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Abstract

We study proof systems for reasoning about logical consequences and re'nement of struc-
tured speci'cations, based on similar systems proposed earlier in the literature (Inform. and
Comput. 76 (1988) 165; in: F.L. Bauer, W. Brauer, H. Schwichtenberg (Eds.), Logic and Al-
gebra of Speci'cation, NATO ASI Series F: Computer and Systems Sciences, vol. 94, Springer,
Berlin, 1991, p. 411). Following Goguen and Burstall, the notion of an underlying logical sys-
tem over which we build speci'cations is formalized as an institution and extended to a more
general notion, called (D;T)-institution. We show that under simple assumptions (essentially:
amalgamation and interpolation) the proposed proof systems are sound and complete. The com-
pleteness proofs are inspired by proofs due to Cengarle (Ph.D. Thesis, Institut f=ur Informatik,
Ludwig-Maximilians-Universit=at M=uenchen, 1994) for speci'cations in 'rst-order logic and the
logical systems for reasoning about them. We then propose a methodology for reusing proof
systems built over institutions rich enough to satisfy the properties required for the complete-
ness results for speci'cations built over poorer institutions where these properties need not hold.
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1. Introduction

During the process of software speci'cation and development, we often have to use
various logical systems to capture diAerent aspects of software systems and program-
ming paradigms. Each part of a software system may be described by diAerent logical
systems that best suit considered problems. The 'rst task is to present a formal concept
of a logical system which covers the population of logical systems used in practice.
This problem was considered by Goguen and Burstall [14]:

: : : because of the proliferation of logics of programming and logic-based program-
ming languages, plus the great expense of implementing tools like theorem provers
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and compilers, it is useful to know when sentences in one logic can be translated
into sentences into another logic in such a way that soundness is preserved. : : :
Institutions provide a foundations for approaching these and many other problems
in computer science.

Following the above ideas, we formalize the notion of a logical system as an insti-
tution. We attempt to work independently from the institution chosen, providing ideas
and results that work in an arbitrary institution.

In this paper we consider formal systems for reasoning about logical consequences
and re'nement of structural speci'cations built over an arbitrary logical system formal-
ized as institution (see [8, 27, 32] for similar systems). Most of the results, presented in
this paper, are based on the results presented in [4, 5]. In the 'rst part of the paper we
extend the notion of underlying logical system, formalized as institution, to (D;T)-
institution, where the classes of morphisms D and T are classes of morphisms allowed
to be used in the restriction and, respectively, translation of speci'cations. Next, we
show that formal systems for reasoning about logical consequences and re'nement of
structured speci'cations are sound and complete for any (D;T)-institution satisfying
basic closure, amalgamation and interpolation properties. This generalizes to an arbi-
trary (D;T)-institution the results of Cengarle [8] on completeness of similar systems
for speci'cations in 'rst-order logic. At the end of this part we demonstrate that the
interpolation property is crucial for completeness.

The underlying logic which is most appropriate in a given context, is not always
strong enough to satisfy the conditions that ensure completeness of logical systems
mentioned above. In the second part of the paper we use institution representations
(see [20, 30]) to embed institutions that may be too weak to ensure completeness of
logical systems for reasoning about structured speci'cations built over them into richer
institutions for which completeness holds. We also formulate conditions (essentially:
�-expansion and weak-D-amalgamation, see Sections 5 and 8) under which a complete
and sound proof system for reasoning about logical consequences and re'nement of
structural speci'cations in a richer institution can be reused for a sound proof system
for reasoning about logical consequences and re'nement of structural speci'cations
in the represented institution. To obtain this result, inspired by similar results on the
theory level presented in [17], we use the notion of the institution representation to
de'ne the speci4cation representation and prove similar results as in [17] but for the
model part of representations. In the concluding section we extend our results to a
more general case of maps of institutions (see [20]).

Problems presented in Sections 6 and 8 were also studied in [1] (also for the case of
structured speci'cations). The results presented there are similar to results presented in
Sections 7 and 8 but for the case of 5at speci4cations. Similar results as presented in
Sections 7 and 8 were also presented in [9, 30] for the case of speci'cations without
structure. Our results extend them to structured speci'cations.

Concluding, we demonstrate in a few examples how to use the proposed reusing
methodology in practice and argue that both assumptions under which the reusing
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methodology works are really crucial. We also show “how” the results presented in
this paper are more general than these presented in [17] and compare them with similar
results presented in other papers.

