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In this paper, we study a class of generalized quasivariational inclusions. By
using the properties of the resolvent operator associated with a maximal monotone
mapping in Hilbert space, we have established an existence theorem of solutions
for generalized quasivariational inclusions, suggesting a new iterative algorithm
and a perturbed proximal point algorithm for finding approximate solutions which
strongly converge to the exact solution of the generalized quasivariational inclu-
sions. As special cases, some known results in this field are also discussed.  © 1997
Academic Press

1. INTRODUCTION

Variational inequality theory and complementarity problem theory have
become very effective and powerful tools for studying a wide range of
problems arising in mechanics, mathematical programming, optimization
and control problems, equilibrium theory of economics, management sci-
ence operations research, and other branches of mathematics and engi-
neering sciences. In recent years, the classical variational inequality and
complementarity problem have been extended and generalized in many
different directions. Various quasi (implicit) variational inequalities and
quasi (implicit) complementarity problems are very important generaliza-
tions of these classical problems. These were introduced and studied by
Bensoussan and Lions [3], Bensoussan, Gourst, and Lions [2], Baiocchi and
Capelo [1], Mosco [24], Pang [32, 33], Noor [25-28], Isac [20—22], Siddiqi
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and Ansari [38, 39], Ding and Tarafdar [12, 13], Gao and Yao [17], and
Zeng [40]. Harker and Pang [18] and Noor, Noor, and Rassias [30] provide
excellent surveys on the developments of the classical variational inequali-
ties and complementarity problems in finite dimensional Euclidean spaces
and infinite dimensional Hilbert spaces.

Another important and useful generalization of the classical variational
inequalities and complementarity problems are the generalized quasi (im-
plicit) variational inequalities and generalized quasi (implicit) complemen-
tarity problems introduced and studied by Browder [4], Rockafeller [35],
Saigal [36], Fang and Peterson [16], Fang [15], Chan and Pang [5], Siddiqi
and Ansari [37], Ding [6-9], Ding and Tan [11], Ding and Deng [10], and
Ding and Tarafdar [14].

In a recent paper [19], Hassouni and Moudafi introduced and studied a
class of variational inclusions and developed a perturbed algorithm for
finding approximate solutions of the variational inclusion.

In this paper, we shall introduce and study a class of generalized
guasivariational inclusions. By applying the properties of the resolvent
operator associated with a maximal monotone mapping in Hilbert spaces,
it is shown that the quasivariational inclusion problems are equivalent to
the fixed point problems. A new iterative algorithm and a perturbed
proximal point algorithm for finding approximate solutions which strongly
converge to the exact solution of the generalized quasivariational inclusion
are proposed and analysed. As special cases, some known results in the
field are also discussed.

2. PRELIMINARIES

Let H be a Hilbert space endowed with a norm || - || and a inner product
(+,-). Let T, A:H — 2" be set-valued mappings, g: H > H be a
single-valued mapping, and ¢: H X H — R U {+x} be such that for each
fixed y € H, ¢(-, y): H— R U {+} is a proper convex lower semicontin-
uous function on H and g(H) N dom d¢(:, y) + & for each y € H. Then
the problem of finding x € H, u € T(x), and v € A(x) such that g(x)
dom d¢(-, x) and

(u—v,y—g(x) = ¢(g(x),x) = ¢(y,x), VyeH (21
is called the generalized quasivariational inclusion problem (GQVIP
(T, A, g, ).

Special Cases. (1) If ¢(x,y) = ¢(x) forall y e H and T and A4 are
both single-valued mappings, then the problem (2.1) reduces to the varia-
tional inclusion problem (1.1) considered by Hassouni and Moudafi [19],



90 XIE PING DING

(2) If K is a given closed convex subset of H and ¢ = I is the
indicator function of K,

(o, ifxek,
Ik(x) = { +o,  otherwise,

then the problem (2.1) reduces to the generalized strongly nonlinear
variational inequality problems, i.e., find x € H, u € T(x), and v € A(x)
such that g(x) € K and

(u—v,y—g(x)) =0, Vyek. (2.2)

(3 If K: H - 2" is a set-valued mapping such that each K(x) is a
closed convex subset of H (or K(x) = m(x) + K where m: H - H and K
is a closed convex subset of H) and for each fixed y € H, ¢(-, y) = I;(,,(*)
is the indicator function of K(y),

0, if x € K(y),
4o, otherwise,

IK(y)(x) = {

then the problem (2.1) reduces to the generalized strongly nonlinear
quasivariational inequality problems, i.e., find x € H, u € T(x), and v €
A(x) such that g(x) € K(x) and

(u—v,y—g(x)) =0, VyeK(x). (2.3)

For the recent extension and generalization of the problems (2.2) and
(2.3), see Noor [29].

