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SUMMARY

Panton-Valentine Leukocidin (PVL) is a staphylo-
coccal bicomponent pore-forming toxin linked to
severe invasive infections. Target-cell and species
specificity of PVL are poorly understood, and the
mechanism of action of this toxin in Staphylococcus
aureus virulence is controversial. Here, we identify
the human complement receptors C5aR and C5L2
as host targets of PVL, mediating both toxin binding
and cytotoxicity. Expression and interspecies varia-
tions of the C5aR determine cell and species speci-
ficity of PVL. The C5aR binding PVL component,
LukS-PV, is a potent inhibitor of C5a-induced
immune cell activation. These findings provide
insight into leukocidin function and staphylococcal
virulence and offer directions for future investiga-
tions into individual susceptibility to severe staphylo-
coccal disease.

INTRODUCTION

In the early 1930s, Panton and Valentine described a powerful

leukocidal toxin produced by multiple Staphylococcus aureus

isolates. This leukocidin, now known as Panton-Valentine leuko-

cidin (PVL), is cytotoxic to neutrophils and, to a lesser extent, to

monocytes and macrophages, but not to lymphocytes (Gaudu-

chon et al., 2001; Meyer et al., 2009; Panton and Valentine,

1932). PVL is a prophage-encoded, bicomponent, pore-forming

exotoxin comprising the protein subunits LukS-PV and LukF-PV

(Diep et al., 2006; Panton and Valentine, 1932). Initial binding of

LukS-PV to the surface of target cells, which is an essential step,

triggers secondary binding of LukF-PV (Colin et al., 1994). This

subsequently induces the assembly of lytic pore-forming

hetero-octamers (Jayasinghe and Bayley, 2005). At sublytic

concentrations, PVL enhances host responses by priming of

susceptible cells (Graves et al., 2012; Yoong and Pier, 2012).

The in vitro susceptibility of neutrophils to PVL differs consider-

ably among mammalian species (Hongo et al., 2009; Löffler
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et al., 2010; Olsen et al., 2010). While human and rabbit neutro-

phils are highly susceptible,murine andmacaque neutrophils are

resistant to PVL. Themolecular basis for the selectivity of PVL for

certain cell types and species is not understood, although the

involvement of a myeloid-specific receptor has been suggested

(Gauduchon et al., 2001).

S. aureuscauses variousdiseases ranging fromsuperficial skin

andsoft tissue infections (SSTI) to severe invasivedisease (DeLeo

et al., 2010). In the 1990s, methicillin-resistant S. aureus (MRSA)

was found to infect previously healthy individuals. Since then,

community-associated (CA) MRSA strains have rapidly emerged

worldwide (Vandenesch et al., 2003). The majority of CA-MRSA

isolates carry prophages with the genes encoding PVL, partially

due to the successful spread of the PVL-carrying clone USA300

in the United States (DeLeo et al., 2010; Vandenesch et al.,

2003). Based on epidemiological studies, noticeably those con-

ducted in countries with a low prevalence of CA-MRSA, PVL is

associated with skin and soft tissue infections (Shallcross et al.,

2013) and severe necrotizing pneumonia in otherwise healthy in-

dividuals (Gillet et al., 2002; Hidron et al., 2009; Lina et al., 1999).

However, the role of PVL is still under debate, partly due to the

difficulty of addressing this issue in experimental mice models

of disease (Bubeck Wardenburg et al., 2007; Labandeira-Rey

et al., 2007; Voyich et al., 2006). In rabbit models of necrotizing

pneumonia, PVL was recently confirmed to contribute to the

severity of disease (Diep et al., 2010).

Species specificity is a common characteristic of other

immune modulators secreted by staphylococci. This selectivity

can often be reduced to high-affinity protein-protein interactions,

depending on unique amino acid sequences of host targets

(Rooijakkers et al., 2005). The chemotaxis inhibitory protein of

S. aureus (CHIPS) targets the extracellular N terminus of the

human C5a receptor (C5aR, CD88), a seven-transmembrane

G protein-coupled receptor (GPCR) (Postma et al., 2005). C5a,

a powerful anaphylatoxin, is released during complement activa-

tion. Detection of invading bacteria by phagocytes via the C5aR

is considered one of the earliest innate recognition events

(Woodruff et al., 2011). By inhibiting the human C5aR,

CHIPS efficiently blocks neutrophil activation and recruitment

in vitro (de Haas et al., 2004). C5a is a ligand for another

seven-transmembrane receptor known as C5L2 (GPR77).
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Much of the function of the latter receptor remains elusive.

Although closely related to the C5aR, C5L2 is not coupled to a

G protein and therefore has no direct intracellular signaling activ-

ity (Monk et al., 2007).

Here, we report the identification of the human C5a receptors,

C5aR and C5L2, as receptors for LukS-PV and mediators of

PVL-induced cytotoxicity. We illustrate that expression and

interspecies variations of the C5a receptors drive cell and spe-

cies specificity of PVL toxicity.

