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An equivalent formulation of the von Neumann inequality states that the back-
ward shift $* on ¢, is extremal, in the sense that if 7 is a Hilbert space contraction,
then |p(T)|| < |p(S*)| for each polynomial p. We discuss several results of the
following type: if T is a Hilbert space contraction satisfying some constraints, then S*
restricted to a suitable invariant subspace is an extremal operator. Several operator
radii are used instead of the operator norm. Applications to inequalities of coeffi-
cients of rational functions positive on the torus are given.  © 2002 Elsevier Science (USA)

Key Words: Hilbert space operators; (constrained) von Neumann inequalities;
operator radii; inequalities for positive trigonometric polynomials.

0. INTRODUCTION

Let T be a Hilbert space contraction, that is a bounded linear operator
of norm at most one on a complex, separable Hilbert space H. A well-
known inequality due to von Neumann [ vN] asserts that

(Il < 1Plleo 0.1

for every polynomial p € C[ X']. Here

Pl = sup{lp(2)I: z € C, |z| < 1}
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is the supremum norm of p, while

(TN = (Tl aary

is the operator norm of p(T') in #(H), the C*-algebra of all bounded linear
operators on H. The same inequality extends for functions in the disc
algebra A(D) and, if T is a completely non-unitary (c.n.u.) contraction, it
extends to bounded analytic functions f e H*(D) [NF]. Recall that a
c.n.u. operator is one which has no unitary direct summand [NF].

Denote by S the forward unilateral shift on £2,

S('an X1, '”) = (05 X0, X1, '”)9
and by S* e B(¢?),
S*(x09 X1, "') = (xla X2, )a

its adjoint (the backward shift).

An equivalent formulation of the von Neumann inequality (0.1) is the
following: for every Hilbert space contraction 7" and every polynomial p we
have

12T )aary < IPCS™)aied,- 0.2)

We say that S™* is extremal. A proof of the inequality (0.2) will be sketched
in Section 2.

We will discuss several results of the following type: if 7" is a Hilbert
space contraction satisfying some constraints and w is an operator radius,
then there exists a suitable invariant subspace E of S* such that

w(p(T)) < o(p(S*| E));

that is S* restricted to a suitable invariant subspace is an extremal opera-
tor.

Several results of this type are known in the literature. The following
result was proved by Ptak [P1, P2] in a particular case; the general case
was proved by Ptak and Young [PY]. Suppose that p and ¢ are arbitrary
analytic polynomials. Let 77 be a Hilbert space contraction of spectral
radius smaller than one and suppose that g(7') = 0. Then

(Tl < lp(S* | Ker g(S™))].

The following extension was given by Sz.-Nagy [N]. Let f and g be two
functions in H*(D). Let T be a Hilbert space c.n.u. contraction such that
g(T)=0. Then

1A <1/ (5™ Ker g(SH))I.
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An equivalent form of Sz.-Nagy’s result was stated by Williams [W];
Williams’ proof is given in the survey paper [P3].

An apparently unrelated inequality due to Haagerup and de la Harpe
[HH] asserts that each bounded linear nilpotent contraction 7 with 7" = 0,
n = 2, satisfies the inequality

T
,(T) < cos .
AT) n+1

0.3)
Here w,(T") denotes the numerical radius of 7" defined by

,(T) =sup{|[KTx|x)|: x € H, ||x]| = 1}.

To see how the Haagerup—de la Harpe inequality fits into the present
framework, let S be the nilpotent Jordan cell

0 1 0 0 0

0 0 1 0 0
S* = :

0 0 O 0

0 0 O 0 0

on the standard Euclidean space C”. Then [GR] cos(n/(rn+1)) = w,(ST)
and S is unitarily equivalent to $*| C" = §*| Ker u,(S*), where u,(z) = z".
Therefore the inequality of Haagerup and de la Harpe states that if
u,(T) =0, then

@,(T) < 0,(S* | Ker u,(S¥)).

We refer to [ Wu, Su, Po] for recent papers related to this inequality.

In [HH], inequality (0.3) is shown to be equivalent to an inequality, due
to Fejer (1915), for the first coefficient ¢; of a positive trigonometric poly-
nomial 3721, ., ¢;e”, namely

n
ley] < ¢pcos .
n+1

We will prove other inequalities for coefficients of rational functions posi-
tive on the torus or for coefficients of positive trigonometric polynomials
which are related to our constrained von Neumann inequalities. In partic-
ular, we obtain (Theorem 5.3) the following inequality for the sum of the
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absolute values of two coefficients of a positive trigonometric polynomial
of degree n,

1/2 n 1/2
1+cos —— ,

T
n—1 n—1
[k+l]+2 [|k—l|]+2

for any distinct numbers k and / among {0, ..., n—1}.

lekl + el < ¢ [ 1+cos

Organization of the paper. We consider in the first section two classes of
operator radii, called admissible and strongly admissible radii. The opera-
tor norm and the numerical radius belong to both classes as well as the
more general radii w, for p <2. We prove in Section 2 some constrained
and unconstrained von Neumann inequalities for (strongly) admissible
radii using the construction of analytic models of [AEM]. In Section 3 we
prove some constrained von Neumann inequalities for radii which are
associated to some bundles of operators; these radii are not necessarily
admissible. The constraints in Section 2 are of algebraic type (p(T) =0 or
P(T*, T)=0) while in Section 3 they are of the type u(T) = 0 for an inner
function u. Several applications of the above general constrained von
Neumann inequalities are given in Section 4. Applications to bounds of
positive rational functions are presented in Section 5. In the last section we
discuss constrained von Neumann inequalities with different types of
constraints.

1. ADMISSIBLE AND STRONGLY ADMISSIBLE
OPERATOR RADII

Admissible operator radii. In this paragraph w denotes a family of so-
called operator radii w = {wy }, one for each separable Hilbert space under
consideration. An operator radius wy is a map from #(H) to [0, +o0].
For T € #(H) we simply write w(T') instead of the more correct wy(7)
and say that w is an operator radius, or simply a radius.

DerFiniTION 1.1, A radius w defined for all Hilbert space operators with
values in [0, +o0] is called an admissible radius if it satisfies

(i) (unitary invariance) w(U*TU) = w(T) for each unitary U: K — H
and each T € #(H);

(i) (isotonicity for restrictions) if 7' e #(H) and E < H is invariant
for T, then w(T' | E) < w(T);

(iii) (ampliation) if T denotes the countable orthogonal sum T @®
T® ---, then w(T™) = w(T).
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The order on the extended interval [0, +00] uses the usual conventions.
In most examples we are looking for radii with finite values.

Remark 1.1. Suppose condition (i) holds. Then the ampliation axiom
(iii) is equivalent to

(iii’) w(T™) = w(T), for n finite or n = oo,

where T™ denotes the orthogonal sum of n copies of T. Indeed, there is a
unitary equivalence between (7™)® and 7. By [FH, Lemma 15], the
ampliation condition is also equivalent to w(7T ® I;) =w(T), where
Te#B(H)and T ® I; € #(H ® E). Here I is the identity on E. We refer to
[FH] for other possible axioms of operator norms and several examples.

Note also that half of condition (iii), namely w(7T") < w(T?), is implied
by conditions (i) and (ii).

Let # = {Z} be a collection of Hilbert space operators, that is for each
considered separable Hilbert space H, #; = % n %4(H) is a given set.

DermviTiON 1.2. Let & be a collection of Hilbert space operators. We
say that & is admissible if it satisfies

(i) (unitary invariance) if T € & n 4(H) and U: K — H is unitary,
then U*TU € # N #(K);

(i) (stability for restrlctlons) if Te#Fn#BH) and EcH is
invariant for 7', then T | E € #

(i) (ampliation) if T € # N #(H), then T e F#

Radius associated to a collection of operators. Let % be a collection of
Hilbert space operators. Define the radius w, associated to & by setting,
for T e #(H),

wg(T) :=inf{r>0 lTe m.%‘(H)}

ProprosITION 1.1. The radius associated to an admissible collection is an
admissible radius.