2. De�nitions

While developing a speci'cation system independently of the underlying logical sys-
tem, it is necessary to formalize an abstract mathematical concept of what a logical
system is. Our choice of an abstract formalization depends on what we mean by a
logical system. Following [14] in the model-theoretic tradition of logic:

One of the most essential elements of a logical system is its relationship of sat-
isfaction between its syntax (i.e. its sentences) and its semantics (i.e. models): : :

Based on this principle, the notion of a logical system is formalized as a mathematical
object called institution in [14].

An institution consists of a collection of signatures, together with a set of �-sentences
and a collection of �-models for each signature �, and a satisfaction relation between
�-models and �-sentences. The only requirement is that when we change signatures
(by signature morphisms), the induced translations of sentences and models preserve
the satisfaction relation. That last requirement, called also satisfaction condition (see
De'nition 2.1 below), means that: “Truth is invariant under change of notation”.

De�nition 2.1 (Institution [14]). An institution I consists of
• a category SignI of signatures;
• a functor SenI :SignI →Set, giving a set SenI (�) of �-sentences for each signature

�∈ |SignI |;
• a functor ModI :SignopI →DCat, 1 giving a category ModI (�) of �-models for each

signature �∈ |SignI |;
• for each �∈ |SignI |, a satisfaction relation |=I

� ⊆ |ModI (�)| ×SenI (�) such that
for any signature morphism � :�→�′, �-sentence ’∈SenI (�) and �′-model M ′ ∈
|ModI (�′)|:

M ′ |=I
�′ SenI (�) (’) iA ModI (�)(M ′) |=I

� ’ (Satisfaction condition)

Examples of various logical systems viewed as institutions can be found in [14]
then, we recall a few examples used later in the paper. The 'rst two were presented
also in [30]:

Example 2.2 (The institution EQ of equational logic). Signatures are the usual many-
sorted algebraic signatures; sentences are (universally quanti'ed) equations with

1DCat is the category of all discrete categories. For simplicity, we disregard in this paper morphisms
between models. Hence, classes of models, rather than model categories are considered.
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translations along a signature morphism essentially by replacing the operation names
as indicated by the signature morphism; models are many-sorted algebras with reducts
along a signature morphism de'ned in the usual way; and satisfaction relations are
given as the usual satisfaction of an equation in an algebra.

Example 2.3 (The institution FOEQ of 4rst-order logic with equality). Signatures
are 'rst-order many-sorted signatures (with sort names, operation names and predicate
names); sentences are the usual closed formulae of 'rst-order logic built over atomic
formulae given either as equalities or atomic predicate formulae; models are the usual
'rst-order structures; satisfaction of a formula in a structure is de'ned in the standard
way.

Example 2.4 (The institution PEQ of partial equational logic). Signatures are (as in
EQ) many-sorted algebraic signatures; sentences are (universally quanti'ed) equations
and de'nedness formulae with translations along a signature morphism de'ned similarly
as in institution EQ; models are partial many-sorted algebras with reducts along a
signature morphism de'ned in the usual way; and satisfaction relations are de'ned as
the satisfaction of an equation 2 and a de'nedness formula in a partial many-sorted
algebra.

In the next two de'nitions we de'ne what it means that an institution has a certain
minimal logical structure.

De�nition 2.5. We say that an institution I has conjunction if for every signature �∈
|SignI | and 'nite set of �-sentences {’i}i∈I ⊆SenI (�) there exists a �-sentence, which
we denote by

∧
i∈I ’i, such that for every �-model M ∈ |ModI (�)|:

M |=I
�

∧
i∈I

’i iA for every i ∈ I M |=I
� ’i:

We can similarly de'ne what it means that an institution “has in'nite conjunction”:

De�nition 2.6. We say that an institution I has in4nite conjunction if for every sig-
nature �∈ |SignI | and set of �-sentences {’i}i∈I ⊆SenI (�), where I is a (possibly
in'nite) set of indices, there exists a �-sentence, which we denote by

∧
i∈I ’i, such

that for every �-model M ∈ |ModI (�)|:
M |=I

�

∧
i∈I

’i iA for every i ∈ I M |=I
� ’i:

Obviously, if an institution has in'nite conjunction, then it has conjunction as well.

