We use
notation as above.

Theorem 2.1. Let T=(T1, ..., Tn) ¥B(H) be an n-tuple of commuting
operators. Suppose T andH satisfy one of the following two conditions

(i) H is a D-space, s(T) … D and 1C (T
g, T) \ 0;

(ii) H is a D-space satisfying Axiom (AEM), 1C (T
g, T) \ 0 and

lim
m
fm((Tg, T)) h=0

for every h ¥H.

Let p(z)=;b ¥ Z
n
+
cbzb be a fixed polynomial in the variable z ¥ Cn and let

P(w, z)=; a, b ¥ Z
n
+
ca, bwazb be a fixed polynomial in two variables. If w is an

admissible radius, then

w(p(T)) [ w(p(Zg));

if n is strongly admissible, then

n(P(Tg, T)) [ n(P(Z, Zg)).

Proof. Suppose T satisfies (i) or (ii). In either case, using [AEM,
Corollary 7, Corollary 15], there is an isometry V: HQH éH such that
VTj=M

g
zjV for j=1, ..., n. Note again that some care has to be taken

when using the results of [AEM] because of the change of notation. This
implies

Vp(T)=p(Mg
z ) V.
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In particular, VH is invariant under Mg
z and Tb is unitarily equivalent to

the restriction ofMgb
z to the invariant subspace VH. Since w is admissible,

we have

w(p(T))=w(p(Mg
z ) | VH) [ w(p(M

g
z ).

Using the ampliation axiom for w and the fact that Mg
z=Z

g é IH, we
obtain

w(p(T)) [ w(p(Zg)).

For the second part of the theorem, note that with respect to the
decomposition H éH=VHÀ VH + , we can write

Mgb
z =R

Tb f
0 f
S and Ma

z=R
Tga 0
f f
S .

This shows that

TgaTb=PVHM
a
zM

gb
z | VH.

Since n is strongly admissible, we have

n(P(Tg, T)) [ n(P(Mz, M
g
z ))=n(P(Z, Z

g)).

The proof is complete. L

Constrained von Neumann inequalities. We start with a constrained von
Neumann inequality for admissible radii.

Theorem 2.2. Let D be an open domain in Cn. Suppose Hilbert spaceH
of functions analytic on D and an n-tuple of operators T satisfy one of the
two conditions (i) and (ii) in Theorem 2.1. Let p and q be one variable poly-
nomials in n variables and suppose that q(T)=0. If w is an admissible
radius, then

w(p(T)) [ w(p(Zg |Ker q(Zg))).

Proof. We use the notation of (the proof of) Theorem 2.1. Recall that
Tb is unitarily equivalent to the restriction of Mgb

z to the invariant sub-
space VH and Vp(T)=p(Mg

z ) V. Since q(T)=0, we have

0=Vq(T) h=q(Mg
z ) Vh

for any h ¥H. This shows that VH ı Ker q(Mg
z ). Therefore

w(p(T))=w(p(Mg
z ) | VH) [ w(p(M

g
z ) |Ker q(Mg

z )).
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By the ampliation axiom and the equality

Mg
z |Ker q(Mg

z )=[Z
g |Ker q(Zg)] é IH,

we get

w(p(Mg
z ) |Ker q(Mg

z ))=w(p(Z
g |Ker q(Zg))).

This completes the proof. L

In some applications it is possible to avoid the hypothesis

lim
m
fm((Tg, T)) h=0

in condition (ii) in Theorem 2.1. We refer to Corollary 4.1 and Corollary
4.5 for examples of results of this type.

The following result is a constrained von Neumann inequality for
strongly admissible radii. Recall that E ıH is said to be invariant for the
n-tuple (T1, ..., Tn) ¥B(H) if TjE ı E for each j.

Theorem 2.3. Let D be an open domain in Cn. Suppose Hilbert spaceH
of functions analytic on D and an n-tuple of operators T satisfy one of the
two conditions (i) and (ii) in Theorem 2.1. Suppose also that each operator
Zj ¥B(H) is an isometry. Let P and Q be two elements of P(Cn) and
suppose that Q(Tg, T)=0. There exists an invariant subspace E for
Zg ¥B(H)n such that, for each strongly admissible radius n,

n(P(Tg, T)) [ n(P(ZE, Z
g
E)),

where ZE is defined by setting Z
g
E :=Z

g | E. If n=1, if Q is of degree less or
equal than d and if Q(e−it, e it) ] 0 for some t ¥ R, then the dimension of E is
less or equal than 2d.

Proof. Let Q be a polynomial in P(Cn) of degree at most d, that is, the
maximal power at which each wj and zj occurs is at most d. Recall from
the proof of Theorem 2.1 that

TgaTb=PVHM
a
zM

gb
z | VH

and thus P(Tg, T)=JgP(Mz, M
g
z ) J, where J denotes the inclusion

J: VHQH éH. The same equality, using the fact that Q(Tg, T)=0,
implies that the subspace V(H) is contained in Ker Q(Mz, M

g
z ). Since each

Zj and thus each Mzj is an isometry, we get that Ker Q(Mz, M
g
z ) is

included in E0=Ker(Mgd
z Q(Mz, M

g
z )) which is invariant byMg

z . Denote

E=Ker(ZgdQ(Z, Zg))
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which is invariant under Zg. Then, using the properties of the strongly
admissible radius n, we obtain

n(P(Tg, T))=n(JgP(Mz, M
g
z ) J)=n(J

gPE0P(Mz, M
g
z ) PE0J)

[ n(PE0P(Mz, M
g
z ) PE0 )=n(PE0[P(Z, Z

g) é I] PE0 )

=n(PE(p(Z, Zg) PE é I)=n(PE(p(Z, Zg) PE)

=n(p(ZE, Z
g
E)),

where PE0 and PE are the orthogonal projections onto E0, respectivelly E.
Finally, if n=1 and if Q is of degree less or equal than d, then
ZgdQ(Z, Zg) is a polynomial in Zg of degree less or equal to 2d. Thus E,
the kernel of ZgdQ(Z, Zg), is a subspace of dimension no greater than 2d,
unless ZgdQ(Z, Zg) is the null operator. This occurs if and only if
e idsQ(e−is, e is)=0 for every s ¥ R. The last equality is impossible if
Q(e−it, e it) ] 0 for some t ¥ R. The proof is complete. L

3. INEQUALITIES FOR RADII ASSOCIATED TO BUNDLES
OF OPERATORS

Constrained von Neumann inequalities for some operator radii which
are not necessarily admissible are obtained in this section. The method also
gives a different proof of constrained von Neumann inequalities for the
radii wr.