RESULTS

LukS-PV Binds the Human C5aR and C5L2
Figure 1A confirms that LukS-PV binds to human neutrophils and

monocytes but not to lymphocytes (Colin et al., 1994; Gaudu-

chon et al., 2001; Jayasinghe and Bayley, 2005), suggesting

the involvement of a specific receptor. LukF-PV alone does not

bind to any of the cell populations (Colin et al., 1994). Both com-

ponents of PVL were tested for interference with the binding of

monoclonal antibodies directed toward 56 different receptors

on leukocytes as described earlier (Bardoel et al., 2012). Incuba-

tion of neutrophils and monocytes with LukS-PV specifically

decreased the binding of three antibodies recognizing different

epitopes of the human C5aR (Figure 1B), suggesting an interac-

tion between LukS-PV and this receptor. As expected, LukF-PV

alone did not inhibit the binding of any of the monoclonal anti-

bodies. No interference was observed for binding of antibodies

directed toward other receptors, as illustrated by the antibody

for an unrelated GPCR, CXCR2 (Figure 1B). Binding of LukS-PV

to neutrophils was inhibited by the ligand of the C5aR, C5a, and

by the staphylococcal C5aR antagonist CHIPS (de Haas et al.,

2004) (Figure 1C), further indicating an interaction between

LukS-PV and the C5a receptor.

To confirm the interaction between LukS-PV and theC5aR, we

tested LukS-PV binding to U937 promyelocytic cells stably

transfected with the human C5aR. LukS-PV specifically bound

to cells transfected with the human C5aR, but not to nontrans-

fected cells or cells stably transfected with CXCR2 (Figure 1D).

Since C5a is the ligand for the C5aR and the closely related

receptor C5L2, LukS-PV binding to human embryonic kidney

(HEK) cells stably transfected with the C5L2 was investigated.

Indeed, LukS-PV bound to C5L2 transfected cells (Figure 1D).

The half-maximal effective binding concentration of LukS-PV

was calculated to be 6.2 nM (SD ±5.1) for the C5aR-transfected

cells, 15.2 nM (SD ±6.2) for the C5L2-transfected cells, and

2.8 nM (SD ±1.2) for human neutrophils, without statistically

significant differences (Figure 1E).

As LukS-PV binding is mediated by both C5a receptors, we

evaluated relative receptor expression levels of the C5aR and

C5L2 on leukocyte populations freshly isolated from different

donors. Both receptors were present on neutrophils and mono-

cytes but not detectable on lymphocytes (Figure 1F). In agree-

ment with previous studies (Gao et al., 2005; Woodruff et al.,

2011), we found that the ratio of C5aR to C5L2 was 68 on neutro-

phils (SD ±18.1, p < 0.001) and 33 on monocytes (SD ±13.1,

p < 0.01). Thus, of both receptors, the C5aR will be most readily

available for LukS-PV. Relative receptor expression levels of the

C5aR on transfected cells used in this study were comparable to

neutrophils. The C5L2 on the transfected cells was expressed in
Cell H
relatively high amounts compared to neutrophils (Figure S1A

available online). The low level of C5L2 expression on neutrophils

indicates that binding of LukS-PV to neutrophils is mainly driven

by the C5aR.

Since the TLR2/CD14 receptor complex was recently reported

to be involved in PVL-induced lung inflammation in mice (Ziv-

kovic et al., 2011), we tested binding of LukS-PV to HEK cells

cotransfected with the human TLR2 and CD14. However, no

binding was observed (Figure S1B).

These data collectively demonstrate that LukS-PV binds both

the human C5a receptors C5aR and C5L2. Binding of LukS-PV

to neutrophils is mainly driven by the C5aR.

PVL-Induced Pore Formation Is Mediated by the Human
C5aR and C5L2
To evaluate whether binding of LukS-PV to the C5aR and C5L2

mediates cytotoxicity of target cells, we tested induction of cell

permeability using a membrane-impermeant fluorescent dye.

Only cells transfected with the C5aR or C5L2 were susceptible

to PVL-induced pore formation, while nontransfected cells or

cells transfected with the CXCR2 were fully resistant (Figures

2A and 2B). We confirmed C5a-receptor-mediated cytotoxicity

of PVL using crude bacterial supernatants of wild-type

S. aureus USA300-LAC, a common CA-MRSA isolate in the

United States, and its isogenic PVL mutant (luks/f-pv knockout)

strain (Voyich et al., 2006). Pore formation was observed when

supernatant of the wild-type bacterium was applied to C5aR-

and C5L2-transfected cells. No lysis was induced by culture

supernatant of the PVL-negative mutant strain (Figure 2C). Since

PMA-differentiated THP-1 macrophages are sensitive to PVL-

induced pore formation, we used small hairpin RNA (shRNA)-

mediated silencing of C5aR expression to study the effect on

PVL cytotoxicity. Silencing C5aR expression led to a strong

decrease in LukS-PV binding and a concomitant reduction of

PVL-induced pore formation in THP-1 macrophages (Figure 2D).

In line with the negative binding experiments of TLR2/CD14-

cotransfected cells, no pore formation was detected when PVL

was applied to these cells (Figure S1C).

If the C5aR is the major PVL receptor, C5aR competition

should interfere with toxicity. Indeed, pretreatment of human

neutrophils with C5a or CHIPS shifted the half-maximal effective

lytic concentration of PVL from 0.9 nM (SD ±0.2) for untreated

cells to 3.1 nM (SD ±0.6) for C5a-treated cells (p < 0.001) and

3.5 nM (SD ±1.0) for CHIPS-treated cells (p < 0.001). The staph-

ylococcal protein FLIPr-like, binding two unrelated GPCRs

expressed on neutrophils (Prat et al., 2009), did not influence

susceptibility of the cells (Figure 2E). However, because high

concentrations of CHIPS were needed to antagonize PVL-

induced pore formation (Figure S2A), we studied the expression

of both CHIPS and PVL in the culture supernatant of S. aureus

USA300-LAC (Figures S2B and S2C). In different broths, CHIPS

was produced in insufficient amounts to compete with PVL for

interaction with the C5aR (Figures S2C and S2D). The induction

of pore formation by various PVL-carrying clinical S. aureus iso-

lates was similar, irrespective of the presence of the gene encod-

ing CHIPS (Figure S2E). Antagonism of PVL by CHIPS under

physiological circumstances therefore seems unlikely.