In brief, the problem (2.1) is the most general and unifying form of
various extended classes of variational inequalities, variational inclusions,
and complementarity problems. For the iterative methods, application, and
formulation, see [1-40].

In order to prove our main theorems, we need the following concepts
and results; see Pascali and Shurlan [34].

DerFiNnITION 2.1. Let X be a Banach space with the dual space X* and
let ¢: X - R U {+cc} be a proper functional. ¢ is said to be subdifferen-
tial at a point x € X if there exists an f* € X* such that

O(y) — o(x) = (f*y—x), VyeXx,

where f* is called a subgradient of ¢ at x. The set of all subgradients of ¢
at x is denoted by d¢(x). The mapping d¢: X — 2% defined by

Ip(x) = {f* € X*:1¢(y) — ¢(x) = {f*,y —x),Vy € X}
is said to be the subdifferential of ¢.
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DerFINITION 2.2. Let H be a Hilbert space and let G: H — 2" be a
maximal monotone mapping. For any fixed p > 0, the mapping JPG: H-H
defined by

Jo(x) = (I+pG) '(x), VxeH

is said to be the resolvent operator of G where [ is the identity mapping
on H.

LEMMA 2.1. Let X be a reflexive Banach space endowed with a strictly
convex norm and ¢: X - R U {4} be a proper convex lower semicontinu-
ous function. Then d¢p: X — 2" is a maximal monotone mapping.

LEMMA 2.2. Let G: H — 2% be a maximal monotone mapping. Then the
resolvent operator JpG: H — H of G is nonexpansive, i.e., for all x,y € H,

[,°C) =75 | < llx = 1.
DerINITION 2.3. A mapping g: H — H is said to be
(i) y-strongly monotone if there exists a constant y > 0 such that
(g(x) —g(y),x =y =vlx—yl*, VxyeH;
(ii) o-Lipschitz continuous if there exists a constant o > 0 such that

lg(x) —g(»)l<ollx—yl, Vx,yeH.

DerINITION 2.4. A set-valued mapping 7T: H — 2% is said to be
(i) a-strongly monotone if there exists a constant « > 0 such that

u—v,x—y)=>allx —y||2, Vx,yeH, ueT(x),andv e T(y);
(i)  B-Lipschitz continuous if there exists a constant 8 > 0 such that

8(T(x),T(y)) <Bllx—yl, Vx,yeH,
where 8(A4, B) = sup{lla — bl.a € A, b € B}, VA, B € 2"

3. MAIN RESULTS

In this section, we shall prove an existence theorem of solutions for the
GQVIP (T, A, g, $) (2.1) and suggest a new iterative algorithm and a
perturbed proximal point algorithm for finding approximate solutions of
the problem (2.1). Then we show that the sequence of approximate
solutions strongly converges to the exact solution of the problem (2.1).
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We first transfer the problem (2.1) in a fixed point problem.

THEOREM 3.1.  (x*, u*, v™) is a solution of the problem (2.1) if and only if
(x*, u*, v*) satisfies the relation

g(x) =J7C9(g(x) — p(u —v)), Vx € H, (3.1)

where p >0 is a constant, Jp”d’("") = I+ pdp(-,x))" is the resolvent
operator of d$(-, x), and I is the identity mapping on H.

Proof. Let (x*, u*, v*) satisfy the relation (3.1), that is,
g(x*) =J2C(g(x*) — p(u* — v¥)).
The equality holds if and only if
v* —u* € dp(, x*)(g(x*)),
by the definition of J/#¢*". The relation holds if and only if
d(y, x*) — d(g(x*), x*) =(v* —u*,y —g(x*), VyeH,

by the definition of the subdifferential d¢(:, x*). Hence (x*, u*, v*) is the
solution of

(ur —v*,y —g(x*)) = d(g(x*), x*) — $(y,x*), VyeH. |

Remark 3.1. From Theorem 3.1, we see that the quasivariational inclu-
sion (2.1) is equivalent to the fixed point problem (3.1). Equation (3.1) can
be written as

x =x = g(x) + IO g(x) — p(u — v)]. (32)

This fixed point formulation enables us to suggest the following algo-
rithms.