Notation. We denote by D(a, r) the open disc of radius r and center a.
Let T be the boundary of D=D(0, 1). The spaces Lp=Lp(T), 1 [ p [.,
are the usual Lebesgue function spaces relative to normalized Lebesgue
measure on T. The spaces Hp=Hp(T), 1 [ p [., are the usual Hardy
spaces. Denote

H10=3f ¥ L1 : F
2p

0
f(e it) e int dt=0, n=0, 1, ...4 .

For a given inner function u, denote H(u)=H2ı uH2 and consider the
operator S(u) ¥B(H(u)) defined by

S(u)=PH(u)Z |H(u).

Recall that Z is the operator of multiplication by z=e ih on H2. A proof
that S(u) and the extremal operator Sg |Ker(u(S)g) are unitarily equivalent
follows from the fact that they have the same characteristic function [NF];
a direct proof can be found in [P3].
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If T ¥B(H) is an absolutely continuous contraction, then, for any
x, y ¥H, there exists a function x ·T y ¥ L1 with the nth Fourier coefficient
given by OTgnx | yP if n \ 0 and OT−nx | yP if n < 0.

Let T be an operator whose spectrum is included in the closed unit disc.
Consider the operator kernel Ka(T) defined by

Ka(T)=(I− āT)−1+(I−aTg)−1−I; |a| < 1.

For an absolutely continuous contraction T, OKr exp(it)(T) x | yP converges
almost everywhere to x ·T y when r goes to 1.

Recall that a contraction T ¥B(H) is said [NF] to be of class C0 if T is
c.n.u. and there is a nonzero function f in H. such that f(T)=0. Then
there is a unique (up to a constant factor of modulus one) nonconstant
inner function u, called the minimal function of T, such that u(T)=0. The
minimal function of S(u) is u.

Bundles of selfadjoint operators and associated radii. Recall the follow-
ing result. Let r > 0. An operator T ¥B(H) whose spectrum is included in
the closed unit disc is in Cr if and only if [CF] Ka(T)+rI \ I for any
a ¥D.

Definition 3.1. Suppose a collection R of bundles of self-adjoint
operators is given, that is, for each separable Hilbert space H there is a
map

RH: D×B(H) ¦ (a, A)Q Ra(A) ¥B(H)

with Ra(A)=Ra(A)g. The collection K=KR associated to R is defined by
setting

A ¥K 5B(H) if and only if

s(A) ı D̄ and Ka(A)+Ra(A) \ I (a ¥D).

The operator radius associated to K=KR is then

wK(A)=inf 3r > 0 : 1
r
A ¥KR
4 .

Example 3.1. (a) Let r > 0. For the bundle R given by R(a)=rI,
the class KR coincides with the class Cr.

(b) Let A be an positive invertible operator and set R(a)=A. Then
the associated collection KR coincides with the class CA introduced by
Langer (cf. [NF, p. 54]).
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(c) Let j be a function in H.(D) and let v: B(H)Q [0,+.[ a map
which satisfies

v(T) ||T|| [ 1 for all T ¥ B(H).

Consider the bundle R by setting

Ra(T)=j(av(T) T)+j(av(T) T)g.

The associated radius to the collection KR is not necessarily admissible.

Theorem 3.1. Let R be a bundle such that

D ¦ aQ Ra(A) ¥B(H)

is harmonic in D for each A ¥B(H). Let K=KR be the collection of
operators associated to the bundle R. Let T be a contraction of class C0 with
u(T)=0, u an inner function, and let f ¥ A(D). Assume that for any a ¥ D
there exist a function ga such that for any r > 0

Ra(f(T)/r)=ga(f(T)/r)+ga(f(T)/r)g

and

Ra(f(S(u))/r)=ga(f(S(u))/r)+ga(f(S(u))/r)g.

Then we have

wK(f(T)) [ wK(f(S(u)).

Recall that S(u) is unitarily equivalent to the extremal operator
Sg |Ker(u(S)g).

For the proof of Theorem 3.1, we need the following lemma which will
be also used in Section 5.

Lemma 3.2. Let u be a inner function and let f be a positive function in
the subspace ūH10 of L

1(T). Then there exists a function h in H2ı uH2 such
that f=|h|2.

Proof. Since f ¥ ūH10 we have f=ūf1, with f1 ¥H
1
0. Then log |f|=

log |f1 | is Lebesgue integrable. According to theorem of Hoffman [Ho]
there exists an outer function g in H2 such that f=|g|2. Denote by
E=H(u) the orthogonal in H2 of the subspace uH2 and write g=g1+ug2
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with respect to the orthogonal decomposition H2=E À uH2. We have
g1 ] 0 since g is an outer function. Using the fact that g1 ¥ E, we obtain

Oug1 | h̄P=F
2p

0
u(e it) g1(e it) h(e it) dm(t)=Og1 | uhP=0,

for all functions h in H2. Using the theorem of F. and M. Riesz [Ho] we
get

ug1 ¥H
2
0. (3.1)

On the other hand, we have

uf=u |g|2=u |g1+ug2 |2

=u(g1+ug2)(g1+ug2)

=u |g1 |2+u |g2 |2+g1g2+u2g1g2.