Taken together, these data demonstrate that PVL uses

both the C5aR and C5L2 to induce pore formation. Since
ost & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier Inc. 585
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Figure 1. LukS-PV Binds the Human C5aR and C5L2

(A) LukS-PV (12 nM) binds human neutrophils and monocytes but not lymphocytes.

(B) Binding inhibition of different antibodies directed toward the human C5aR and CXCR2 by LukS-PV or LukF-PV (protein subunit concentrations, 313 nM).

(C) Binding competition of LukS-PV (60 nM) by C5a or CHIPS (600 nM) on neutrophils.

(D) LukS-PV (31 nM) binding to U937 and HEK cells.

(E) Concentration-dependent binding of LukS-PV to neutrophils and transfected cells, expressed in relation to maximal binding at 31 nM. The dashed line

indicates 50% of maximal fluorescence.

(F) Receptor expression levels on neutrophils as compared to isotype control, quantified by calibration to defined antibody binding capacity units. The dashed line

indicates the detection threshold. Bars represent SD, with n = 3. Statistical significance is displayed as *p < 0.05, **p < 0.01, or ***p < 0.001 using two-way ANOVA

with Bonferroni posttest correction for multiple comparison. Histograms depict a representative example. See also Figure S1.
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Figure 2. PVL-Induced Pore Formation Is Mediated by the Human C5aR and C5L2

(A and B) Pore formation in transfected U937 (A) and HEK (B) cells using different concentrations of PVL.

(C) PVL in bacterial supernatant induces C5aR- and C5L2-mediated lysis. Pore formation induced by 5% overnight CCY-based bacterial supernatant applied to

transfected U937 and HEK cells.

(D) Binding of LukS-PV (LukS-PV concentration 31 nM, line) to and pore formation (PVL concentration 2.8 nM, columns) in PMA-differentiated THP-1 cells

expressing different c5ar1-targeting shRNA, with relative C5aR mRNA expression levels as determined by quantitative RT-PCR. Binding of LukS-PV expressed

as maximal binding to cells transduced with an empty construct.

(E) Pore formation inhibition in neutrophils by C5a (100 nM), CHIPS (710 nM), or FLIPr-like (833 nM). The dashed line indicates 50% permeable cells. Permeable

cells are PI or DAPI positive. Bars express SD, with n = 3. Statistical significance is displayed as **p < 0.01 using Student’s t test. See also Figure S2.
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the C5aR is most abundantly present, antagonizing the

C5aR can protect human neutrophils against PVL-induced

pore formation.
Cell H
PVL-Induced Priming Is Mediated by the Human C5aR
Since sublytic concentrations of PVL were recently reported to

prime neutrophil responses (Graves et al., 2012; Yoong and
ost & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier Inc. 587
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Figure 3. PVL-Induced Priming of Neutrophils Is Mediated by the

Human C5aR

(A and B) Priming was antagonized by pretreatment of cells with 700 nM of the

specific C5aR antagonist CHIPS31–121. Shown in (A): oxidative burst of neu-

trophils induced by 1 mM fMLP after priming with 10 ng/ml TNF-a, 1 nM C5a,

and 0.25 to 1 nM PVL. Oxidative burst, detected by luminescence, is

expressed as relative area under the curve (AUC). Shown in (B) is a repre-

sentative example of C5aR-dependent priming by PVL. The oxidative burst is

expressed as relative light units (RLU) induced by an injection of 1 uM fMLP

(arrow) after priming cells with 1 nM PVL. Bars express SD, with n = 2–6.

Statistical significance is displayed as *p < 0.05 using Student’s t test.

Human
Neutro

Mouse
Neutro

Macaque
Neutro

  31 nM

   0 nM

LukS-PV

    3 nM

A

0
20
40
60
80

100

0 nM PVL
63 nM PVL

0
20
40
60
80

100

0
20
40
60
80

100

%
 P

er
m

ea
bl

e 
ce

lls

B

0
20
40
60
80

100

Binding LukS-PV

Rabbit
Neutro

C
ou

nt
s

Figure 4. PVL Shows Species Specificity for Both Binding to and

Pore Formation In Neutrophils

(A and B) LukS-PV binding to (A) and PVL-induced pore formation in (B) freshly

isolated human, mouse, macaque, and rabbit neutrophils. Permeable cells are

PI or DAPI positive. Bars express SD, with n = 2. Histograms depict a repre-

sentative example. See also Figure S3.
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Pier, 2012), we tested if the immune-activating properties of PVL

are mediated by the C5aR as well. Indeed, C5a, tumor necrosis

factor a (TNF-a), and low concentrations of PVL increased

the N-formyl-methionine-leucine-phenylalanine (fMLP)-induced

oxidative burst by neutrophils. Priming by C5a and PVL, but

not by TNF-a, was fully antagonized after preincubation of cells

with the specific C5aR antagonist CHIPS31–121 (Haas et al., 2005)

(Figures 3A and 3B). This shows that priming induced by sublytic

concentrations of PVL is mediated by the C5aR.