2 The satisfaction of an equation is strong, i.e. the equation t1 = t2 holds if t1 and t2 are either both
unde'ned or both de'ned and equal.
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De�nition 2.7. We say that an institution I has negation if for every signature �∈
|SignI | and �-sentence ’∈SenI (�) there exists a �-sentence, which we denote by
¬’, such that for every �-model M ∈ |ModI (�)|:

M |=I
� ¬’ iA it is not true that M |=I

� ’:

De�nition 2.8. We say that an institution I has implication if for every signature �∈
|SignI | and �-sentences ’1; ’2 ∈SenI (�) there exists a �-sentence, which we denote
by ’1 ⇒’2, such that for every �-model M ∈ |ModI (�)|:

M |=I
� ’1 ⇒ ’2 iA when M |=I

� ’1 then M |=I
� ’2:

Fact 2.9. If an institution I has conjunction and negation then it also has implication.

In the rest of the paper the following abbreviations are used:
• for any set of sentences �⊆SenI (�) and M ∈ |ModI (�)| we de'ne M |=I

�� as
an abbreviation for “for every sentence ’∈�: M |=I

� ’”, and similarly for every
class of models M⊆ |ModI (�)| and sentence ’∈SenI (�) we de'ne M |=I

� ’ as
an abbreviation for “for every model M ∈M: M |=I

� ’”;
• for any sentences ’;  ∈SenI (�) we de'ne ’ |=I

�  as an abbreviation for “for
every model M ∈ |ModI (�)|, M |=I

�  whenever M |=I
� ’”, similarly � |=I

� ’, for
any set of sentences �⊆SenI (�), as an abbreviation for “for every model M ∈
|ModI (�)|, M |=I

� ’ whenever M |=I
� �”, and also ’ |=I

� �1 and � |=I
� �1 for �; �1 ⊆

SenI (�) as abbreviations for “for every sentence  ∈�1, ’ |=I
�  ” and “for every

sentence  ∈�1, � |=I
�  ”;

• if an institution I has conjunction then for any sentences ’1; ’2 ∈SenI (�) we de'ne
’1 ∧’2 as an abbreviation for the sentence

∧
i∈{1;2} ’i;

• the following abbreviations will be used: �’ for SenI (�)(’), M |� for ModI (�)(M)
and |= for |=I

� when it is clear what they mean;
• for any set of sentences �⊆SenI (�) we write

∧
� as an abbreviation for

∧
i∈I ’i

where � = {’i | i∈I}, similarly we write
∧

�� for
∧

i∈I �’i.

Fact 2.10 (Deduction). For any institution I that has conjunction and implication; �∈
|SignI | and sentences ’1; ’2; ’3 ∈SenI (�); we have

’1 ∧ ’2 |= ’3 i; ’1 |= ’2 ⇒ ’3:

Proof. Directly from the de'nition.

The above fact shows that “semantic” deduction is a property of institutions having
conjunction and implication. For instance, institution FOEQ, presented in Example 2:3,
satis'es these conditions.

The notion of an institution as introduced in De'nition 2.1 covers the model-theoretic
view of a logical system. Although semantic aspect of a logical system is crucial for
our purposes (see Section 3), it is also important to be able to prove properties of a
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logical system. Therefore, a more proof-theoretic view of a logical system is important
as well (see also [20] and Chap. 4 of [18] for argumentation).

De�nition 2.11 (Entailment relation). For any institution I and signature �∈ |SignI |,
an entailment relation on the set SenI (�) of sentences is a relation �I

� ⊆P(SenI (�))
×SenI (�) such that

(Re5exivity) {’} �I
� ’;

(Transitivity) if �i �I
� ’i for i∈I and �∪{’i}i∈I �I

�  , then �∪ ⋃
i∈I �i �I

�  ; and
(Weakening) if � �I

�  , then �∪�′ �I
�  ;

where P(SenI (�)) is the power set of SenI (�), I is a set of indices, ’;  ; ’i ∈SenI (�)
are sentences and �; �′; �i ⊆SenI (�) are sets of sentences, for i∈I.

We also say that the entailment relation �I
� is sound wrt satisfaction relation |=�I ,

if for every �⊆SenI (�) and ’∈SenI (�)

� �I
� ’ implies � |=�I ’:

If the converse holds then the entailment relation �I
� is called complete for the satis-

faction relation |=�I .
A family of entailment relations {�I

�}�∈|Sign|, denoted by �I , is called a proof system
for institution I , if for every � ∈ |Sign|, �I

� is sound wrt the satisfaction relation |=I
�.