Therefore

gg2=(g1+ug2) g2=u |g2 |2+g1g2=uf−u |g1 |2−u2g1g2.

Since f ¥ ūH10 and using (3.1), we see that the three last terms belong to
H10. Hence gg2 ¥H

1
0 and for any polynomial p we have

Opg | g2P=F
2p

0
p(e it) g(e it) g2(e it) dm(t)=0.

Since g is an outer function, it follows that g2=0. The proof of the lemma
is now complete. L

Proof (of Theorem 3.1). By the canonical factorization theorem, u can
be decomposed as

u(z)=B(z) exp 5−F 2p
0

e ih+z
e ih−z

dm(h)6 ,

where B is a Blaschke product and m is a positive measure on “D which is
singular with respect to the Lebesgue measure. Using the spectral mapping
theorem of a C0 operator, we have

s(T) ı B−1{0} 2 Supp(m)=s(S(u)),

where Supp(m) is the support of m.
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Let f be a non-identically zero function in A(D). Using the spectral
mapping theorem, we get

s(f(T))=f(s(T)) ı f(s(S(u)))=s(f(S(u))). (3.2)

Fix r > wK(f(S(u))) and let a ¥ D(0, 1/(r ||f||.)), a ] 0. We deduce from
(3.2) that r/a belongs to the resolvent of T. Therefore, for any x ¥H and
every a in D(0, 1/(r ||f||.)), we can write

7[Ka 1
f(T)
r
2+Ra 1

f(T)
r
2−I6 x | x8

=751I−a f(T)
g

r
2−1+1I− ā f(T)

r
2−1−2I+ga 1

f(T)
r
2

+ga 1
f(T)
r
2g6 x | x8 .

Recall that for any absolutely continuous contraction T and for any
x, y ¥H, the function OKr, t(T) x | yP converge almost everywhere to a
function x ·T y ¥ L1(“D) when r goes to 1. Since T is a C0 contraction such
that u(T)=0, it follows [CCC, Lemma 5.2] that x ·T x ¥ ūH10. From
Lemma 3.2 we get the existence of a function h in H2ı uH2=E such that
x ·T x(e it)=|h(e it)|2. We obtain

75Ka 1
f(T)
r
2+Ra 1

f(T)
r
2−I6 x | x8

=F
2p

0 r 1

1− ā
f(e it)
r

+
1

1−a
f(e it)
r

−2

+ga 1
f(e it)
r
2+ga 1

f(e it)
r
2s x ·T x(e it) dm(t)

=F
2p

0 r 1

1− ā
f(e it)
r

+
1

1−a
f(e it)
r

−2

+ga 1
f(e it)
r
2+ga 1

f(e it)
r
2s |h(e it)|2 dm(t)
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=751I−a f(Su)
g

r
2−1+1I− ā f(Su)

r
2−1−2I

+ga 1
f(Su)
r
2+ga 1

f(Su)
r
2g6 h | h8

=75Ka 1
f(Su)
r
2+Ra 1

f(Su)
r
2−I6h | h8 .

Since both sides of the previous equalities are harmonic inside the unit
disc (with respect to the variable a) and coincide inside the disc
D(0, 1/(r ||f||.)), we get that for any a in the unit disc

75Ka 1
f(T)
r
2+Ra 1

f(T)
r
2−I6 x | x8 (3.3)

and

75Ka 1
f(Su)
r
2+Ra 1

f(Su)
r
2−I6 h | h8 (3.4)

coincide. As r > wK(f(Su)), we get the positivity of (3.3). We obtain
r > wK(f(T)) and the proof is now complete. L

4. APPLICATIONS OF THE PREVIOUS RESULTS

We show in this section how the above constrained von Neumann
inequalities can be applied in a variety of situations. We are not always
looking for the most possible general inequalities.

Applications of Theorem 2.2. We denote by [x] the integer part of x,
that is the least integer no greater than x.

Corollary 4.1. Let n \ 2. Let T ¥B(H) be a contraction such that
Tn=0. Then, for each r > 0 and each analytic polynomial p, we have

wr(p(T)) [ wr(p(S
g
n )).

In particular, for any m we have

w2(Tm) [ cos
p

k(m, n)+2
, k(m, n) :=5n−1

m
6 .
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Proof. Let r < 1 be a positive number. Let H be H2 in Theorem 2.2.
Then Theorem 2.2, (ii), applied with rT instead of T, q(z)=zn and w=wr,
gives

wr(p(rT)) [ wr(p(S
g
n )).

Make now r tends to 1.
For the proof of the last part note that a majorant of the left-hand side

will be w2(S
gm
n ). But Sgm

n is unitarily equivalent to an orthogonal sum of
shifts of smaller dimension, the largest dimension being k(m, n)+1. There-
fore w2(S

gm
n )=w2(S

g
k(m, n)+1) is equal to cos p

k(m, n)+2 . The same computation
follows from [GR, page 120]. L

Remark 4.1. The inequality w2(Tm) [ cos(p/(k(m, n)+2)) can be
deduced from the inequality (0.3) of Haagerup and de la Harpe. Indeed,
k=k(m, n)=[n−1m ] implies that mk+m > n−1 and thus (Tm)k+1=0.
Apply the Haagerup–de la Harpe inequality for Tm.

In the general case, if p(z)=a0+a1z+· · ·+an−1zn−1 is a polynomial of
degree less or equal than n−1, then p(Sg

n ) is the following triangular
Toeplitz matrix

p(Sg
n )=R

a0 a1 a2 · · · an−1

a0 a1 · · · an−2

a0 · · · an−3

z x

a0

S .
Recall that we have the following reciprocity law of Ando and Nishio:

wr(T)=1
2
r
−12 w2−r(T).