The C5aR Determines Species Specificity of PVL
Murine and macaque neutrophils do not bind LukS-PV and are

resistant to PVL-induced pore formation, while human and rabbit

neutrophils bind LukS-PV and are fully susceptible to PVL cyto-

toxicity (Figure 4) (Hongo et al., 2009; Löffler et al., 2010; Olsen

et al., 2010). All species tested showed expression of the C5aR
588 Cell Host & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier I
on the surface of neutrophils (Figure S3). Therefore, species

specificity of PVL could not be explained simply by the presence

or absence of the C5aR. Because of significant interspecies vari-

ation within the amino acid sequences of the C5aR, we tested

whether binding of LukS-PV to the C5aR could explain the pre-

viously observed species specificity of PVL (Hongo et al.,

2009; Löffler et al., 2010; Olsen et al., 2010). Cells transfected

with the murine or macaque C5aR showed no binding of LukS-

PV (Figure 5A) and were fully resistant to PVL-induced pore for-

mation (Figure 5B). However, cells expressing the rabbit C5aR

bound LukS-PV comparable to the human C5aR and were highly

susceptible to PVL-mediated pore formation. As murine and

macaque neutrophils are intrinsically resistant to PVL (Löffler

et al., 2010), the interaction of PVL with the C5L2 of both mam-

mals was not further studied. In summary, these experiments

show that interspecies variations of the C5aR determine species

specificity of PVL.

The C5aR Core Region Is Critical for PVL-Induced Pore
Formation
To evaluate which regions of the C5a receptors are targeted by

PVL, we tested different receptor constructs in HEK cells for their

ability to mediate LukS-PV binding and PVL-induced pore for-

mation (Figures 6A and 6B). Cells transfected with the extracel-

lular N termini of C5aR or C5L2 showed only weak binding of

LukS-PV at high concentration. Moreover, binding to these

N termini was insufficient to cause pore formation. This observa-

tion was confirmed by experiments with cells expressing a

chimeric receptor composed of the C3a receptor (C3aR) core
nc.
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DAPI positive. Bars express SD, with n = 2–3. Histograms depict a repre-

sentative example. See also Figure S4.
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domain and the C5aR extracellular N terminus. Binding of LukS-

PV to this chimera was exclusively observed at high concentra-

tion, and cells were resistant to PVL-induced pore formation.

Transfected cells expressing the opposite chimera of the C5aR

core domain and the C3aR extracellular N terminus showed

similar binding but were partially susceptible to pore formation.

These data show that LukS-PV binds both N terminus and

core regions of the C5aR, while the latter of these two is critical

for PVL to induce pore formation.

Since LukS-PV binds the N terminus of the C5aR, interaction

of LukS-PV with the N terminus was further investigated in solid

phase. Binding of LukS-PV to the N terminus was weaker as

compared to CHIPS (Figure 6C) and dependent on sulphation

of the receptor on residues 11 and 14 (Figure 6D). Sulphation

of these residues is crucial for CHIPS to bind as well (de Haas

et al., 2004). Using isothermal titration calorimetry, a KD of

127 nM (SD ±17 nM) was calculated for LukS-PV to bind the

C5aR N terminus (Figure 6E). This KD is approximately 10-fold

higher than that of CHIPS (de Haas et al., 2004).

Altogether, these findings indicate a complex interaction

between LukS-PV and the C5aR as a whole but demonstrate

that cytotoxic activity of PVL is highly dependent on the core

regions of the C5aR.

LukS-PV Is a Potent Inhibitor of the Human C5aR
Activation of the C5aR by C5a results in a transient rise of intra-

cellular calcium concentrations. When applied alone, LukS-PV

and LukF-PV are not cytotoxic (Colin et al., 1994). As LukS-PV

targets the C5aR, we tested if LukS-PV acts as a functional inhib-

itor of cellular activation by detection of intracellular calcium
Cell H
mobilization. LukS-PV, but not LukF-PV, strongly antagonized

activation induced by C5a on both human neutrophils (Figure 7A)

and U937 cells transfected with the C5aR (Figure 7B). Inhibition

was independent of the N terminus of the C5aR, since LukS-PV

also antagonized activation induced by the C-terminal C5a pep-

tide Tyr65, Phe67 65–74 (Figure 7C). This peptide only interacts

with the core region of the C5aR (Chen et al., 1998). In contrast,

CHIPS binds the extracellular N terminus of the C5aR and there-

fore can only inhibit full-length C5a (de Haas et al., 2004). Collec-

tively, these data identify LukS-PV as an inhibitor of the human

C5aR, which is at least as potent as CHIPS. These experiments

further reveal a complex interplay between the protein and the

receptor, confirming an interaction of LukS-PV with the core

region of the C5aR.

DISCUSSION

We show that LukS-PV binds the human C5a receptors C5aR

and C5L2. As a functional bicomponent toxin, PVL uses the

C5a receptors to induce pore formation in the target cell mem-

brane. Receptor expression profiles of the C5a receptors on

different cell populations explain 80-year-old observations in

which PVL was reported to target neutrophils, monocytes, and

macrophages, but not lymphocytes, since the latter are negative

for expression of both C5aR and C5L2 (Gao et al., 2005; Gaudu-

chon et al., 2001; Gerard and Gerard, 1991; Meyer et al., 2009;

Monk et al., 2007; Panton and Valentine, 1932; Woodruff et al.,

2011). The number of LukS-PV receptors estimated in a more

recent study matches the combined expression level of both

C5a receptors on neutrophils (Gauduchon et al., 2001). Although

some nonmyeloid cells express both C5a receptors, expression

levels are low compared to myeloid cells (Haviland et al., 1995).