Proof. Let & be an admissible collection. In order to show the unitary
invariance of wy let T € #(H) and let U: K — H be a unitary operator. Fix
£>0. There exists r=r(¢) such that 0<r<wgz(T)+¢ and iTe
F n %(H). By the unitary invariance of &, we have 1 U*TU € # n %(K).
This shows that wz(U*TU) <r <wg(T)+e¢. Since &> 0 is arbitrary, we
get

wa(U*TU) < w4 (T). (1.1)
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Replacing in this inequality T by UTU™ we obtain w,(T) < w(UTU™);
replacing now U by U* we get

w4 (T) < wy(U*TU). (1.2)

Using (1.1) and (1.2) we get that w, is unitarily invariant.

The inequalities wu(T |E)<wz(T) and wz(T®)<wz(T) can be
proved as (1.1) by using the stability for restrictions and the ampliation
axiom for &, respectively. Since 7 is unitarily equivalent to a restriction of
T to an invariant subspace, we also obtain w,(T) < wz(T). Thus w,
is admissible. ||

In order to present some examples of admissible collections, we intro-
duce the following notation. If z is the variable in the complex plane C, we
denote by P(C) the algebra of all complex polynomial functions in Z and z.
If T e #(H) and Pe P(C), P(z,2) =Y., 5 ¢, p2°2", we set

P(T*T)=Y c, , T*T".
o, B

This is part of the so-called hereditary functional calculus [A1] which is
briefly described in the next section. We denote by ¢(7") the spectrum of an
operator T € #(H).

THEOREM 1.2. Let {P,},. , be a family of elements in P(C).

(@) Let & be the collection of operators defined by the following posi-
tivity conditions

TeF n%B(H) ifand only if P,(T*,T)=0(Ae A).

Then & is admissible.
(b) Define the collection 4 by

TeY%n%BH) ifandonly if o(T)=D and P,(T* T)=0(LeA).

Then % is admissible.

Proof. LetU: K — H be a unitary operator and let 7' € #(H). For each
A€ A we have P,(U*TU) =U*P,(T) U. Therefore & is unitarily invariant.
If E is an invariant subspace for 7T, then (T |E)?=(T#)|E and
(T | E)**= P,T**| E, where P; is the orthogonal projection onto E. This
shows that for each A€ 4 we have P,(T |E) = P;P,(T) | E, yielding the
stability to restrictions property. The ampliation condition follows from the
equality P,(T™) = P,(T)™.
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For the second part, note that the spectrum satisfies c(U*TU) = o(T)
and o(T)=0(T). Let now T € #(H) with o(T)<D. Let R=T|E¢€
#B(E), where E is an invariant subspace of 7. Thus the matrix of 7" with
respect to the decomposition H = E ® E* has the form

R =*
T:
0 =
R" «
"= .
0 =

This implies ||R"|| < |77, so the spectral radius of R is at most one. This
completes the proof. ||

and thus

Remark 1.2. Part (a) of the above Theorem also holds for more general
positivity conditions, obtained by considering polynomials in Z and z with
matrix coefficients. We omit the details. Bounded collections satisfying
such more general positivity conditions were characterized by Agler [A2]
as bounded collections which are closed with respect to direct sums, with
respect to unital C*-algebraic representations and stable for restrictions.
We refer to [A2] for the exact definition and for several examples of such
collections.

Operators of class C,. The main examples of operator radii we will use
are the operator radii associated to the collection of operators of class C,.

Operators in the class C, are defined as operators having p-dilations:
T e#(H)isin C,, p>0, if there exist a larger Hilbert space K > H and a
unitary operator U € #(K) such that

T"h=pPyUh, heH.

Contractions are operators of class C; and operators in C, coincides with
numerical radius contractions, that is operators 7" such that w,(7") < 1. We
refer to [NF] and [R] for more information.

The operator radius w, associated to the class C, is then defined by

1
a)p(T)zinf{r:r>0,;TeCp}.

It is determined by the conditions that it is homogeneous (w,(zT) =
|z| w,(T) for all complex z) and that w,(T") <1 if and only if 7' € C,. Then
w,(T) =|T| and w, is the numerical radius. It can also be proved that the
limit of w,(T") as p — o is the spectral radius of 7.
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The radius w, is a (Banach space) norm if and only if p < 2. It is not an
algebra norm; however, we always have [NF] 0,(T") < w,(T)".
CorOLLARY 1.3.  The radius w, is admissible for any p > 0.

Proof. An operator T is in the class C, [NF], [R] if and only if

1 2
[lx]1*—2 (1—/—)) Re[z{Tx|x)>] +<1—/—)> lz|* |1Tx]|> >0

for every x € H and every z € D. Therefore it suffices to set
_ 1\ - 1 2 . -
P(z,z)=1—(1— |JAZ—(1—— | Az+( 1—= ) |4|* ZzZ (LeD)
p p p

in Theorem 1.2, Part (a). ||

Strongly admissible operator radii. The following definition gives a
smaller class of admissible radii.

DermviTiON 1.3. A radius v defined for all Hilbert space operators with
values in [0, +o0] is called a strongly admissible radius if it satisfies

(1i’) (isometry growth condition) For any isometry V: K - H and
any T € B(H), we have v(V*TV) < w(T).
(iii) (ampliation) v(T ) = w(T) for every T.

ProPOSITION 1.4.  An operator radius v is strongly admissible if and only
if it satisfies
(i) (unitary invariance) v(U*TU) =w(T) for each unitary U: K - H
and eachT € #(H) ;

(ii") (isotonicity for compressions) If T € #(H), if E is a closed sub-
space of H and R= P;T | E, then v(R) < v(T).

(i) (ampliation) We have v(T ) = w(T).
In particular, each strongly admissible radius is admissible.

Proof. Suppose that v is strongly admissible. Let 7€ Z(H) and let
U: K — H be a unitary operator. Using the isometry growth condition for
the isometry U we obtain w(T;) <v(T), where T, = U*TU. The isometry
growth condition for U* yields v(UT,U™*) < v(T}). Therefore

W(T) =v(UTU*) <w(T) <W(T)
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showing the unitary invariance. The isotonicity for compressions is
obtained from R = J*TJ, where J: E — H is the inclusion Je = e.

For the converse implication, note that every isometry V: K - H can
be written as V =JU, where U: K »V(K), Uk=Vk, is unitary and
J:V(K) — H is the inclusion map. Then

vV *TV) = WU*T*TJU) = w(J*TJ) = W(Py o T | V(K)) < W(T).

The proof is now complete. |

A counterpart notion of strongly admissible collection of operators can be
introduced as a collection which satisfies the unitary invariance, the sta-
bility for compressions and the ampliation properties. The radius asso-
ciated to a strongly admissible collection is stongly admissible. We omit the
details.

ProprosITION 1.5.  Let p>0. The radius w, is stongly admissible if and
only if p <2, if and only if w, is a norm.

Proof. Suppose p <2. Recall that T e C, if and only if P,(T*,T)>0
for all A € D, where

Pz, z)= 1—(1—l> Zz'—<1—l> /lz+<1—z> |4)? zz.
p P P

The isometry growth condition for w, follows from the fact that V*TV € C,
whenever p<2,TeC, and V: K — H satisfies V*V = I. Indeed, we have

1\ - 1
P(V*T*V,V*TV) = 1—<1 ——> /IV*T*V—< 1 ——> WV
p p
2 2 sk %)
+ 1—/—) A2 V*T*VV*TV
2
=V*P(T*T) V+</—)— 1> R VAT*I-VV*T]V.

Suppose now p >2 and let b > 0 be a fixed, arbitrary positive number.
Consider the following 2 x 2 matrix

1 b
T= .
<0 -1 )
We have [ AN, Theorem 6]

_17 [ L& ,
wp(T)—;[\/T+l+\/T+l+p(p—2)},
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in particular w,(T') = [|b|?/4+1]'/% We can find a vector e € C? such that
lell =1 and w,(T) = |{Te|e)|. Denote by V the isometry from C into C2
defined by V' (z) = ze. We have V*TV = (Te|e) e ® e. Therefore

w,(V*TV) = |(Te| ey = /|b|*/4+1.

We have w,(V*TV)>w,(T) for any p>2. It follows that w, is not a
strongly admissible radius if p > 2. Recall [NF] also that w, is a norm if
andonlyif p<2. |

Remark 1.3. There are other interesting examples of admisible and
strongly admissible radii. For instance, if

W(T)={IKTx|x)|: xe H, |Ix]| =1}
denotes the numerical range of T, then the diameter of W (T')
diam W(T') = sup{|[A—u|: A, ue W(T)}

is a strongly admissible radius. Indeed (see for instance [ GR] for proper-
ties of the numerical range), we have W(U*TU) =W (T), W(P;T |E) <
W(T) and W(T ) = W(T). Note also that the sum, or even convex com-
binations, of (strongly) admissible radii are (strongly) admissible. For
instance, T — ||T|| + diamW (T') is strongly admissible.