ALGORITHM 3.1.  For any given x, € H, u,€ T(x,), and v,€ A(x,), let

Yo=1(1—Bg)x, + Bo[xo —g(x0) + TP (g(x0) — p(up — U_o))]
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Take any fixed u, € T(y,) and v, € A(y,), and let

X3 = (1= ag)xy + ao[)’o —8(¥0) +Jpﬁ¢("y°)(g()’o) = p(up — Uo))]'

Continuing this way, we can define sequences {x,} _o, {y.)r o, (&, ) 0,
and {v,},_, as

X1 = (1= a)x, + a,[y, —g(y,) + 174" (g(y,) — p(u, —v,))].

Yu= (L= B)x, + B[ x, —&(x,) + I (g(x,) = p(w, —1,))],
(3.3)

forn =0,1,..., where u, € T(y,), v, € A(y,),u, € T(x,),and v, € A(x,)
can be chosen arbitrarily, 0 < «,,, 8, <1, X;,_, «, diverges, and p > 0 is
a constant.

Using fixed point formulation (3.2), we have the following Algorithm.

ALGORITHM 3.2.  For any given x, € H, compute the sequences {x,};_,,
{u,):_o, and {v,}:_, by the iterative schemes

X0 =%, —8(x,) + 1700 [g(x0) = p(u, —v,)].  (34)

for n =0,1,..., where u, € T(x,) and v, € A(x,) can be chosen arbi-
trarily and p > 0 is a constant.

To perturb the Algorithm 3.2, we first add, in the right-hand side of
(3.4), an error ¢, to take into account a possible inexact computation of
the proximal point and we consider another perturbation by replacing ¢ in
(3.4) by ¢,, where each ¢,: H X H — R U {4} is such that for each fixed
y € H, ¢,(-,y) is a proper convex lower semicontinuous function on H
and the sequence {¢,} approximates ¢ on H X H. Then we obtain the
following perturbed proximal point algorithm.

ALGORITHM 3.3.  For any given x, € H, compute the sequences {x,};_,,
{u,);_, and {v,);_, by the iterative schemes
Xnt1 = Xp — g(xn) + Jpad)"('vxu)(g(xn) - p(un - Un)) t e (35)
where {e,}7_, is an error sequence in H, u, € T(x,) and v, € A(x,) can
be chosen arbitrarily, and p > 0 is a constant.
Now we show the existence of solutions of the GQVIP (T, 4, g, ¢) (2.1).

THEOREM 3.2. Let T: H — 2% be a-strongly monotone and B-Lipschitz
continuous, A: H — 2" be v-Lipschitz continuous, g: H — H be A-strongly
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monotone and o-Lipschitz continuous, and ¢: H X H — R U {+%} be such
that for each fixed y € H, ¢(-,y) is a proper convex lower semicontinuous
function on H, g(H) N dom d¢(-, y) # Dand for each x,y,z € H,

||Jpa¢(.,x)(z) —Jp”“’("”(z)” < wllx =yl
Suppose there exists a constant p > 0 such that
k=u+2V1l-21+02 <1,
a>y(l—k)+/(B2— vk -k),

a+y(k=1| Vet y(k=1)" - (B~ y)k(2 k)
B2 - B? — v? '

(3.6)

Then the GQVIP (T, A, g, ¢) (2.1) has a solution (x*, u*, v*).

Proof. By Theorem 3.1, it is suffice to prove that there exist x* € H,
u* € T(x*), and v* € A(x*) such that (3.1) holds. Define a set-valued
mapping F: H — 21 by

F(x)= U U [x—g(x) +5*"(g(x) = p(u —v))],

ueT(x) vedlx)
Vx e H.