The abundant expression, notably on neutrophils, makes the

C5aR a readily available target for the toxin and allows the toxin

to distinguish phagocytic cells from other cells. In our experi-

mental setup, the protection of human neutrophils against

PVL-induced pore formation by the specific C5aR inhibitor

CHIPS indicates that the C5aR is the major receptor for PVL

on neutrophils, and C5L2 the minor receptor. Decreased sus-

ceptibility of C5aR-silenced THP-1 macrophages for PVL cyto-

toxicity supports the notion that the C5aR is the major PVL

receptor and further indicates that the existence of anothermajor

PVL receptor is highly unlikely.

In a recent report, TLR2 and CD14 were presented as an

essential receptor complex for PVL-induced lung inflammation

in mice (Zivkovic et al., 2011). However, in another publication,

antibodies specific for TLR2, TLR4, and CD14 failed to inhibit

PVL-mediated priming of human neutrophils for enhanced func-

tion (Graves et al., 2012). We have shown that HEK cells stably

transfected with the human TLR2/CD14 do not bind LukS-PV

and are resistant to PVL-induced pore formation. Although we

cannot exclude secondary effects mediated by the TLR2/CD14

receptor complex, it is clearly not involved in direct cytotoxicity

of PVL since mice as well as mouse neutrophils are intrinsically

resistant (Hongo et al., 2009; Löffler et al., 2010).

Our findings show that the immune-activating properties

of PVL at sublytic concentrations, as observed by others

(Graves et al., 2012; Yoong and Pier, 2012), are mediated by

the human C5aR as well. Using in vitro infection experiments,
ost & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier Inc. 589
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for PVL-Mediated Lysis

(A) LukS-PV binding to HEK cells transfected with

the N termini of the C5aR or C5L2 or chimera

receptors composed of the C5aR and C3aR.

(B) PVL-induced pore formation (PVL concentra-

tion, 625 nM) in transfected HEK cells.

(C and D) Binding of LukS-PV to the solid-phase

C5aR N terminus on an ELISA plate (C) is depen-

dent on sulphation of residues Y11 and Y14
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(E) Isothermal titration calorimetry plot showing the

association of the C5aR N terminus with LukS-PV.

Permeable cells are DAPI positive. Bars express

SD, with n = 3–4. Statistical significance is

displayed as **p < 0.01 or ***p < 0.001 using Stu-

dent’s t test. Histograms depict a representative

example. See also Figure S5.
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a PVL-dependent or C5aR-mediated phenotype of direct killing

by S. aureus could not be obtained (data not shown). As shown

by others, direct killing of neutrophils byS. aureus is independent

of PVL (Ventura et al., 2010).

LukS-PV binds to both the N-terminal and core domain of the

human C5aR. However, binding of LukS-PV to the host cell in

itself is not sufficient to trigger pore formation. A specific interac-

tion with the core domain, likely resulting from conformational

changes, is required for cytotoxic activity. Because of the limited

sequence homology of only 35% between the C5aR and C5L2,

prediction of relevant amino acids is difficult (Monk et al.,

2007). Most probably, major determinants will be present in

the three extracellular domains. This hypothesis is supported

by our observations that LukS-PV antagonizes stimulation with

a C-terminal C5a peptide (Tyr65, Phe67 65–74), which only inter-

acts with the core region of the C5aR (Chen et al., 1998). The

affinity of LukS-PV for the C5aR as a whole, therefore, is pre-

dicted to be considerably higher than the one we calculated

for the N-terminal C5aR alone. Next to being part of a
590 Cell Host & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier Inc.
two-component pore-forming toxin, we

identified LukS-PV as a potent inhibitor

of the human C5aR by antagonizing

C5a-induced activation of neutrophils.

This indicates that, next to CHIPS,

S. aureus produces another molecule to

interact with the C5aR (de Haas et al.,

2004). When applied alone, LukS-PV

and LukF-PV are not cytotoxic (Colin

et al., 1994). Due to its genetic arrange-

ment in an operon structure, secretion of

LukS-PV by the pathogen is accompa-

nied by the other protein subunit, LukF-

PV (Colin et al., 1994; Diep et al., 2006),

allowing formation of the cytotoxin on

the target cell. Although LukS-PV antago-

nizes C5a-induced activation of neutro-

phils in vitro, it remains unclear if func-

tional inhibition of the C5aR by LukS-PV

alone contributes to pathogenesis of

S. aureus. Since CHIPS is expressed at
insufficient amounts by CHIPS-PVL coproducing S. aureus

strains, antagonism of PVL-induced pore formation by CHIPS

seems unlikely under physiological circumstances. Insight into

the interaction of LukS-PV with the C5a receptors will be of value

for the development of anti-inflammatory drugs in C5a-mediated

diseases (Woodruff et al., 2011).

Recently, the staphylococcal leukocidin combination LukED

was reported to target the human immunodeficiency virus core-

ceptor CCR5, which like the C5aR is a member of the GPCR

family (Alonzo et al., 2013). Although not fully explaining the

cell selectivity of LukED, the interaction of LukED with CCR5

highlights the relevance of CCR5-positive leukocytes in the path-

ogenesis of S. aureus. Together with the identification of the

C5aR and C5L2 as the PVL receptors presented here, the report

on LukED and CCR5 suggests an apparent common interac-

tion of staphylococcal bicomponent pore-forming toxins with

GPCRs.