2. (CONSTRAINED) VON NEUMANN INEQUALITIES
USING ANALYTIC MODELS

The existence of a model for contractions is a key result in Sz.-Nagy and
Foias dilation theory. In particular, a Hilbert space contraction with spec-
trum contained in the open unit disc is unitarily equivalent to a restriction
of the backward shift of infinite multiplicity to an invariant subspace. This
implies easily inequality (0.2) for strict contractions. If 7" is an arbitrary
contraction, then, for any real r < 1, inequality (0.2) holds for the strict
contraction 7. Making r — 1 we obtain (0.2) for all contractions.

We show in this section how the existence of a model implies at once von
Neumann and constrained von Neumann inequalities for different admis-
sible radii. We use the recent construction of analytic models for zn-tuples of
operators due to Ambrozie, Engli§ and Miiller [AEM].

Hilbert spaces associated to a domain. We recall the context of [AEM],
with some change of notation. We refer to [AEM ] and the references cited
therein for more information.
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Let D be a nonempty open domain in C". Set D* = {z: z € D}. Let # be
a D-space, that is S is a Hilbert space of functions analytic on D such that

(a) o is invariant under the operators Z;, j=1, ...n, of multiplica-
tion by the coordinate functions,

(Z; f)2) =2z f(2); feH, z=(z,...,z,)€D.

(b) For each z € D, the evaluation functional f — f(z) is continuous
on .

(¢) C(w,z)#0forallze D and we D*.

Here C(w, z) is the reproducing kernel of #, that is C(w, z) = C;(z), for
ze D and w e D*, where C, is a function in # such that f({) =<{f|C,),
f € # (we use (b) and the Riesz representation theorem).

Let H be a Hilbert space. Denote by # ® H the completed Hilbertian
tensor product. Consider the multiplication operators M, on # ® H
defined by

M, =7 ® Iy; j=1,..., n

Z] ]

Set
Z=(Z,...,2Z,)e B(H), M,=(M,,...M,)eB(H ®H)"

Let T = (T4, ..., T,) be a commuting tuple of operators. Denote by o(7")
the Taylor spectrum of 7', and let

M;=(Ls*, ...Ly*, Ry, ... Ry).

Here L,(X)=AX and R,(X)= XA are the left and right multiplication
operators by 4 on 4(H). Let F be a analytic function on a neighborhood
of 6(M;). Define F(T*, T) e #(H) by F(T*, T) = F(M)(I).

If z=(z,...,z,) is the variable in complex Euclidean space C", we
denote by P(C") the algebra of all complex polynomial functions in
21y s Zyy 24y e Zp. If F(w,2) =w*z? then F(T*,T)=T*T*=PT*T)
for P(z, z) = F(Z, z) € P(C"). We use the usual notation T/ =T# ... T% for
B=(fi,...0,)€Z’ and the like. Note that this differs slightly from
[AEM ] where T* is written on the right.

Axiom (AEM). We will sometimes suppose that # satisfies Axiom
(AEM), that is S is a D-space such that the polynomials are dense in J#
and  is a polynomial. Let () be a fixed orthonormal basis for #
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consisting of polynomials such that any finite polynomial is a finite linear
combination of .. Set

iy 1
Sn(w, 2) = kz V() = (w, 2) Y (2).

When D=D is the open unit disk and s is the Hardy space
H?=H*D) of the unit disk, then C(w,z) = (1—wz)~! and M} is the
backward shift of multiplicity dim H. In this case # satisfies axiom (AEM)
with Y, (z) =z" and f,(w,z) =w"z". We refer to [AEM] for other
examples.

Unconstrained von Neumann inequalities for operator radii. We use
notation as above.
THEOREM 2.1. Let T= (T, ...,T,) € B(H) be an n-tuple of commuting
operators. Suppose T and H satisfy one of the following two conditions
(i) o isa D-space, o(T) =D and : (T*,T) >0;
(i) # is a D-space satisfying Axiom (AEM), % (T*, T) >0 and

lim £, ((T* T)) h=0

for every he H.

Let p(z) =3 pc2" cﬁz be a fixed polynomial in the variable z € C" and let
P(w,2) =34 pez" CopW *2P be a fixed polynomial in two variables. If w is an
admissible radius, then

o(p(T)) < o(p(Z));
if' v is strongly admissible, then
V(P(T*, T)) <vW(P(Z,Z%)).

Proof. Suppose T satisfies (i) or (ii). In either case, using [AEM,
Corollary 7, Corollary 15], there is an isometry V: H - # ® H such that
VT,=M ZjV for j=1,...,n Note again that some care has to be taken
when using the results of [AEM] because of the change of notation. This
implies

Vp(T)=pM;)V.
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In particular, V' H is invariant under M} and T is unitarily equivalent to
the restriction of M** to the invariant subspace V" H. Since o is admissible,
we have

o(p(T)) = a(p(M?)|VH) < o(p(M?).

Using the ampliation axiom for w and the fact that M =Z*® I,;, we
obtain

(p(T)) < o(p(Z*)).

For the second part of the theorem, note that with respect to the
decomposition # ® H=VH ® VH *, we can write

T¢ = T 0
Mf”=< > and M§‘=< >
(U * %

This shows that
T*T* =P,y M*M* |VH.
Since v is strongly admissible, we have
V(P(T*, T)) < v(P(M., M7)) =v(P(Z, Z")).

The proof is complete. ||

Constrained von Neumann inequalities. We start with a constrained von
Neumann inequality for admissible radii.

THEOREM 2.2. Let D be an open domain in C". Suppose Hilbert space #
of functions analytic on D and an n-tuple of operators T satisfy one of the
two conditions (1) and (ii) in Theorem 2.1. Let p and q be one variable poly-
nomials in n variables and suppose that q(T)=0. If w is an admissible
radius, then

w(p(T)) < w(p(Z*| Ker q(Z7))).

Proof. We use the notation of (the proof of) Theorem 2.1. Recall that
T# is unitarily equivalent to the restriction of M to the invariant sub-
space VH and Vp(T) = p(M¥) V. Since g(T) = 0, we have

0=Vqg(T)h=q(M:)Vh
for any 4 € H. This shows that VH < Ker q(M ). Therefore

o(p(T)) =w(p(M?)|VH) <o(p(M?})|Ker g(M?)).
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By the ampliation axiom and the equality
M? | Ker q(M?) = [Z*|Ker ¢(Z*)] ® I,
we get
w(p(M?) | Ker g(M?)) = o(p(Z* | Ker g(Z7))).

This completes the proof. |

In some applications it is possible to avoid the hypothesis

lim £, ((T* T)) h=0

in condition (ii) in Theorem 2.1. We refer to Corollary 4.1 and Corollary
4.5 for examples of results of this type.

The following result is a constrained von Neumann inequality for
strongly admissible radii. Recall that E = H is said to be invariant for the
n-tuple (T3, ..., T,) € #(H) if T,E < E for each j.

THEOREM 2.3. Let D be an open domain in C". Suppose Hilbert space #
of functions analytic on D and an n-tuple of operators T satisfy one of the
two conditions (1) and (ii) in Theorem 2.1. Suppose also that each operator
Z, e B(H) is an isometry. Let P and Q be two elements of P(C") and
suppose that Q(T*, T)=0. There exists an invariant subspace E for
Z* € B(H)" such that, for each strongly admissible radius v,

VW(P(T*, T)) < W(P(Zg, Z%)),

where Zj is defined by setting Zy :=Z* | E. If n=1, if Q is of degree less or
equal than d and if Q(e™, e™) # 0 for some t € R, then the dimension of E is
less or equal than 2d.