For arbitrary x,y € H, a € F(x), and b € F(y), there exist u, € T(x),
v, € A(x), u, € T(y), and v, € A(y) such that

a=x—g(x) +J7*9(g(x) — p(uy, —vy)),
b=y—g(y) +177"(g(y) — p(uz = v,)).
By the assumption of ¢ and Lemmas 2.1 and 2.2, we have
lla — bll
<[lx =y = (g(x) =g
+[[ 77969 (g(x) = p(uy = 01)) =IO (g() = p(uy = v,))|
+||Jpﬁ¢("x)(g(J’) —p(u, —vy)) — J,f¢("y)(g(Y) - p(u, — Lz))”
<2fx—y—=(g(x) =N +llx =y = p(uy —u,)|
+plvoy = vl + pllx = yll.
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Since T and g are both strongly monotone and Lipschitz continuous and
A is Lipschitz continuous, by using the technique of Noor [25], we have

[x—y—(g(x) =gy <Vi-2x+0c?Ilx -yl
lx =y = p(uy = up) | < V1 = 2ap + p%B2 lIx =y,
vy — ool < 8(A(x), A(y)) < v llx =yl

It follows that

8(F(x),F(y)) < [2V1 - 20+ o + 1 - 2ap + pB°

toy+ u]llx =l

= [k+1t(p) + pyllx —yll = 0lx -yl (3.7)

where k = 2V1 — 20 + 02 + u, t(p) = \/l —2ap + p?B?,and 0 =k +
t(p) + py. By the condition (3.6), we have 0 < 1. It follows from the
condition 3.7 and Theorem 3.1 of Siddigi and Ansari [37] that F has a
fixed x* € H. By the definition of F, there exist u* € T(x*) and v* €
A(x*) such that

§(x") = I g (v%) = p(ur = 07).
Therefore (x*, u*, v*) is a solution of GQVIP (T, 4, g, ¢) 2.1). 1

In the following, we shall show the convergence of the Algorithms 3.1
and 3.3.

THEOREM 3.3. Let H, T, A, g, and ¢ satisfy all conditions in Theorem
3.2. If the condition (3.6) is also satisfied, then the iterative sequences {x, ), _,,
{u,f:_o, and {v,); _, defined in the Algorithm 3.1 strongly converge to x*, u*,
and v*, respectively, and (x*, u*, v*) is a solution of the GOVIP (T, A, g, ¢)
(2.1).

Proof. By Theorem 3.2, the GQVIP (T, A4, g, ¢) (2.1) has a solution
(x*, u*, v*). From Theorem 3.1 we have x* € H, u* € T(x*), v* € A(x*),
and for all n > 0,

= (%) U (g (%) = plu = v%)
= (1= a,)x* + a,[x* — g(x%)
I (g (%) = p(ur — v*))]
= (1= B)x* + B,[x* — g(x%)
RO (%) = p(ux — 09))].
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By the algorithm 3.1, using a similar argument as in the proof of Theorem
3.2, we obtain

|2, —x* = (g(x,) —g(x)| <V1—-2r+0? |x, —x*],
lx, —x* = p(, = u*)| < V1 - 2ap + p?B? ||x, —x*|,

[y, —x* = (2(3) —g(x))| < Vi—2x+ 02 |y, —x*],
1y, =% = p(u, —uw*)| < V1= 2ap +pB? |y, - x*].

Thus, by the Algorithm 3.1, the assumption of ¢, and Lemmas 2.1 and 2.2,
we have

ly, —x*]
=@ = B x, + B[x, —8(x,) + 70 (g(x,) = p(u, = 1,))]
—(1 = B,)x* = B,[x* — g(x*)
ARG CORNICETI
< (1= BIlx, —x* + B, [, —x* = (g(x,) —g(x*))]
+ B, 774 (g(x,) — p(u, — 0,))
—J7C(g(x,) = p(u, — 1,))||
+ B, 774 (8 (x,) — p(, — 1,))
=10 (g(x%) = p(ur — v¥)) |
< (1= B)lx, — x| + 2B, [k, —x* = (8(x,) —g(x))]
+ B, e, = x* = p(u, — uw*)| + B, pllo, — ¥l
+ By e, — x|
< (1= B)lx, —x*[ + Bk, — x|
+ Bt (p)llx, —x*|| + B, pylx, —x*|
< (L= B)lx, —x* + B0k, —x*|

<|lx, —x*]. (38)
Similarly, we have

I, 1 — 2% =[(1 = a,)x,

tay[y, = g(3,) +I7C = p(g(y,) — p(u, —v,))]
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=(1 = @)% = o, [x* = g(x%)

IO g (x%) = p(ur = o)
< (L= a)lx, =)+ a,0l, = (39)

It follows from (3.8) and (3.9) that

”xn+l _x*” = (1 - an)”xn _x*” + OZnGHXn _x*”