This shows that computations of wr for 0 < r < 1 follows from computa-
tions for 1 < r < 2. Using interpolation properties of wr (see [FH, p. 296]),
the law of Ando and Nishio, Corollary 4.1 and a result from [E, Lemma
5] concerning the numerical range of Toeplitz matrices we get the next
result.

Corollary 4.2. Let n \ 2. Let T ¥B(H) be a contraction such that
Tn=0. Let p(z)=a0+a1z+· · ·+an−1zn−1 be an analytic polynomial of
degree at most n−1. We have

wr(p(T)) [ 1
2
r
−12 ||p||r. [inf

h ¥ R
sup{|p(z)|: z ¥ C, z2n−1=e ih}]1−r
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if r ¥ ] 0, 1], and

wr(p(T)) [ ||p||
2−r
. [inf

h ¥ R
sup {|p(z)|: z ¥ C, z2n−1=e ih}]r−1

if r ¥ [1, 2].

We refer to the proof of Theorem 5.3 for a better estimate of w2(p(S
g
n ))

for polynomials of the form p(z)=zk+e icz l ; this yields (Theorem 6.2) an
estimate for w2(Tk+T l).

If the polynomial q of degree d is given by

q(z)=b0+b1z+· · ·+bdzd,

then Ker(q(Sg)) consists of all sequences (yr) ¥ a2 satisfying

bd yr+d+bd−1 yr+d−1+·· · b0 yr=0

for r=0, 1, 2, ... . This linear recurrence has a d-dimensional solution space
and if all the zeros of q have modulus less than one then all solutions lie in
a2. In this case Ker(q(Sg)) has dimension d.

We refer to [PY] for the matrix of Sg |Ker(q(Sg)) with respect to some
orthonormal basis of Ker(q(Sg)) and, for instance, to [GR] and the refer-
ences therein for a discussion on how the numerical radius of a matrix can
be estimated/computed.

Recall [A1] that T ¥B(H) is called a 2-hypercontraction if

I−TgT \ 0 and I−2TgT+Tg2T2 \ 0.

Corollary 4.3. Let T ¥B(H) be a nilpotent 2-hypercontraction with
Tn=0, n \ 2. Then

wr(p(T)) [ wr(p(B
g
n ))

for all r > 0 and all polynomials p. Here Bg
n ¥B(Cn) is given by the matrix

Bg
n=R

0 =1
2
0 · · · 0 0

0 0 =2
3
· · · 0 0

x x x · · · x x

0 0 0 · · · 0 = n
n+1

0 0 0 · · · 0 0

S .
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Proof. Let r < 1 be a fixed positive real number. Consider H=L2a(D)
the Bergman space of all analytic functions on D satisfying

||f||2=
1
p
F
D
|f(re it)|2 dA <.,

where dA is the area Lebesgue measure. In this case C(w, z)=
(1−2wz+w2z2)−1 and H is a D-space satisfying axiom (AEM) with
kj(z)=`j+1 z j and fm(w, z)=(m+1) wmzm−mwm+1zm+1. Then Zg is
unitarily equivalent to the Bergman shift Bg, where B is given by
Bep=`

p+1
p+2 ep+1 for a suitable orthonormal basis (ep).

We have ||rT|| [ 1, (rT)mQ 0 strongly and also [A1]

I−2(rT)g (rT)+(rT)g2 (rT)2 \ 0.

It follows from [AEM, Example 2] that rT satisfies condition (ii) of
Theorem 2.1. It follows from Theorem 2.2 that

wr(p(rT)) [ wr(p(B
g
n )),

since Bg
n is unitarily equivalent to Bg |Ker(Bgn). This holds for all r < 1; it

also holds for r=1. L

The numerical radius of Bg
n can be expressed [S] in terms of the smallest

positive root of a polynomial involving circularly symmetric functions.
To give a flavor of what can be done, we prove here the following
inequalities.

Corollary 4.4. Suppose T ¥B(H) satisfies ||T|| [ 1, T3=0 and
I−2TgT+Tg2T2 \ 0. Then

w2(T) [`
7
24 and w2(T2) [`

1
12

and these constants are the best possible ones.

Proof. We have to compute w2(B
g
n ) and w2(B

g2
n ) for n=3. This can be

done using [S] or in the following (equivalent) way. Consider the symme-
tric n×n matrix
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An=B
g
n+Bn=R

0 =1
2
0 · · · 0 0

=1
2
0 =2

3
· · · 0 0

x x x · · · x x

0 0 0 · · · 0 = n
n+1

0 0 0 · · · = n
n+1

0

S .
Let h be a real number. If D(h) denotes the diagonal matrix with e ijh,
j=1, ..., n, on the main diagonal, then we have D(h)g (e ihBn+e−ihB

g
n ) D(h)

=An. Recall that

w2(T)=
1
2 sup
h ¥ R

||e ihT+e−ihTg||.

Therefore

w2(B
g
n )=

1
2 sup
h ¥ R

||e ihBn+e−ihB
g
n ||

=1
2 sup
h ¥ R

||D(h)g (e ihBn+e−ihB
g
n ) D(h)||

=1
2 ||An ||.

Since 1
2 An is hermitian, its norm coincides with its largest eigenvalue. For

n=3 it is equal to `7/24. In a similar way, the numerical radius of Bg2
3 is

the spectral radius of 12 (B
g2
3 +B

2
3), that is`1/12. L

Note that the inequality

w2(T2) [`
1
12=0.2886...

is an improvement of the inequality

w2(T2) [ w2(T)2 [
7
24=0.2916... .