Proof. Let Q be a polynomial in P(C") of degree at most d, that is, the
maximal power at which each w; and z; occurs is at most d. Recall from
the proof of Theorem 2.1 that

T*T# = P,y M*M* |VH

and thus P(T*,T)=J*P(M,,M?)J, where J denotes the inclusion
J:VH - # ® H. The same equality, using the fact that Q(T*, T)=0,
implies that the subspace V' (H) is contained in Ker Q(M,, M*). Since each
Z; and thus each M, is an isometry, we get that Ker Q(M,, M *) is
included in E, = Ker(M*Q(M,, M¥)) which is invariant by M*. Denote

E=Ker(Z"Q(Z,Z%))
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which is invariant under Z*. Then, using the properties of the strongly
admissible radius v, we obtain

v(P(T* T)) = v(J*P(M,, M*) J) = W(J*Pg, P(M,, M) Py, J)
<V(Pg, P(M., MY) Pp,) =v(Py,[P(Z, Z*) ® ] Py,)
=W(P(p(Z,Z%) Py ® I) = v(Pg(p(Z, Z*) Py)
=v(p(Z, ZF)),

where P, and P, are the orthogonal projections onto E,, respectivelly E.

Finally, if n=1 and if Q is of degree less or equal than d, then
Z*Q(Z,Z*) is a polynomial in Z* of degree less or equal to 2d. Thus E,
the kernel of Z*Q(Z, Z*), is a subspace of dimension no greater than 2d,
unless Z*Q(Z,Z*) is the null operator. This occurs if and only if
e®Q(e7, e*)=0 for every seR. The last equality is impossible if
O(e™, e™) # 0 for some ¢ € R. The proof is complete. ||

3. INEQUALITIES FOR RADII ASSOCIATED TO BUNDLES
OF OPERATORS

Constrained von Neumann inequalities for some operator radii which
are not necessarily admissible are obtained in this section. The method also
gives a different proof of constrained von Neumann inequalities for the
radii w,,.

Notation. We denote by D(«, r) the open disc of radius r and center «.
Let T be the boundary of D = D(0, 1). The spaces L? = L?(T), 1 < p < o0,
are the usual Lebesgue function spaces relative to normalized Lebesgue
measure on T. The spaces H? = H?(T), 1 < p< oo, are the usual Hardy
spaces. Denote

H)} ={feL1:f2n f(eMe™dt=0,n=0,]1, }
0

For a given inner function u, denote H(u) = H> © uH? and consider the
operator S(u) € #(H(u)) defined by

S(u) = Py, Z | H(u).

Recall that Z is the operator of multiplication by z=e” on H% A proof
that S(u) and the extremal operator S* | Ker(u(S)*) are unitarily equivalent
follows from the fact that they have the same characteristic function [ NF];
a direct proof can be found in [P3].
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If Te #(H) is an absolutely continuous contraction, then, for any
x, y € H, there exists a function x © y € L' with the nth Fourier coefficient
given by <T*x|y>if n=0and <T x| y)if n <O0.

Let T be an operator whose spectrum is included in the closed unit disc.
Consider the operator kernel K, (7") defined by

K(T)=(I—&)'"+(I—oT*'—1; |of<]1.

For an absolutely continuous contraction T, <K, i, (T') x| y)» converges
almost everywhere to x © y when r goes to 1.

Recall that a contraction 7' e 4(H) is said [ NF] to be of class C, if T is
c.n.u. and there is a nonzero function f in H* such that f(7") =0. Then
there is a unique (up to a constant factor of modulus one) nonconstant
inner function u, called the minimal function of T, such that u(T) =0. The
minimal function of S(u) is u.

Bundles of selfadjoint operators and associated radii. Recall the follow-
ing result. Let p > 0. An operator T € #(H) whose spectrum is included in
the closed unit disc is in C, if and only if [CF] K, (T)+pI > 1 for any
aeD.

DEerINITION 3.1. Suppose a collection £ of bundles of self-adjoint
operators is given, that is, for each separable Hilbert space H there is a
map

Ry DxB(H)> (o, A) > R, (A) e B(H)

with R,(4) = R,(A)*. The collection " = A, associated to Z is defined by
setting

AeA nB(H) if and only if
o(4A)cD and K, (A)+R(A)=I (aeD).

The operator radius associated to /" = J, is then
. 1
@ (A) =inf r>O:;Ale§2 .

ExampLE 3.1. (a) Let p>0. For the bundle £ given by R(«) = pl,
the class # coincides with the class C,.

(b) Let A be an positive invertible operator and set R(x) = A. Then
the associated collection #, coincides with the class C, introduced by
Langer (cf. [NF, p. 54]).
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(c) Let ¢ be a function in H*(D) and let v: #(H) — [0, +oo[ a map
which satisfies

v(TH|T| <1 forall T e B(H).
Consider the bundle £ by setting
R(T) = @(a(T) T)+@(av(T) T)*
The associated radius to the collection /£ is not necessarily admissible.

THEOREM 3.1. Let R be a bundle such that
Dsa— R, (A)e B(H)

is harmonic in D for each Ae B(H). Let A = A, be the collection of
operators associated to the bundle R. Let T be a contraction of class C, with
w(T) =0, u an inner function, and let f € A(D). Assume that for any o € D
there exist a function g, such that for any r >0

R(f(T)/r)=g.(f(T)/r)+&.(f(T)/r)*

and

R,(f(Sw) /1) =g, (f(SW)/r)+&.(f(Sw))/r)*.

Then we have

Wy (f(T)) < 0y (f(S(w)).

Recall that S(u) is unitarily equivalent to the extremal operator
S* | Ker(u(S)™).

For the proof of Theorem 3.1, we need the following lemma which will
be also used in Section 5.

LemMA 3.2. Let u be a inner function and let f be a positive function in
the subspace @H ; of L'(T). Then there exists a function h in H*> © uH?* such
that f = |h)*

Proof. Since f eiH, we have f =iif,, with f, € H;. Then log |f| =
log | fi| is Lebesgue integrable. According to theorem of Hoffman [Ho]
there exists an outer function g in H? such that f =|g|>. Denote by
E = H(u) the orthogonal in H? of the subspace uH? and write g = g, +ug,
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with respect to the orthogonal decomposition H?>=E @ uH?. We have
g, # 0 since g is an outer function. Using the fact that g, € E, we obtain

— 2n . - . —_—
Cugr | By = [ ue) g1(e™) h(e") dm(r) = g, [uhy =0,
for all functions / in H?2. Using the theorem of F. and M. Riesz [Ho] we
get
ug, e H;. (3.1)
On the other hand, we have

uf =ulgl*=ulg, +ug|’

= u(g, +ug,)(g +ug,)
|2

=ulg|"+u |g2|2+g1§+uzﬁg2.

Therefore
88 = (g +ug) & =ulgl’+88 =uf —ulg |’ —u’g 8.

Since f € iH, and using (3.1), we see that the three last terms belong to
H}. Hence gg, € H} and for any polynomial p we have

2n . . -
<pgley=| " ple") g(e") g:(e") dm(1) = 0.
Since g is an outer function, it follows that g, = 0. The proof of the lemma
is now complete. ||

Proof (of Theorem 3.1). By the canonical factorization theorem, u can
be decomposed as

me 4z

u(z) = B(z) exp [ —jo

du(6) ]

e?—z

where B is a Blaschke product and u is a positive measure on 0D which is
singular with respect to the Lebesgue measure. Using the spectral mapping
theorem of a C; operator, we have

o(T) = B~{0} U Supp(u) = 6(S(u)),

where Supp(u) is the support of u.
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Let f be a non-identically zero function in 4(D). Using the spectral
mapping theorem, we get

o(f(T)) = f(a(T)) = f(a(Sw))) = a(f(S(w))). (3.2

Fix r > @, (f(S(w))) and let « € D0, 1/(r || fllo)), o # 0. We deduce from
(3.2) that r/a belongs to the resolvent of 7. Therefore, for any x € H and

every o in D(0, 1/(r |fll.)), we can write
(o (572 (7)1 10)
r r
_ <[<I—af(T)*>_1+<I—o‘c@>_l_2I+ga <@>
r ¥ ¥
+g, <f(rT)>*} x| x>.