PVL is an example of bacterial toxins and modulators, espe-

cially of staphylococcal origin, exhibiting pronounced species
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specificity based onmolecular compatibility with host targets (de

Haas et al., 2004; Prat et al., 2009; Rooijakkers et al., 2005). Over

the last few years, many studies have been published address-

ing the contribution of PVL to virulence of S. aureus in animal

models of infection. Confusing reports on experiments in mice

have provoked an intense international debate both for SSTI

and necrotizing pneumonia (Bubeck Wardenburg et al., 2007;

Labandeira-Rey et al., 2007; Voyich et al., 2006). With our proof

of C5aR-mediated interspecies susceptibility for PVL-induced

cytotoxicity, animal studies addressing the role of PVL in patho-

genesis of S. aureus can now be better interpreted. We have

demonstrated that cells transfected with the mouse and even

macaque C5aR are fully resistant, while cells transfected with

the rabbit C5aR are susceptible to PVL-induced pore formation.

This is in line with previously described species-specific suscep-

tibility of primary cells in vitro (Hongo et al., 2009; Löffler et al.,

2010). Our data showing clear C5aR-mediated interspecies sus-

ceptibility for PVL-induced cytotoxicity offer a molecular expla-

nation for the observed stronger relevance of rabbit versus

mice models to study PVL-associated pathogenesis. Although

the contribution of PVL to skin infections in rabbits is still under

debate (Kobayashi et al., 2011; Lipinska et al., 2011), experi-

ments by others in rabbits confirm PVL as a phagocyte-targeting

virulence factor in S. aureus necrotizing pneumonia (Diep et al.,

2010). Unfortunately, the staphylococcal C5aR antagonist

CHIPS does not bind the rabbit C5aR (de Haas et al., 2004)

and a monoclonal anti-human C5aR antibody does not protect

against PVL-induced pore formation in rabbit neutrophils (data

not shown), limiting us to investigate the contribution to staphy-

lococcal pathophysiology of the interaction between PVL and

the C5aR of a compatible species. It remains to be elucidated
Cell H
if lung epithelial cells are damaged indirectly by PVL-affected

neutrophils and macrophages (Niemann et al., 2012; Perret

et al., 2012) or directly via low expression of the C5aR (Haviland

et al., 1995).

The underlying mechanisms for the predisposition of other-

wise healthy human individuals to infrequent but highly lethal

necrotizing pneumonia are poorly understood. Although often

preceded by influenza-like symptoms contributing to suscepti-

bility (Gillet et al., 2002; Hidron et al., 2009), human genetic fac-

tors might account for a poor outcome (Alcaı̈s et al., 2009). Vari-

ation in the expression of the C5a receptors is a likely candidate

to explore for genetic determinism in PVL-associated disease.

EXPERIMENTAL PROCEDURES

Recombinant Protein Production and Purification

Polyhistidine-tagged LukS-PV and LukF-PV, CHIPS, CHIPS31–121, and FLIPr-

like were cloned and expressed as described elsewhere (de Haas et al., 2004;

Haas et al., 2005; Perret et al., 2012; Prat et al., 2009). The S. aureus strains

used as template are shown in Table S1.

Bacterial Strains and Culture

LAC is a USA300 pulsotype CA-MRSA isolate. LACDpvl, its isogenic PVL

knockout strain, was donated by Frank R. DeLeo (Rocky Mountain Labora-

tories, Hamilton, MT, USA) (Voyich et al., 2006). All strains were cultured in

casein hydrolysate and yeast extract (CCY) medium (optimal expression of

leukocidins) (Lipinska et al., 2011;Woodin, 1959), tryptic soy broth, or Iscove’s

modified Dulbecco’s medium (IMDM). Overnight supernatants were sterilized

by a 0.2 mm filter and stored at �20�C. Experiments with clinical S. aureus

isolates and quantification of CHIPS and PVL expression are described in Sup-

plemental Experimental Procedures.

Cell Isolation, Cell Lines, and Transfections

Human leukocytes, obtained from healthy volunteers, and macaque (Macaca

fascicularis) and rabbit (New Zealand white) leukocytes were isolated by Ficoll/

Histopaque centrifugation (de Haas et al., 2004). Murine leukocytes (BALB/c)

were derived from bone marrow. U937 cells (a human promyelocytic cell line)

stably transfected with the C5aR, CXCR2, or an empty expression vector were

obtained from Eric R. Prossnitz (University of New Mexico, Albuquerque, NM,

USA) (Kew et al., 1997). HEK293T cells (a human embryonic kidney cell line)

stably transfected with the C5L2 were donated by Peter N. Monk (Sheffield

University Medical School, Sheffield, UK) (Kalant et al., 2003). HEK293T cells

coexpressing TLR2 and CD14 were obtained from InvivoGen.

HEK293T cells were transfected according to the manufacturer’s protocols

with 4 mgDNA and 5 ml Lipofectamine 2000 (Invitrogen) for full-length receptors

or with 2 mg DNA and 13 ml Polyethylenimine MAX (PolySciences) for N-termi-

nal receptors. After 24–48 hr, transfected cells were harvested with 0.05%

trypsin/0.53 mM EDTA. Cells transiently transfected with the full-length recep-

tors were labeled with mouse anti-FLAG clone M2 (Sigma) followed by

PE-labeled goat anti-mouse antibody (Dako). Cells transiently transfected

with the N-terminal receptors were stained with mouse anti-hemagglutinin A

clone 12CA5 (Abcam) followed by PE-labeled goat anti-mouse. Only recep-

tor-expressing cells were included in analyses (Figures S5 and S6). Cells

were cultured in Dulbecco’s modified Eagle’s medium (Lonza) supplied with

10% fetal calf serum (Invitrogen). For receptor expression determination on

neutrophils of different species, see Supplemental Experimental Procedures.