Inequalities for n-tuples of operators. Theorem 2.2 can be applied also
for n-tuples of commuting operators T=(T1, ..., Tn) ¥B(H)n, n \ 1. In
fact, anytime we dispose of a model operator, the techniques of Section 2
can be used to obtain constrained von Neumann inequalities. We give only
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one example using the model of Vasilescu [V]. It corresponds, using the
notation of Section 2, to the domain

D=3z ¥ Cn : C
j
cij |zj |2 < 1, 1 [ i [ m4 .

This generalizes previous models for the unit ball in Cn and for the unit
polydisc (cf . the references in [V]).

Let m \ 1 be a fixed integer. Let p=(p1, ..., pm) be a family of complex
polynomials

pj(z)=1−cj1z1− · · · −cjnzn,

for j=1, ..., m, z=(z1, ..., zn) ¥ Cn such that

• cjk \ 0 for all indices j and k;
• for every k ¥ {1, ..., n} there is j ¥ {1, ..., m} such that cjk ] 0;
• pj is identical 1 for no indice j.

The case

pj(z)=1−zj 1 [ j [ n,

corresponds to the unit polydisc in Cn, while

p1(z)=1−z1− · · · −zn

corresponds to the unit ball.
If c=(c1, ..., cm) ¥ Zm+, we set

pc(z)=p1(z)c1 · · · pm(z)cm (z ¥ Cn).

Define

VT, j=C
n

k=1
cjkMTk , j=1, ..., m,

and VT=(VT1 , ..., VTn ). Define

DcT=(I−VT, 1)
c1 · · · (I−VT, m)cm (IH),

where IH is the identity on H and I=IB(H) is the identity on B(H). Let
c \ (1, ..., 1). We say [V] that T ¥B(H)n satisfies the positivity condition
(p, c) if

DbT \ 0, for all b, 0 [ b [ c.
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We denote by S (p, c) ¥B(a2(Z
n
+, C)) the backwards multishift of type (p, c)

as defined in [V] (in fact, S (p, c) é IH is the model there).

Corollary 4.5. Suppose, with notation as above, that c \ (1, ..., 1). Let
T ¥B(H)n be a n-tuple of commuting operators satisfying the positivity con-
dition (p, c) and the constraint q(T)=0 for a fixed polynomial q in n
variables. Then, for any admissible radius w and any polynomial f in n
variables, we have

w(f(T)) [ w(f(S(p, c)) |Ker q(S(p, c)))).

Proof. Let r ¥ ]0, 1[. It was proved in [V, Proposition 3.15] that rT is
unitarily equivalent to the restriction of S (p, c) é IH to an invariant sub-
space. Using the admissibility of w, the fact that q(T)=0, and making
rQ 1 at the end, we obtain the desired inequality. L

A proof of the above corollary can be given using directly Theorem 2.2
(cf. Example (5) in [AEM]). The unconstrained von Neumann inequality
in this case, for the operator norm, is [V, Proposition 3.15].

Applications of Theorem 2.3. The following result is obtained from
Theorem 2.3 in the classical case H=H2.

Corollary 4.6. Let T ¥B(H) be a Hilbert space contraction such that
Q(Tg, T)=0 for a given Q ¥ P(C) of degree d with Q(e−it, e it) ] 0 for some
t ¥ R. Then there exists an invariant subspace E for the backward shift Sg on
H2 such that

wr(P(Tg, T)) [ wr(P(SE, S
g
E))

for all r ¥ ]0, 2] and all P ¥ P(C). Here SE ¥B(E) is the adjoint of
Sg
E=S

g | E.

It follows from the proof of Theorem 2.3 that the space E in the above
corollary is given by E=Ker SgdQ(S, Sg). The following is a possible
application.

Corollary 4.7. Let m \ n \ 1 be two positive integers. Let T ¥B(H)
be a contraction and suppose that Tgm=Tn. Let r ¥ ]0, 2] and let P ¥ P(C).
Then

wr(P(Tg, T)) [ wr(P(Sm+n, S
g
m+n));
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in particular,

w2(T l)) [ cos
p

[(m+n−1)/l]+2

for all l with 1 [ l [ m+n−1.

Proof. Set Q(w, z)=wm−zn. We have Q(e−it, e it) ] 0 for some t ¥ R.
Note that S on H2 is unitarily equivalent to the forward shift on S on a2.
We have SgmQ(S, Sg)=I−Sg(m+n). Then E=Ker SgmQ(S, Sg) is given by

E={(h0, h1, ..., hp−1, h0, h1, ..., hp−1, h0, ...): hk ¥ C for 0 [ k [ p},

where p=m+n. Thus Sg
E=S

g | E is unitarily equivalent to Sg(.)
p . Since wr

is strongly admissible for r [ 2, we obtain

wr(P(Tg, T)) [ wr(P(Sm+n, S
g
m+n)).

The second inequality is obtained for P(w, z)=z l. L

Applications of Theorem 3.1. Theorem 3.1 can be applied for instance
to bundles of the following type. Let (pn)n \ 0 be a sequence of polynomials
which is uniformly bounded on the closed unit disc. Suppose v: B(H)Q
[0,.[ is such that v(T) ||T|| [ 1. Let U be a non trivial ultrafilter on Z+.
For any a ¥D and any T ¥B(H), set

Ra(T)=lim
U
[pn(v(T) T)+pn(v(T) T)g].

Denote K=KR the collection of operators associated to the previous
defined bundle R. Let wK be the associated operator radius. With these
notations and using Theorem 3.1, we obtain the following result.