Recall that for any absolutely continuous contraction 7 and for any
x,ye H, the function (K, ,(T)x|y) converge almost everywhere to a
function x ¥ y € L'(dD) when r goes to 1. Since T is a C, contraction such
that w(T)=0, it follows [CCC, Lemma 5.2] that x * xe&H}. From
Lemma 3.2 we get the existence of a function 4 in H*> © uH?* = E such that
x 7 x(e™) = |h(e™)|>. We obtain

(6 (2) 1 (42) )

2n 1 1
= nt ——2
fo 1_o_cf(e ) 1_ch(e")
r r

+g. <J{(Teh)>+ga <@> x 7 x(e™) dm(t)

2n 1 1
= it + — -2
f" PrAGS) ACe)

r

r

+ga <f(:it)>+ga <f(eit)> Ih(eit)lz dm(t)

r
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- <[(1—aﬂ%“)*>_l+<1—a@>_l—2]
(52 (5 o)
(e (5 (5 )

Since both sides of the previous equalities are harmonic inside the unit
disc (with respect to the variable a) and coincide inside the disc
D@0, 1/(r |flls)), we get that for any « in the unit disc

(5 (pn(D)r]os) s
(5 ()n(S)af)

coincide. As r> w,(f(S,)), we get the positivity of (3.3). We obtain
r> w,(f(T)) and the proof is now complete. ||

and

4. APPLICATIONS OF THE PREVIOUS RESULTS

We show in this section how the above constrained von Neumann
inequalities can be applied in a variety of situations. We are not always
looking for the most possible general inequalities.

Applications of Theorem 2.2. We denote by [x] the integer part of x,
that is the least integer no greater than x.

COROLLARY 4.1. Let n=2. Let T € #(H) be a contraction such that
T"=0. Then, for each p > 0 and each analytic polynomial p, we have

@,(p(T)) < w,(p(Sy)).

In particular, for any m we have

w,(T™) < cos

m, k(m,n):z[n;ll].
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Proof. Let r <1 be a positive number. Let # be H? in Theorem 2.2.
Then Theorem 2.2, (ii), applied with rT instead of T, g(z) =z" and w = w,,,
gives

w,(p(rT)) < w,(p(S))

Make now r tends to 1.

For the proof of the last part note that a majorant of the left-hand side
will be @,(S3™). But S¥™ is unitarily equivalent to an orthogonal sum of
shifts of smaller dimension, the largest dimension being k(m, n) + 1. There-
fore ,(S,™) = ,(Skem, n+1) is equal to cos 55— The same computation
follows from [GR, page 120]. |

Remark 4.1. The inequality w,(T") < cos(n/(k(m,n)+2)) can be
deduced from the inequality (0.3) of Haagerup and de la Harpe. Indeed,
k=k(m,n)=[%"] implies that mk+m>n—1 and thus (T™")**'=0.
Apply the Haagerup—de la Harpe inequality for 7.

In the general case, if p(z) =ay+a,z+ --- +a,_,;z"" ! is a polynomial of
degree less or equal than n—1, then p(S}) is the following triangular
Toeplitz matrix

a a a - a4y
Q a0 Ay

S*y =
p(S,) = a, - 43
a

Recall that we have the following reciprocity law of Ando and Nishio:

w,(T) = <3—1>w2_,,(T).
p

This shows that computations of w, for 0 < p <1 follows from computa-
tions for 1 < p < 2. Using interpolation properties of w, (see [FH, p. 296]),
the law of Ando and Nishio, Corollary 4.1 and a result from [E, Lemma
57 concerning the numerical range of Toeplitz matrices we get the next
result.

COROLLARY 4.2. Let n=2. Let T e #(H) be a contraction such that
T"=0. Let p(z)=ay+a;z+ - +a, z""' be an analytic polynomial of
degree at most n—1. We have

2 .
(7)< (=1 )l Lint supllp(O): € €, {77 = e}
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ifpe]0,1], and

@, (p(T) <Pl [inf sup {p(O)): & €, (" =e}]!

ifpell, 2]

We refer to the proof of Theorem 5.3 for a better estimate of w,(p(S¥))
for polynomials of the form p(z) = z¥+e”z' ; this yields (Theorem 6.2) an
estimate for w,(T*+T").

If the polynomial g of degree d is given by

q(z) =by+byz+ - +b,z",
then Ker(g(S™)) consists of all sequences ( y,) € ¢, satisfying

biyivatbi1Yrsa1t by, =0

for r=0,1, 2, .... This linear recurrence has a d-dimensional solution space
and if all the zeros of ¢ have modulus less than one then all solutions lie in
£,. In this case Ker(q(S*)) has dimension d.

We refer to [PY] for the matrix of $*| Ker(g(S™)) with respect to some
orthonormal basis of Ker(g(S*)) and, for instance, to [GR] and the refer-
ences therein for a discussion on how the numerical radius of a matrix can
be estimated /computed.

Recall [Al] that T e (H) is called a 2-hypercontraction if

I-T*T >0 and I-2T*T+T*T*>0.

CoRrROLLARY 4.3. Let T € #(H) be a nilpotent 2-hypercontraction with
T"=0,n=2. Then

w,(p(T)) < w,(p(B}))

for all p > 0 and all polynomials p. Here B € (C") is given by the matrix

1
0 f5 0 0 0
h
= 0 0
3
B =
0 0 0 "
n+1
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Proof. Let r<1 be a fixed positive real number. Consider # = L2(D)
the Bergman space of all analytic functions on D satisfying

1 .
117 = [ 1f e dat < oo,

where dA is the area Lebesgue measure. In this case C(w,z)=
(1—2wz+w?z?)"! and # is a D-space satisfying axiom (AEM) with
Vi (z2)=/j+1z and f,(w,z)=(m+1)w"z"—mw™*'z7*'. Then Z* is
unitarily equivalent to the Bergman shift B* where B is given by

Be, =, /;%; e, for a suitable orthonormal basis (e,).
We have ||rT|| < 1, (rT)™ — 0 strongly and also [A1]

I-2(0T)* (¢ T)+(GT)Y** (rT)*=0.

It follows from [AEM, Example 2] that rT satisfies condition (ii) of
Theorem 2.1. It follows from Theorem 2.2 that

w,(p(rT)) < w,(p(B})),

since B} is unitarily equivalent to B*| Ker(B*"). This holds for all r < 1; it
also holds forr=1. |

The numerical radius of B can be expressed [S] in terms of the smallest
positive root of a polynomial involving circularly symmetric functions.
To give a flavor of what can be done, we prove here the following
inequalities.

COROLLARY 4.4. Suppose T e B(H) satisfies |T| <1, T*°=0 and
I-2T*T+T**T*> 0. Then

0(T) <% ad  o,(T)< /5
and these constants are the best possible ones.
Proof. We have to compute w,(B}) and w,(B}*) for n= 3. This can be

done using [S] or in the following (equivalent) way. Consider the symme-
tric n X n matrix
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1
0 5 0 0 0
1 h
S S = 0 0
2 3

A4 =B*+B, =
0 0 0 0 n

n+1
0 0 0 " 0
n+1

Let 6 be a real number. If D(0) denotes the diagonal matrix with e,
j=1, ..., n, on the main diagonal, then we have D(0)* (¢”B,+e~""B*) D(0)
= A,. Recall that

©,(T) = L sup [T +e~T*.

feR

Therefore

w,(B}) =3 sup [le”B, +e "B,

feR

=3 sup [|D(0)* (e”B, +e~"B}) D(O)

feR

= 1l4,l.

Since 1 4, is hermitian, its norm coincides with its largest eigenvalue. For
n =3 it is equal to ./7/24. In a similar way, the numerical radius of B} is
the spectral radius of } (BY + B3), thatis \/1/12. |

Note that the inequality
w,(T?) < /5 =0.2886...
is an improvement of the inequality
0y (T?) < ,(T)* < 4 =0.2916....

Inequalities for n-tuples of operators. Theorem 2.2 can be applied also
for n-tuples of commuting operators T'=(7},...,7,)e #(H)", n=1. In
fact, anytime we dispose of a model operator, the techniques of Section 2
can be used to obtain constrained von Neumann inequalities. We give only
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one example using the model of Vasilescu [V]. It corresponds, using the
notation of Section 2, to the domain

D={zeC”:Zcﬁ |zj|2<1,l<i<m}.
j

This generalizes previous models for the unit ball in C” and for the unit
polydisc (cf . the references in [V]).

Let m > 1 be a fixed integer. Let p=(p,, .., p,,) be a family of complex
polynomials

pi(z)=1—cyzy— -+ —Cpz,,

forj=1,...,m,z=(z, ..., z,) € C"such that

¢; = 0 for all indices j and k;
* for every ke {1, ..., n} there is j € {1, ..., m} such that ¢; #0;
* p; isidentical 1 for no indice j.