“ 1= @0l -
<1~ (- 0alln -l

Since ¥%_, «, divergesand 1 — 6 > 0, we have TT7_,[1 — (1 — 0)e;]1 = 0.
Hence the sequence {x,} strongly converges to x*. By (3.8), the sequence
{y,} also strongly converges to x*. Since u, € T(x,), u* € T(x*), and T is
B-Lipschitz continuous, we have

lu, —wel < Bly, —x*[ =0,

and hence the sequence {u,} strongly converges to u*. Similarly, we can
show that the sequence {v,} strongly converges to v*. This completes the
proof. 1

THEOREM 3.4. Let T: H — 2! be a-strongly monotone and B-Lipschitz
continuous, A: H — 2" be v-Lipschitz continuous, g: H — H be A-strongly
monotone and o-Lipschitz continuous, and ¢, ¢, HX H—» R U {4},
n=1,2,..., be such that for each fixedy € H, ¢(-, y) and each ¢,(-,y) are
both proper convex lower semicontinuous functions on H, g(H) N
dom d¢(-, y) # &, and for each x, y, z € H and for all n > 1,

”de%(',x)(z) —Jp"d’"("y)(Z)|| < ullx =yl

Assume lim,, |79 C(z) — J79C(2)|| = 0 for all y,z € H,
lim,_ . lle,ll = 0, and there exists a constant p > 0 such that the condition
(3.6) in Theorem 3.2 holds. Then the iterative {x,}, {u,}, and {v,} defined in
the Algorithm 3.3 strongly converges to x*, u*, and v*, respectively, and
(x*, u*, v*) is a solution of the GQVIP (T, A, g, ¢) (2.1).

Proof. By Theorem 3.2, the GQVIP (T, A4, g, ¢) (2.1) has a solution
(x*, u*, v*) such that u* € T(x*), v* € A(x*), and

o =1t = g () + TP (g(x%) — p(ur = 1),
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By setting A(x*) = g(x*) — p(u* — v*) and by using the Algorithm 3.3
and the assumptions of ¢ and ¢,, n = 1,2,..., we obtain

”xn+1 - x*” :| X — g(xn) + ]pt9¢,,(',x,,)(g(xn) - p(un B Un)) +e,
—x* 4+ g(x*) _ J;d’("x*)(g(X*) _ p(u* _ U*)) ”
<lx, =2 = (8(x,) = 8(x)]
+|| 7700 (g (x,) = p(u, — v,))
—JJe (g(x%) = p(u* — v*)) |
([ 7740 (g (x%) = p(u* = v*))
—JJH D (g (x%) = p(ur — )|
+[[ 74 (g (%) = (u* = v*))
=P (g(x%) = p(ur = v*)) | + e, |
< 2[lx, —x* = (8(x,) —g(x)|
+lx, —x* = p(u, —u*) || + pllv, — v*|
+ b, — x|

+ ]| J70CT = p(R(x*)) = T (R(x%)) || + eyl

< (k n l( p) . P)’)”xn _ X*” +||Jpﬂ¢"("x*)(h(x*))
—17C I (h(x%) | +le,l

< Bllxn —X*” + &, (310)

where k=pu +2V1 —2Xx+ 02, t(p) = \/1—2ap+p232, 0=k+
((p) + py, and g, = |74 (h(r) — IR + lle,ll. By the
condition (3.6) in Theorem 3.2, we have 6 < 1. It follows from (3.10) that

n
sn = x| < 0" g —x*[ + X 08,04
i=1

Since &, — 0 by the assumption, it follows from Orgeta and Rheinboldt
[31, p. 338] that

lim x,., —x*[ =0,
n— o
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and hence the sequence {x,} strongly converges to x*. Since u, € T(x,),
v, € A(x,), u* € T(x*), v* € A(x*), we have

lu, —w*|l < 8(T(w,), T(u*)) < B, —x*|,
[0, = v* < 8(A(v,), A(v*)) < vy, —x].

It follows that the sequences {u,} and {v,} also strongly converge to u* and
v*, respectively. This completes the proof. |

Remark 3.2. 1f ¢(x,y) = ¢(x) for all y € H and T and A are both
single-valued mappings, then Theorem 3.4 reduces to Theorem 2.1 of
Hassouni and Moudafi [19]. The Remark in [19] is still applicable for our
Theorem 3.4.
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