Corollary 4.8. Assume that u is a finite Blaschke product. Suppose
that T is a C0 contraction such that u(T)=0 and v(T)=v(Su). Then, with
notation as above,

wK(f(T)) [ wK(f(S(u)))

for each f ¥ A(D).
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5. BOUNDS OF COEFFICIENTS OF POSITIVE
RATIONAL FUNCTIONS

There are many classical inequalities for coefficients of (positive) trigo-
nometric polynomials. The next result shows the links between the numer-
ical radius of the extremal operator in the constrained von Neumann
inequalities and the Taylor coefficients of rational functions positive on T.

Theorem 5.1. Let F=P/Q be a rational function with no principal part
and which is positive on the torus. Then the Taylor coefficient ck of order k
satisfies the following inequality

|ck | [ c0w2(Rk),

where R=Sg |Ker(Q(Sg)).

Proof. First, observe that by continuity we may assume that F
is strictly positive on the torus. Let F=P/Q be a rational function
without principal part, that is we have d p(P) < d p(Q) for the degrees.
Assume that F(z) > 0 for every z ¥ T. Denote by b1, ..., bq the zeros of
Q which are contained in the open unit disc D and write Q(z)=
(z−b1)d1...(z−bq)dq Q2(z), where Q2 has no zero in D. Consider the func-
tion G(z)=F(1/z̄) which is analytic, except at a finite set of complex
numbers. Since F is real on the torus, we have G(e it)=F(e it)=F(e it) for
every t ¥ R. The analytic extension principle implies that F(z)=G(z)
except for a finite set in C. Thus F(z) can be written in the following way

F(z)=
P(z)

Q1(z) Q2(z)
,

where Q1(z)=(z−b1)d1...(z−bq)dq and Q2(z)=(1−b1z)d1...(1−bqz)dq.
Because of the condition F(z)=F(1/z̄), we have P(z)=z2dP(1/z̄) where
d=d1+·· ·+dq=d p(Q)/2. If P(a)=0, with a ] 0, then necessarily
P(1/ā)=0. Therefore P can be written as

P(z)=czm0(z−a1)m1...(z−ap)mp(1−a1z)m1...(1−apz)mp

with a suitable constant c. We have d=m1+·· ·+mp. Finally, we get

F(e it)=c : P1(e
it)

Q2(e it)
:2
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with d p(P1) < d p(Q2) and c > 0. Note that

P1(z)
Q1(z)

=C
q

k=1
C
mk

i=1

ak, i
(1−akz) i

for some ak, i ¥ C. It follows that P1(z)/Q1(z) ¥ E :=H2ı bH2, where b is
the associated Blaschke product defined by

b(z)=D
q

k=1

1 z−ak
1−akz
2mk.

It follows from Lemma 3.2 that we have F=|f|2 with a suitable f ¥ E.
Denote by R the restriction of the backward shift Sg to the invariant

subspace Ker Q(S)g. Then, for any integer k, we get

|ck |=|ORkf | fP| [ w2(Rk) ||f||
2
2=w2(R

k) ||F||1=w2(Rk) c0.

This ends the proof. L

Setting Q(z)=zn−1 in the previous theorem, and using previous compu-
tations of the numerical radii, we obtain the following classical inequality
due to Egerváry and Százs (1927). The bound for c1 is due to Fejer (1915).

Corollary 5.2 (Egerváry–Százs). Let P(e it)=;n−1
j=−n+1 cje

ijt be a
positive trigonometric polynomial (n \ 2). Then

|ck | [ c0 cos R p

5n−1
k
6+2
S for 1 [ k [ n−1.

Remark 5.1. We note the amuzing consequence that Fejer’s inequality
for |c1 | implies, via operator inequalities, the Egerváry–Százs inequality.
Indeed, by [HH], Fejer’s inequality implies the Haagerup–de la Harpe
inequality (0.3). By Remark 4.1 this implies a bound for w2(Tm), which in
turn implies, as in [HH], the Egerváry–Százs inequality.

The next result gives estimates involving two coefficients of a positive
trigonometric polynomial.

Theorem 5.3. Let P(e it)=;n−1
j=−n+1 cje

ijt be a positive trigonometric
polynomial (n \ 2). Then, for every distinct numbers k and l among
{0; ..., n−1}, there exists c ¥ R such that

|ck |+|cl | [ c0w2(S
k
n+e

icS ln).
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In particular, we have

|ck |+|cl | [ c0 R1+cos
p

5n−1
k+l
6+2
S1/2 R1+cos

p

5 n−1
|k−l|
6+2
S1/2.

Proof. We can assume that c0=1. Since P is positive, we have P=|Q|2

for some Q ¥ Cn−1[X], the space of all polynomials of degree less or equal
to n−1. For any k, l, there exists c such that

|ck |+|cl |=|ck+e iccl |=:F
2p

0
(e ikh+e i(lh+c)) |Q(e ilh)|2 dm(h) : .

We deduce from the equality ||Q||2=c0=1 that

|ck |+|cl | [ w2(S
k
n+e

icS ln).

DenoteM=w2(S
k
n+e

icS ln). We have

M= sup
||R||2 [ 1

sup
a ¥ R

Re e iw F
2p

0
(e ikh+e i(lh+c)) |R(e ilh)|2 dm(h)

=2 sup
||R||2 [ 1

sup
a ¥ R

F
2p

0
cos(12 [(k+l) h+c+2a]) cos(12 [(k−l) h− c)])

× |R(e ilh)|2 dm(h)

[ 2 1 sup
||R||2 [ 1

sup
a ¥ R

F
2p

0
cos2(12 [(k+l) h+c+2a]) |R(e

ilh)|2 dm(h)2
1/2

×1 sup
||R||2 [ 1

F
2p

0
cos2(12 [(k−l) h− c]) |R(e

ilh)|2 dm(h)2
1/2

.