The case
pi(z)=1—z 1<j<n,
corresponds to the unit polydisc in C”, while
n@@)=1-z,—- —2z,

corresponds to the unit ball.
Ify = (yla cees Vm) € Z'_:l, we set

') =p(@)" - p.(2)"  (zeC").
Define

Vrj= Y cuMy, j=1,...,m,
k=1
and V; = (V3, ..., V7 ). Define
A;‘ = (I_I/}"l)y1 . '(I—VT,m)y”‘ (IH):

where I is the identity on H and I = I, is the identity on %(H). Let
y=(1,...,1). We say [V] that T € #(H)" satisfies the positivity condition
(p, y)if

A5>0, forallp, 0<B<y.
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We denote by S»? e B(¢,(Z", C)) the backwards multishift of type (p,y)
as defined in [ V] (in fact, S ? ® I} is the model there).

COROLLARY 4.5. Suppose, with notation as above, that y > (1, ..., 1). Let
T € B(H)" be a n-tuple of commuting operators satisfying the positivity con-
dition (p,y) and the constraint q(T) =0 for a fixed polynomial q in n
variables. Then, for any admissible radius w and any polynomial f in n
variables, we have

o(f(T)) < o(f(SP7)| Ker g(ST7))).

Proof. Letre]0,1[. It was proved in [V, Proposition 3.15] that rT is
unitarily equivalent to the restriction of S»” ® I, to an invariant sub-
space. Using the admissibility of w, the fact that ¢(7") =0, and making
r — 1 at the end, we obtain the desired inequality. ||

A proof of the above corollary can be given using directly Theorem 2.2
(cf. Example (5) in [AEM]). The unconstrained von Neumann inequality
in this case, for the operator norm, is [ V, Proposition 3.15].

Applications of Theorem 2.3. The following result is obtained from
Theorem 2.3 in the classical case # = H>.

COROLLARY 4.6. Let T € #(H) be a Hilbert space contraction such that
Q(T*, T) =0 for a given Q € P(C) of degree d with Q(e™, ") # 0 for some
t € R. Then there exists an invariant subspace E for the backward shift S* on
H? such that

w,(P(T*, T)) < 0,(P(Sg, S%))

for all pe]0,2] and all Pe P(C). Here Sy #(E) is the adjoint of
Sy =S*|E.

It follows from the proof of Theorem 2.3 that the space E in the above
corollary is given by E = Ker S*Q(S, S*). The following is a possible
application.

COROLLARY 4.7. Let m>=n=>=1 be two positive integers. Let T € #(H)
be a contraction and suppose that T*" =T". Let p € 10, 2] and let P € P(C).
Then

@, (P(T*, T)) < @,(P(Spsns Spin))s
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in particular,

T

@,(T") < cos [(m+n—1)/1]+2

foralll withl1 <I<m+n—1.

Proof. Set Q(w,z) =w™"—z". We have Q(e™™, e") # 0 for some e R.
Note that S on H? is unitarily equivalent to the forward shift on S on £,.
We have $*"Q(S, $*) = I —S$*™*"_Then E = Ker $*"Q(S, S*) is given by

E={(hy, hy,....;h,_y, ho, by, ...;h,_y, By, ...): by € C for 0 <k < p},

s fp—1> s Mp—1»

where p =m+n. Thus S% =S| E is unitarily equivalent to $7*. Since w,
is strongly admissible for p < 2, we obtain

COP(P(T*, T)) < wp(P(Sm+m S;kn+n))

The second inequality is obtained for P(w, z) =z'. ||

Applications of Theorem 3.1. Theorem 3.1 can be applied for instance
to bundles of the following type. Let (p,),so be a sequence of polynomials
which is uniformly bounded on the closed unit disc. Suppose v: Z(H) —
[0, oo is such that o(T") |T|| < 1. Let % be a non trivial ultrafilter on Z,.
For any a € D and any T € #(H), set

R(T)=1lim [p,(o(T) T)+p,(v(T) T)*].

Denote # = A, the collection of operators associated to the previous
defined bundle R. Let w, be the associated operator radius. With these
notations and using Theorem 3.1, we obtain the following result.

COROLLARY 4.8. Assume that u is a finite Blaschke product. Suppose
that T is a C, contraction such that u(T) =0 and v(T) =v(S,). Then, with
notation as above,

0y (f(T)) < 0y (f(S(w)))

for each f € A(D).
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5. BOUNDS OF COEFFICIENTS OF POSITIVE
RATIONAL FUNCTIONS

There are many classical inequalities for coefficients of (positive) trigo-
nometric polynomials. The next result shows the links between the numer-
ical radius of the extremal operator in the constrained von Neumann
inequalities and the Taylor coefficients of rational functions positive on T.

THEOREM 5.1. Let F = P/Q be a rational function with no principal part
and which is positive on the torus. Then the Taylor coefficient c, of order k
satisfies the following inequality

el < co, (Rk),

where R = S™* | Ker(Q(S™)).

Proof. First, observe that by continuity we may assume that F
is strictly positive on the torus. Let F=P/Q be a rational function
without principal part, that is we have d°(P) <d°(Q) for the degrees.
Assume that F(z) >0 for every ze T. Denote by S, ..., B, the zeros of
Q which are contained in the open unit disc D and write Q(z) =
(z—B)"...(z— B,)% Q,(z), where Q, has no zero in D. Consider the func-
tion G(z) = F(1/Z) which is analytic, except at a finite set of complex
numbers. Since F is real on the torus, we have G(e”) = F(e") = F(e") for
every t€R. The analytic extension principle implies that F(z) = G(z)
except for a finite set in C. Thus F(z) can be written in the following way

P(z)
0,(2) Q,(2)’

where Q,(z) =(z—B)"...(z—B,)% and Q,(z) =(1—pz)"...(1-B,z)%.
Because of the condition F(z) = F(1/Z), we have P(z) =z*P(1/z) where
d=d +---+d,=d(Q)/2. If P(x)=0, with a#0, then necessarily
P(1/&) = 0. Therefore P can be written as

F(z)=

P(z)=cz™(z—o;)™..(z—a,)™(1 = z)™...(1 —a,z)™
with a suitable constant c. We have d = m, + --- +m,. Finally, we get

2

Py(e")
0,(e")

F(e")=c
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with d°(P,) <d’(Q,) and ¢ > 0. Note that

Pi(z) _ < Ay, i
0:(2) _kzz:l i=1 (I_sz)i

for some g, ; € C. It follows that P,(z)/Q,(z) € E := H*> © bH?, where b is
the associated Blaschke product defined by

b(z) = [1 < 2% >m

=1 \1—%z

It follows from Lemma 3.2 that we have F = |f|* with a suitable f € E.
Denote by R the restriction of the backward shift S* to the invariant
subspace Ker Q(S)*. Then, for any integer k, we get

lex| = |<ka | Ol< wz(Rk) ||f||§ = wz(Rk) IFll, = wz(Rk) Co-
This ends the proof. ||

Setting O(z) = z"~! in the previous theorem, and using previous compu-
tations of the numerical radii, we obtain the following classical inequality
due to Egervary and Szazs (1927). The bound for ¢, is due to Fejer (1915).

CorOLLARY 5.2 (Egervary-Szazs). Let P(e")=37_!,. cie” be a
positive trigonometric polynomial (n>=2). Then

T
n—1
— |42
7]
Remark 5.1. We note the amuzing consequence that Fejer’s inequality
for |¢,| implies, via operator inequalities, the Egervary—Szazs inequality.
Indeed, by [HH], Fejer’s inequality implies the Haagerup—de la Harpe

inequality (0.3). By Remark 4.1 this implies a bound for w,(7™), which in
turn implies, as in [HH], the Egervary—Szazs inequality.

cx] < ¢ cos for 1<k<n-—1.

The next result gives estimates involving two coefficients of a positive
trigonometric polynomial.

THEOREM 5.3. Let P(e")=37_',, c;e” be a positive trigonometric
polynomial (n>=2). Then, for every distinct numbers k and | among

{0; ..., n—1}, there exists y € R such that

|ck| + |c1| < cowz(SI; +ein2).
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In particular, we have

1/2 1/2

V3 T
e l+cos ———
n=ll,, i

k+1 lk—1|
Proof. We can assume that ¢, = 1. Since P is positive, we have P = |Q|?

for some Q € C,_;[ X], the space of all polynomials of degree less or equal
to n—1. For any k, /, there exists y such that

leel +lei|l < ¢ | 14cos

. 2n . . .
el = el =| [ (4+64007) [0(e ) (@)
0

We deduce from the equality ||Q|, = ¢, = 1 that
leel +lei| < (S5 +€7S).