All in vitro experiments with cells were performed with RPMI (Invitrogen)

supplemented with 0.05% human serum albumin (HSA; Sanquin), with cell

concentrations adjusted to 5 3 106 cell/ml.

Design of Full-Length Receptor and N Terminus-Expressing

Plasmids

Full-length human C5aR, C5L2, C3aR, mouse (C57BL/6) C5aR, macaque

(Macaca fascicularis) C5aR, and rabbit (New Zealand white) C5aRwere cloned

into a pcDNA3.1 vector (Invitrogen) as described previously (Postma et al.,

2005). Briefly, the amplification reactions were performed on QUICK-Clone
ost & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier Inc. 591
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complementary DNA of human bone marrow or mouse liver (BD Biosciences

Clontech) using PfuTurbo DNA polymerase (Stratagene). The C5aR of

macaque and rabbit, which reside on a single exon, were amplified using chro-

mosomal DNA isolated from blood. The following human C5aR/C3aR chi-

meras were constructed using overlap extension PCR: N-C3aR/TM-C5aR, in

which amino acids 1–37 from the C5aR were substituted for amino acids

1–23 from the C3aR, and N-C5aR/TM-C3aR, in which amino acids 38–350

from the C5aR were substituted for amino acids 24–482 from the C3aR

(Postma et al., 2005). To confirm surface expression of each described

GPCR, an N-terminal FLAG tag (DYKDDDDK) was placed after the first methi-

onine. An extramethionine was included directly after the FLAG tag to keep the

N-terminal sequence intact. N termini of the human C5aR (amino acid 1–38)

and C5L2 (amino acid 1–37), including a hemagglutinin A epitope tag, were

cloned into a pDISPLAY plasmid (Invitrogen) (Postma et al., 2005). Primer

designs, restriction sites, and accession numbers used in this study are

displayed in Table S2.

THP-1 Differentiation and C5aR Downregulation

THP-1 monocytic cells were grown in RPMI 1640 (Life Technologies) supple-

mented with 10% fetal calf serum (Lonza), 2 mM glutamine, and 50 mM b-mer-

captoethanol. THP-1 monocytes were differentiated into macrophages by the

addition of 100 ng/ml phorbol myristate acetate (PMA; InvivoGen) for 48 hr.

THP-1 monocytes were transduced with lentiviruses expressing human

GIPZ shRNAmir targeting c5aR1 (Thermo Fisher Scientific; shRNA1: clone

ID V3LHS_635740; shRNA2: clone ID V3LHS_635738; shRNA3: clone

IDV3LHS_635742) or targeting inflammasome adaptor asc (shRNA control)

(Perret et al., 2012). Then 48 hr posttransduction, transduced cells were

selected using puromycin (5 mg/ml) during a period of 4 days. Expression of

shRNA in PMA-differentiated macrophages was checked by flow cytometry

using GFP expression as a surrogate marker. To assess C5aR expression level

in PMA-differentiated macrophages, C5aR mRNA levels were checked by

quantitative RT-PCR with primers indicated in Table S2 using Improm (Prom-

ega) and LightCycler 480 SybrGreen I Master (Roche) kits on a LightCycler

480 II (Roche). C5aR expression level was normalized to GAPDH expression

level.

Monoclonal Antibody Binding Competition Assay

Neutrophils were incubated in a volume of 50 ml RPMI-HSA at 5 3 106 cell/ml

with 313 nM protein for 30 min on ice. After washing, different antibodies were

applied and incubated for 30 min on ice as described elsewhere (Bardoel

et al., 2012). PE-conjugated mouse anti-human antibodies were used to

detect the C5aR (clones: S5/1, BioLegend; P12/1, AbD Serotec; D53-1473,

BD Biosciences) and CXCR2 (clone 48311.211, R&D Systems). Fluorescence

was detected by flow cytometry and compared to cells incubated without

protein.

Binding Assays

Binding of the polyhistidine-tagged proteins to cells was tested using detec-

tion of the polyhistidine tag as described previously (Prat et al., 2009). After

incubation with the protein for 30 min in a total volume of 50 ml on ice, cells

(5 3 106 cell/ml) were washed and resuspended with a fluorescein isothiocy-

anate (FITC)-conjugated mouse anti-his antibody (Life Span Biosciences).

After 30 min incubation on ice, cells were washed and analyzed by flow cytom-

etry. Analysis of binding to transiently transfected HEK cells was limited to

receptor-positive cells. Half-maximal effective binding concentrations were

calculated using nonlinear regression analyses.

Cell Permeability Assays

Cells were exposed to recombinant proteins or 5% crude bacterial superna-

tant in a volume of 50–100 ml RPMI-HSA at 53 106 cell/ml with 2.5 mg/ml pro-

pidium iodide (PI) or DAPI. Cells were incubated for 30 min at 37�C with 5%

CO2 and subsequently analyzed by flow cytometry. Pore formation was

defined as intracellular staining by PI or DAPI. For competition experiments,

cells were preincubated with C5a (Bachem) or CHIPS for 15 min at room tem-

perature before challenge with PVL. As PVL is a two-component toxin, equi-

molar concentrations of polyhistidine-tagged LukS-PV and LukF-PV were

used. Analysis of pore formation in transiently transfected HEK cells was

limited to receptor-positive cells. Half-maximal effective lytic concentrations
592 Cell Host & Microbe 13, 584–594, May 15, 2013 ª2013 Elsevier I
were calculated using nonlinear regression analyses. Detection of cell perme-

ability induced by supernatants of clinical S. aureus isolates is described in

Supplemental Experimental Procedures.