Let R be in Cn−1[X] with ||R||2 [ 1. Since L(e it)=R(e i (t−
c+2w
k+l )) is also in

Cn−1[X] and of norm less or equal to one, we obtain, using the rotation
invariance of the Haar measure, that

sup
a ¥ R

sup
||R||2 [ 1

F
2p

0
cos2 11

2
[(k+l) h+c+2a]2 |R(e ilh)|2 dm(h)

= sup
||L||2 [ 1

F
2p

0
cos2 11k+l

2
2 t2 |L(e ilt)|2 dm(h)

=
1
2
+
1
2

sup
||L||2 [ 1

F
2p

0
cos((k+l) t) |L(e ilt)|2 dm(h)=

1
2
(1+w2(S

k+l
n )).
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In a similar way

sup
||R||2 [ 1

F
2p

0
cos2(12 [(k+l) h− c]) |R(e

ilh)|2 dm(h)=1
2 (1+w2(S

k−l
n )).

Finally, we obtain

|ck |+|cl | [`1+w2(S
k+l
n )`1+w2(S

k−l
n ).

Since w2(S
p
n)=cos( p

[n−1/p]+2), we get the desired result. L

Remark 5.2. (a) For l=0 we reobtain the Egerváry–Százs inequality.
(b) When k+l > n−1, we get from Theorem 5.3 that

|ck |+|cl | [ c0 R1+cos
p

5 n−1
|k−l|
6+2
S1/2.

In particular, if n \ 4, we obtain

|c1 |+|cn−1 | [ c0 `3/2.

This estimate is better than that one obtained by applying twice the
Egerváry–Százs inequality.

(c) In some particular cases, it is possible to compute exactly the
numerical radiusM=w2(S

k
n+e

icS ln). Suppose n=9, k=3, l=7. It follows
from [DH] thatM=cos(p/10) if c=0. The method from [DH] does not
seem to apply for an arbitrary c.

6. OTHER TYPE OF CONSTRAINTS

The constraints until now were of algebraic type (q(T)=0 or
Q(Tg, T)=0). We discuss briefly constraints of different nature.

Some positivity conditions. We discuss constrained von Neumann
inequalities for the numerical radius w2 of an operator satisfying some
positivity conditions Rl(Tg, T) \ 0 for l ¥ T.

Proposition 6.1. Let n \ 2 be a positive integer and let rk,
0 [ k [ n−1, be n positive reals with r0=1. Let T ¥B(H) be an operator
such that Rl(Tg, T) \ 0 for l ¥ T, where

Rl(w, z)=1+C
n−1

k=1

lk

rk
wk+C

n−1

k=1

l̄k

rk
zk(l ¥ T). (6.1)
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Then

w2(Tm) [ rm cos
p

5n−1
m
6+2

for each m ¥ {1, 2, ..., n−1}.

Proof. Let h ¥H be a norm-one vector and let h ¥ R. Set

ck=˛
1 : if k=0

1
rk

OTkh | hP : if k > 0

1
r|k|

Oh | T |k|hP : if k < 0

and

tn(h)= C
n−1

k=−n+1
cke ikh.

Then tn is a positive trigonometric polynomial since

tn(h)=ORexp(it)(Tg, T) h | hP.

According to the Egerváry–Százs inequality, we have

1
rm
|OTmh | hP|=|cm | [ cos R p

5n−1
m
6+2
S

which gives the desired inequality. L

If rk=1, for each k [ n−1, then Rl(Tg, T) in Equation (6.1) are the nth
sections of the operator kernel Kl(T).

In fact, the following more general result holds.

Theorem 6.2. Let n \ 2 be a positive integer and let rk, 0 [ k [ n−1, be
n positive reals with r0=1. Let T ¥B(H) be an operator such that
Rl(Tg, T) \ 0 for l ¥ T, where Rl(w, z) are given by (6.1). Then, for any
strongly admissible radius n and any m ¥ {0, 2, ..., n−1}, we have

n(Tm) [ rmn(S
gm
n ).
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Moreover, if m and l are distinct numbers among {0; ..., n−1} and if addi-
tionally rm=rl, then

n(Tm+T l) [ rmn(S
gm
n +S

g l
n ).

In particular, we have

wr(Tm+T l)

[ 1 2
r
−12 2rrm r1+cos

p

5n−1
m+l
6+2
s
1−r
2 r1+cos

p

5 n−1
|m−l|
6+2
s
1−r
2

if r ¥ ]0, 1], and

wr(Tm+T l) [ 22−rr
r−1
m r1+cos

p

5n−1
m+l
6+2
s
r−1
2 r1+cos

p

5 n−1
|m−l|
6+2
s
r−1
2

if r ¥ ] 1, 2].

Its proof follows from Theorem 5.3, interpolation properties of wr (see
[FH, p. 296]) and the following generalization of a result of Arveson
(obtained in [Ar] for rk=1, k \ 1).

Theorem 6.3. Let T ¥B(H) be a contraction and let n \ 2. Suppose T
satisfies Rl(Tg, T) \ 0 for all l ¥ T, where Rl(w, z) are given by (6.1). Then
there is a Hilbert space K ‡H and a nilpotent contraction N ¥B(K) such
that Nn=0, N is unitarily equivalent to Sg(d)

n , d finite or ., and
T j=rjPHN j | H for j=0, 1, ..., n−1.

Proof. The idea of the proof is that of [Ar] and some details will be
omitted below. Define a linear map j from span{Sgj

n : 0 [ j [ n−1} onto
span{ 1rj T

j: 0 [ j [ n−1} by j(Sgj
n )=

1
rj
T j and by linearity. Define the map

k: C(T)QB(H) by

k(f)=
1
2p

F
2p

0
f(e ih) Rexp(ih)(Tg, T) dh.