Denote M = w,(S* +¢”S"). We have

o2 . ;
M= sup sup Ree™ [ (e¥+e ") [R(e™)| dm(0)
0

IRl <1 aeR

=2 sup sup [ cos( [(k+1) 0-+7+2a1) cost [(k—D) 6—)])

IRz <1 aeR

x |R(e™)|? dm(8)

74 1/2
<2 < sup sup j: cos’(3 [(k+1) 0+y+2a]) [R(e™)|? dm(0)>

IRl <1 aeR

2n . 1/2

x( sup cos’ G [(k—1) 0—y]) |R(e™)|? dm(H)) .
IRl <1 <0

Let R be in C,_,[X] with |R|, < L. Since L(e") = R(e' *~"#7)) is also in

C,_:[X] and of norm less or equal to one, we obtain, using the rotation

invariance of the Haar measure, that

sup sup j:" cos? (% [(k+1) 0+V+20c]> |R(e™)|> dm(6)

aeR [Rlx<1

— sup j:" cos? <<¥> z) \L(e™)[> dm(B)

1Ll <1

1 1 4 . 1
=5ty sup [ cos((k+D) 1) L") dm(®) = 5 (1+ s (SE™)).
2 2y,<rdo 2
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In a similar way

sup f:n cos?(L [(k+1) 0—71) |R(™)> dm(0) =1 (1 +w,(S*)).

IRl <1

Finally, we obtain

el el </ T+, (SET) /14, (SE).
Since w,(S}) = cos(;—17,772)> We get the desired result. ||

Remark 5.2. (a) For I =0 we reobtain the Egervary—Szazs inequality.
(b) When k+!>n—1, we get from Theorem 5.3 that

n
n—1
— |42
[ 1] ]*
In particular, if n > 4, we obtain

ey +leq—1] < ¢ iV 3/2.

This estimate is better than that one obtained by applying twice the
Egervary-Szazs inequality.

1/2
leel + el < ¢ | 1+cos

(c) In some particular cases, it is possible to compute exactly the
numerical radius M = ,(S* +¢"S’). Suppose n =9, k=3, [ = 7. It follows
from [DH] that M = cos(x/10) if y = 0. The method from [DH] does not
seem to apply for an arbitrary y.

6. OTHER TYPE OF CONSTRAINTS

The constraints until now were of algebraic type (¢(T)=0 or
O(T*, T) = 0). We discuss briefly constraints of different nature.

Some positivity conditions. We discuss constrained von Neumann
inequalities for the numerical radius w, of an operator satisfying some
positivity conditions R,(T*, T) =0 for Ae T.

ProrosiTION 6.1. Let n>=2 be a positive integer and let p,,
0<k<n—1, be n positive reals with py=1. Let T € #(H) be an operator
such that R,(T*,T) = 0 for Ae T, where

n—1 Ak n—1 Zk
Ry 2) =14 T ~owtt 5 G T), 6.1)
k= k= k

1 Pk 1
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Then

,(T™) < p,, cOS

T
1
[z——}+2
m

Proof. Let he H be a norm-one vector and let 6 € R. Set

foreachme {1,2,..,n—1}.

1 : if k=0

1
—LT*n|hy : if k>0
Pk

Ck=

1
— | THRY ¢ if k<O
P

and
n—1
LO)= Y e

k=—-n+1

Then ¢, is a positive trigonometric polynomial since

tn(e) = <Rexp(it)(T*5 T) h | h>

According to the Egervary—Szazs inequality, we have

1

— KT | W] = ey | < cos | ——=—
n_

Pom [ ]+2

which gives the desired inequality. ||

If p, =1, for each k <n—1, then R,(T*, T) in Equation (6.1) are the nth
sections of the operator kernel K, (7).
In fact, the following more general result holds.

THEOREM 6.2. Let n = 2 be a positive integer and let p,, 0 <k <n—1, be
n positive reals with p,=1. Let T € B(H) be an operator such that
R, (T*,T)=0 for AcT, where R,(w, z) are given by (6.1). Then, for any
strongly admissible radius v and any m € {0, 2, ..., n—1}, we have

V(T™) < pu¥(S,")-
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Moreover, if m and | are distinct numbers among {0; ...,n—1} and if addi-
tionally p,, = p,, then

V(T +T') < p,v(S7" +S7).

In particular, we have

wp(T’”+T’)
2 T 32 12
S(/—)—l)Z”pm 1+cosT 1 +cos 1
— |+2
[m+l]+ [|m—1|}+
if pe ]0,1], and
n =a n ot
COp(Tm+Tl) Szzi‘upfnﬁl 1+COSnT 1+COST
— |42 — [+2
[m+l]+ [|m—l|}+

ifpe]l,2].

Its proof follows from Theorem 5.3, interpolation properties of w, (see
[FH, p. 296]) and the following generalization of a result of Arveson
(obtained in [Ar] for p, =1, k> 1).

THEOREM 6.3. Let T € #(H) be a contraction and let n = 2. Suppose T
satisfies R,(T*, T) =0 for all 1€ T, where R,(w, z) are given by (6.1). Then
there is a Hilbert space K > H and a nilpotent contraction N € #(K) such
that N"=0, N is unitarily equivalent to S*?, d finite or oo, and
T'=p;PyN’|H for j=0,1,....,n—1.

Proof. The idea of the proof is that of [Ar] and some details will be
omitted below. Define a linear map ¢ from span{S;’:0<j<n—1} onto
span{;-T’:0<j<n—1} by o(S)/) = - T’ and by linearity. Define the map
y: C(T) — B(H) by

1 2= . N
V() =5 [ 1) Rogio(T*.T) d.

It is a positive linear map. Note that y(z/) = 1 T/ for j=0,1,...,n—1 and
Y(z’) =0 for j=n, where z(f) =6. It is known that a positive linear map
on a commutative C*-algebra is completely positive and a completely posi-
tive map which preserves the identity is completely contractive [Pa]. The
restriction ¥, of Y on the disc algebra (the closed linear span in C(T) of
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1,z 2% ..) is a completely contractive linear map such that y,(z/) = 1 T i
for j= 0 1,...,n—1 and y,(z’) =0 for j=n. It vanishes on the 1deal z"A
and thus it 1nduces a completely contractive linear map ,, of the quotient
A/z"A into #(H). It was proved in [Ar] that u(S¥) =z/+z"4 defines a
completely isometric linear map of span{I, Sy, ..., S;"~'} onto A/z"A. The
original map ¢ = Yy u is thus completely contractive. Since ¢p(I) =1, ¢ has
[Pa] a completely positive extension to C*(S})= %(C"). Stinespring’s
theorem [Pa] furnishes then a unital C*-representation z. Then N = n(S})
gives, as in [ Ar], the desired representation. ||

In the case p, =1 for all &, studied in [Ar], the converse of Theorem 6.3
also holds. Also, an operator T satisfies

n—1

I+2Re Y T*>0, foreach zeT,

k=1
if and only if [Ar]
2Re(I —zT)*z"T"<I-T*T, foreach zeT.

In particular this holds if T satisfies 7" =0 and I —T*T > 0.

Stability of the algebraic constraints. In what follows & > 0 is supposed
to be a (fixed) small positive number. We study what happens if the
constraint ¢(7') = 0 is replaced by ||¢(T)| < e.

PrROPOSITION 6.4. Let q be a polynomial. For each ¢>0 there exists
0 > 0 such that every contraction T € B(H) with ||q(T )| < 9 satisfies

0,(T) <e+w,(S*| Ker q(S¥))

for every p e 10, 2].

Proof. By [He, Corollary 2.22], for every & > 0 there is § > 0 such that,
if |T|| <1 and ||g(T)|| < J, then there exists T’ € #(H) such that ¢(7") =0
and |7 —T"|| < &. Note also that @, is a norm for p < 2. We thus have

w,(T) <0, (T-T")+w,(T")
<IT=T'+o,(T")
<

e+w,(S*| Ker g(S*)).

The proof is complete. ||
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It was proved in [He, Theorem 2.21] that if ||T]| <1 and ||T"|| < ¢, then

there exists T’ € #(H) such that 7" =0 and |T —T"'|| < J,(¢), where J,(¢) is
defined inductively by

6,(e) = (2¢)'? and 0c(e) = {e+ [0 1((k—1) \/;)]2}1/2'
This implies that if |T]| < 1 and ||T"|| < ¢ then

v/
T)<
w,(T) cos<n+

1>+5,,(8).