Quantification of Receptor Expression Levels

Freshly isolated human leukocytes or stably transfected cells were incubated

in a total volume of 50 ml at 5 3 106 cell/ml with immunoglobulin G (IgG) 2a-k

mouse anti-C5aR antibody clone S5/1 (AbD Serotec) or IgG2a-k mouse anti-

C5L2 clone 1D9-M12 (BioLegend), followed by FITC-conjugated goat-anti-

mouse antibody (Dako). Antibody binding was quantified by calibration to

defined antibody binding capacity units using QIFIKIT (Dako).

Neutrophil Priming for the Oxidative Burst

Human neutrophils were resuspended in IMDM with 25 mM HEPES (without

phenol red) supplemented with 0.1% HSA at a cell concentration of 1.25 3

106 cell/ml. Half of the cells were incubated for 5 min with 700 nM

CHIPS31–121 to block the C5aR. In a white 96-well microplate, 50 ml cells

were primed for 30 min at 37�C with 10 ng/ml TNF-a (Sigma), 1 nM C5a

(Bachem), and PVL (1, 0.5, or 0.25 nM) or with buffer as control. Subse-

quently, 100 ml HBSS-0.1% HSA containing 337 mM luminol was added

and the chemiluminescence response recorded every 0.5 s for a total of

200 s. After 30 s of baseline recording, fMLP was injected (final concentration

1 mM) to stimulate the oxidative burst and recording continued as relative

light units in a luminometer (LB960 Centro; Berthold). For each sample, the

area under the curve (AUC) after addition of fMLP was calculated, setting

recordings in the first 30 s as baseline. To compare various experiments,

AUC values were expressed relative to buffer-treated cells stimulated with

fMLP. Cells without fMLP stimulation gave a continuous baseline recording

during the 200 s.

Peptide Synthesis, Isothermal Titration Calorimetry, and ELISA

To study the N-terminal part of the C5aR, peptides comprising of amino acids

7–28 (TTPDYGHYDDKDTLDLNTPVDK) were used, of which one was sulph-

ated at both tyrosines at positions 11 and 14. Sulphated and nonsulphated

C5aR peptides were synthesized on a 433A peptide synthesizer (Applied Bio-

systems) applying Fmoc/tBu chemistry according to amethod described else-

where (Bunschoten et al., 2009). The final peptides were checked for purity

(>98%) and composition by high-performance liquid chromatography and

mass spectrometry. Peptide concentrations were determined by weight.

Isothermal titration calorimetry with polyhistidine-tagged LukS-PV was per-

formed on an ITC200 microcalorimeter (MicroCal) (Ippel et al., 2009).

The data were analyzed using the MicroCal Origin software and fitted by

nonlinear regression analysis. Three independent experiments were carried

out. The experimental errors were estimated by Monte Carlo simulations.

For ELISA, a 96-well plate (Nunc MaxiSorp) was coated with 3.6 mM

sulphated or nonsulphated C5aR peptide. After blocking with 4% skimmed

milk, polyhistidine-tagged proteins were applied. After washing, mouse

monoclonal anti-his-tag antibody (Novagen) was added, followed by incuba-

tion with a horseradish-peroxidase-labeled goat anti-mouse IgG (1/10,000,

SouthernBiotech) for 1 hr at 37�C. After washing, TMB was added as sub-

strate, the reaction was stopped with H2SO4, and optical density at 450 nm

was measured (Bardoel et al., 2012).

Calcium Mobilization Assays

Calcium mobilization in neutrophils and U937-C5aR cells was performed as

previously reported (Postma et al., 2005). Briefly, cells were loaded with 2 mM

Fluo-3AM in RPMI-HSA for 20 min at room temperature under constant

agitation, washed with buffer, and suspended to 5 3 106 cell/ml in RPMI-

HSA. Subsequently, the cells were preincubated with LukS-PV, LukF-PV,

or CHIPS for 5 min at room temperature. Each sample of cells was first

measured for approximately 10 s to determine the basal fluorescence level.

Next, concentrated C5a (Sigma, final concentration 1 nM) or C5a C-terminal

peptide (Bachem, Tyr65, Phe67 C5a 65–74: YSFKDMQLGR, final concentra-

tion 2.5 mM) was added and rapidly placed back in the sample holder to

continue the measurement. Cells were analyzed using a flow cytometry

gated on forward and side scatter to exclude dead cells and debris. The

relative increase in fluorescence was expressed in comparison to noninhi-

bited cells.
nc.
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Ethics Statement

Human leukocytes were isolated after informed consent was obtained from all

subjects in accordance with the Declaration of Helsinki. Approval was

obtained from the medical ethics committee of the UMC Utrecht, the

Netherlands. Cells obtained from animals were acquired with permission of

the animal ethics committees of the University of Lyon, France and the

University Medical Center Utrecht, the Netherlands.

Graphical and Statistical Analyses

Flow cytometric analyses were performed with FlowJo (Tree Star Software).

Statistical analyses were performed with Prism (GraphPad Software). Statisti-

cal significance was calculated using ANOVA and Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.chom.2013.04.006.
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