It is a positive linear map. Note that k(z j)= 1
rj
T j for j=0, 1, ..., n−1 and

k(z j)=0 for j \ n, where z(h)=h. It is known that a positive linear map
on a commutative Cg-algebra is completely positive and a completely posi-
tive map which preserves the identity is completely contractive [Pa]. The
restriction k0 of k on the disc algebra (the closed linear span in C(T) of
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1, z, z2, ...) is a completely contractive linear map such that k0(z j)=
1
rj
T j

for j=0, 1, ..., n−1 and k0(z j)=0 for j \ n. It vanishes on the ideal znA
and thus it induces a completely contractive linear map k00 of the quotient
A/znA into B(H). It was proved in [Ar] that m(Sgj

n )=z
j+znA defines a

completely isometric linear map of span{I, Sg
n , ..., S

gn−1
n } onto A/znA. The

original map j=k00m is thus completely contractive. Since j(I)=I, j has
[Pa] a completely positive extension to Cg(Sg

n )=B(Cn). Stinespring’s
theorem [Pa] furnishes then a unital Cg-representation p. Then N=p(Sg

n )
gives, as in [Ar], the desired representation. L

In the case rk=1 for all k, studied in [Ar], the converse of Theorem 6.3
also holds. Also, an operator T satisfies

I+2 Re C
n−1

k=1
zkTk \ 0, for each z ¥ T,

if and only if [Ar]

2 Re(I−zT)g znTn [ I−TgT, for each z ¥ T.

In particular this holds if T satisfies Tn=0 and I−TgT \ 0.

Stability of the algebraic constraints. In what follows e > 0 is supposed
to be a (fixed) small positive number. We study what happens if the
constraint q(T)=0 is replaced by ||q(T)|| [ e.

Proposition 6.4. Let q be a polynomial. For each e > 0 there exists
d > 0 such that every contraction T ¥B(H) with ||q(T)|| [ d satisfies

wr(T) [ e+wr(Sg |Ker q(Sg))

for every r ¥ ]0, 2].

Proof. By [He, Corollary 2.22], for every e > 0 there is d > 0 such that,
if ||T|| [ 1 and ||q(T)|| [ d, then there exists TŒ ¥B(H) such that q(TŒ)=0
and ||T−TŒ|| [ e. Note also that wr is a norm for r [ 2. We thus have

wr(T) [ wr(T−TŒ)+wr(TŒ)

[ ||T−TŒ||+wr(TŒ)

[ e+wr(Sg |Ker q(Sg)).

The proof is complete. L
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It was proved in [He, Theorem 2.21] that if ||T|| [ 1 and ||Tn|| [ e, then
there exists TŒ ¥B(H) such that T −n=0 and ||T−TŒ|| [ dn(e), where dn(e) is
defined inductively by

d2(e)=(2e)1/2 and dk(e)={e+[dk−1((k−1)`e)]2}1/2.

This implies that if ||T|| [ 1 and ||Tn|| [ e then

w2(T) [ cos 1 p
n+1
2+dn(e).

Note that limeQ 0 dn(e)=0.
The following result gives a better bound for small e; we obtain the

Haagerup–de la Harpe inequality for eQ 0.

Theorem 6.5. Let n \ 2 be a positive integer. Suppose T ¥B(H) is a
contraction satisfying ||Tn|| [ e and

C
k > n+1

||Tk|| < +..

Then

w2(T) [ cos 1 p
n+1
2+3 5p cos4

p

2(n+1)
61/3 1 e

n+1
22/3

[ cos 1 p
n+1
2+3 3`p 1 e

n+1
22/3.

The proof uses the following epsilonized Fejer inequality. Note that an
epsilonized version of the Egerváry–Százs inequality can be proved along
the same lines.

Lemma 6.6 (The epsilonized Fejer inequality). Let h be a positive
function,

h(h)= C
m ¥ Z

cme imh,

such that ;m ¥ Z |cm | <. with c0=1 and |ck | [ e for k \ n. Then

|c1 | [ cos 1 p
n+1
2+3 5p cos4

p

2(n+1)
61/3 1 e

n+1
22/3.
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Proof. The following result has been proved in [J, Example 4(a)]: Let
f be the Fourier transform of a non-negative integrable function j:

f(x)=F
.

−.
e ixtj(t) dt.

Let u > 0 and suppose that f(0)=1 and |f(ku)| [ e for k \ n. Then

|f(u)| [ cos 1 p
n+1
2+3 5p cos4

p

2(n+1)
61/3 1 e

n+1
22/3.

This is a generalization of a result due to Boas and Kac [BK] for band-
limited functions.

Set now j(t)=h(−t), t ¥ [−p, p]. Consider f the Fourier transform of
j. Then f(0)=c0=1, f(k)=ck and thus |f(k)| [ e for k \ n+1. We can
now apply [J] with u=1. L

Proof (of Theorem 6.5). The proof is similar to the proof of Proposi-
tion 6.1. By replacing eventually T by rT, 0 < r < 1, it is possible to assume
that the spectrum of T is contained in D. For each norm-one vector h ¥H
and h ¥ R, set

ck(=ck(h))=˛
1 : if k=0

OTkh | hP : if k > 0

Oh | T |k|hP : if k < 0

and

h(h)=C
k ¥ Z

cke ikh.

Then ;m ¥ Z |cm | <.. Note also that

h(h)=OKexp(it)(T) h | hP

and the operator kernel

Kexp(it)(T)=(I−e itTg)−1 (I−TgT)(I−e−itT)−1

is positive since T is a contraction. We use now the epsilonized Fejer
inequality. L
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Corollary 6.7. Let n and m be two positive integers such that
m \ n \ 2. Suppose T ¥B(H) is a contraction satisfying ||Tn|| [ e and
Tm=0. Then

w2(T) [ min 5cos 1 p
m+1
2 ; cos 1 p

n+1
2+3 3`p 1 e

n+1
22/36 .
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