Note that lim, _,, d,(¢) = 0.
The following result gives a better bound for small & we obtain the
Haagerup-de la Harpe inequality for ¢ — 0.

THEOREM 6.5. Let n>=2 be a positive integer. Suppose T € B(H) is a
contraction satisfying |T"|| < ¢ and

Y NTH < +oo.

k>n+1

Then

T b4 3 4 V4 1/3 e 2/3
<
@ )\Cos(n+1>+ [”COS 2(n+1)] <n+1>
7 e \¥3

33 —_— .
+1>+ \/;Z<n+l>

The proof uses the following epsilonized Fejer inequality. Note that an
epsilonized version of the Egervary-Szazs inequality can be proved along
the same lines.

<cos<
n

LemMA 6.6 (The epsilonized Fejer inequality). Let h be a positive
function,

o)=Y c,e™,

meZ

such that Y. ,,.7 |c..| < oo with cy =1 and |c,| < & for k = n. Then

le] < cos [ —— )+3 | mcost —~ P\
e n+1 2(n+1) n+1) -
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Proof. The following result has been proved in [J, Example 4(a)]: Let
f be the Fourier transform of a non-negative integrable function ¢:

f(x)= jf; ™ (1) dt.

Let u > 0 and suppose that f(0) = 1 and | f(ku)| < ¢ for k = n. Then

n . n 1/3 e 2/3
|f(u)|<cos<n+—1>+3[ncos 2(n+1)] <n+1> .

This is a generalization of a result due to Boas and Kac [BK] for band-
limited functions.

Set now ¢(¢) = h(—t), t e[ — =, n]. Consider f the Fourier transform of
@. Then f(0)=c, =1, f(k)=c, and thus |f(k)|<e for k=n+1. We can
now apply [J]withu=1. |

Proof (of Theorem 6.5). The proof is similar to the proof of Proposi-
tion 6.1. By replacing eventually T by T, 0 <r < 1, it is possible to assume
that the spectrum of 7 is contained in D. For each norm-one vector 4 € H
and 0 € R, set

1 : if k=0
ci(=c,(h)={ T*h|k) : if k>0
| TWRYy @ if k<O

and

o)=Y ce™.

kez

Then Y.z |¢,.| < oo. Note also that
M) = <Kepiny(T) k| 1)
and the operator kernel
Kepiny(T) = I=e"TH ' I-T*TYT—e™T)™!

is positive since 7 is a contraction. We use now the epsilonized Fejer
inequality. |
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COROLLARY 6.7. Let n and m be two positive integers such that

m=nz=2. Suppose T € B(H) is a contraction satisfying |T"|<e and
T"=0. Then

. T T e \*3
a)z(T)smm[cos <m—+1>;cos <n+l>+3 3\/7;<n+1> }

ACKNOWLEDGMENT

This paper was written during several visits of the authors to the Mathematical Departe-
ments of Universities of Lille and Lyon. We wish to thank both institutions for their help.

REFERENCES

[A1] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equations
Oper. Theory 5 (1982), 608-631.

[A2] J. Agler, An abstract approach to model theory, in “Surveys of Some Recent Results
in Operator Theory” (J. B. Conway, B. B. Morrel, Eds.), Vol. II, pp. 1-23, Longman
Sci. Tech., Harlow, 1988.

[AEM] C. Ambrozie, M. Engli§, and V. Miiller, Operator tuples and analytic models over
general domains in C”, J. Operator Theory, in press.

[AN] T. Ando and K. Nishio, Convexity properties of operator radii associated with
unitary p-dilations, Michigan Math. J. 20 (1973), 303-307.

[Ar] W. Arveson, Subalgebras of C*-algebras I, II, Acta Math. 123 (1969), 141-224; Acta
Math. 128 (1972), 271-308.

[BK] R.P.Boas, Jr. and M. Kac, Inequalities for Fourier transforms of positive functions,
Duke Math. J. 12 (1945), 189-206.

[CCC] G. Cassier, I. Chalendar, and B. Chevreau, New examples of contractions illustrating
membership and non membership in the class 4, ,,, Acta Sci. Math (Szeged) 64
(1998), 701-731.

[CF] G. Cassier and T. Fack, Contractions in von Neumann algebras, J. Funct. Anal. 135
(1996), 297-338.

[DH] K. R. Davidson and J. A. R. Holbrook, Numerical radii of zero-one matrices,
Michigan Math. J. 35 (1988), 261-267.

[E] M. Eiermann, Fields of values and iterative methods, Linear Algebra Appl. 180
(1993), 167-197.

[FH] C.-K. Fong and J. A. R. Holbrook, Unitarily invariant operator norms, Canad.
J. Math. 35 (1983), 274-299.

[GR] K. E. Gustafson and D. K. M. Rao, “Numerical Range,” Springer-Verlag, New
York, 1997.

[HH] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a
Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371-379.

[H] P. R. Halmos, “A Hilbert Space Problem Book,” 2nd ed., Springer-Verlag, New
York, 1982.

[He] D. A. Herrero, “Approximation of Hilbert Space Operators,” Vol. I, 2nd ed.,
Longman, Harlowe, 1989.



[Ho]
]

[vN]
[Pa]
[Po]
[P1]
[P2]

[P3]
[PY]

[R]

[Su]
[S]

[N]
[NF]
[Vl

(W]
[Wu]

CONSTRAINED VON NEUMANN INEQUALITIES 297

K. Hoffman, “Banach Spaces of Analytic Functions,” Prentice-Hall, Englewood
Cliffs, NJ, 1962.

A. J. E. M. Janssen, More epsilonized bounds of the Boas-Kac-Lukosz type,
J. Fourier Anal. Appl. 1 (1994), 171-191.

J. von Neumann, Eine Spektraltheorie fiir allgemeine Operatoren eines unitiren
Raumes, Math. Nachr. 4 (1951), 258-281.

V. 1. Paulsen, “Completely Bounded Maps and Dilations,” Longman, Harlowe,
1986.

C. Pop, On a result of Haagerup and de la Harpe, Rev. Roumaine Math. Pures Appl.
43 (1998), 869-871.

V. Ptak, Rayon spectral, norme des itérés d’un opérateur et exposant critique, C. R.
Acad. Sci. Paris Ser. A 265 (1967), 257-259.

V. Ptak, Spectral radius, norms of iterates, and the critical exponent, Linear Algebra
Appl. 1 (1968), 245-260.

V. Ptak, A maximum problem for operators, Casopis Pest. Mat. 109 (1984), 168-193.
V. Ptak and N. J. Young, Functions of operators and the spectral radius, Linear
Algebra Appl. 29 (1980), 357-392.

A. Racz, Unitary skew-dilations (Romanian; English summary), Stud. Cerc. Mat. 26
(1974), 545-621.

C.-Y. Suen, W, contractions, Positivity 2 (1998), 301-310.

Q. F. Stout, The numerical range of a weighted shift, Proc. Amer. Math. Soc. 88
(1983), 495-502.

B. Sz-Nagy, Sur la norme des fonctions de certains opérateurs, Acta Math. Acad. Sci.
Hungar. 20 (1969), 331-334.

B. Sz-Nagy and C. Foias, “Analyse harmonique des opérateurs de l’espace de
Hilbert,” Masson et Akad. Kiado, Paris, 1967.

F.-H. Vasilescu, Positivity conditions and standard models for commuting multi-
operators, Contemp. Math. 185 (1995), 347-365.

J. P. Williams, Review of [P1], Math. Reviews 36, 3157.

P. Y. Wu, Unitary dilations and numerical ranges, J. Operator Theory 38 (1997),
25-42.



	0. INTRODUCTION
	1. ADMISSIBLE AND STRONGLY ADMISSIBLE OPERATOR RADII
	2. (CONSTRAINED) VON NEUMANN INEQUALITIES USING ANALYTIC MODELS
	3. INEQUALITIES FOR RADII ASSOCIATED TO BUNDLES OF OPERATORS
	4. APPLICATIONS OF THE PREVIOUS RESULTS
	5. BOUNDS OF COEFFICIENTS OF POSITIVE RATIONAL FUNCTIONS
	6. OTHER TYPE OF CONSTRAINTS
	ACKNOWLEDGMENT
	REFERENCES