De�nition 2.12 (Entailment system [17; 20]). For a given institution I , E= (SignI ;
SenI ;�I ) is called an entailment system for I, if �I is a proof system for the insti-
tution I and is stable under translation, i.e. if for every �; �′ ∈ |SignI |, �∈SenI (�),
 ∈SenI (�) and (� :�→�′)∈SignI :

if � �I
�  then �� �I

�′ � :

In the speci'cation formalisms such as presented in [8, 12, 27, 26, 32] and also in
this paper (see De'nition 3.1), signature morphisms are used at least in two ways:
1. to hide some symbols in the signature of the (target) speci'cation and
2. to add and=or rename some symbols in the (source) signature.

According to this observation, in each institution I we distinguish two classes of
signature morphisms:
1. a class DI of the signature morphisms considered appropriate for hiding symbols

and
2. a class TI for adding and renaming symbols.

For instance, many speci'cation formalisms, based on the usual signatures, limit
the classes DI , implicitly involved in their de'nition, to injective or even inclusive
signature morphisms only, and the class TI to injective morphisms.

The above observations, plus some technical conditions, are formally expressed by
the following de'nition.
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De�nition 2.13 ((D;T)-institution). Let DI ;TI ⊆SignI be classes of signature mor-
phisms in an institution I . We say that the institution I with distinguished DI and TI

is (D;T)-institution iA:
• classes DI and TI are closed under composition and include all identities;
• for every (d :�→�1)∈DI and (t :�→�2)∈TI there exist (t′ :�1 →�′)∈TI and

(d′ :�2 →�′)∈DI such that the following diagram is a pushout in SignI :

The above de'nitions put some limitation on the signature part of “usual” insti-
tutions. For a given institution I not all choices of DI and TI are appropriate. For
example:

Example 2.14. Let us consider any institution I where SignI is the category of algebraic
signatures with derived morphisms AlgSigder (see [25]) and let both classes of mor-
phisms DI and TI contain all the morphisms from AlgSigder. Then the pushout from
De'nition 2.13 does not exists in general because the category AlgSigder does not have
all pushouts. On the other hand, when for instance DI is the class of inclusions and
TI of all derived morphisms then the required pushouts exist.

A positive example could be any institution I with ('nitely) cocomplete category of
signatures SignI and DI = TI =Sign, e.g. the category of algebraic signatures AlgSig
is such a category.

In the rest of this section we de'ne properties of a logical system formalized as
(D;T)-institution, which are used in the completeness theorem (see Theorem 3.9 and
also [8]). The 'rst property is the interpolation property. The following de'nition of
the (D;T)-interpolation property is inspired by the formalization of Craig Interpolation
Theorem presented in [29].

De�nition 2.15 ((D;T)-interpolation). A (D;T)-institution I satis'es the (D;T)-
interpolation property iA for any d; d′ ∈DI and t; t′ ∈TI that form a pushout in SignI
(as in De'nition 2.13) and ’i ∈SenI (�i) for i = 1; 2, if

SenI (t′)(’1) |=I
�′ SenI (d′)(’2)



204 T. Borzyszkowski / Theoretical Computer Science 286 (2002) 197–245

then there exists ’∈SenI (�), called (D;T)-interpolant of ’1 and ’2, such that

’1 |=I
�1
SenI (d)(’) and SenI (t)(’) |=I

�2
’2:

In the above de'nition we can weaken the requirement of existence of (D;T)-
interpolant to the existence of a set of (D;T)-interpolants. Then we obtain:

De�nition 2.16 (Weak-(D;T)-interpolation). A (D;T)-institution I satis'es the
weak-(D;T)-interpolation property iA for any d; d′ ∈DI and t; t′ ∈TI that form a
pushout in SignI (as in De'nition 2.13) and ’i ∈SenI (�i) for i = 1; 2, if

SenI (t′)(’1) |=I
�′ SenI (d′)(’2)

then there exists �⊆SenI (�) such that

’1 |=I
�1
SenI (d)(�) and SenI (t)(�) |=I

�2
’2:

A characterization of above interpolation properties in terms of a module algebra
can be found in [3] and also in [11].

Lemma 2.17. If the (D;T)-institution I has in4nite conjunction and satis4es the
weak-(D;T)-interpolation property then it also satis4es (D;T)-interpolation
property.

Example 2.18. The (D;T)-institution EQ where DEQ is the class of signature inclu-
sions and TEQ is the class of signature injections satis'es the weak-(D;T)-interpolation
property (see [23]) but not the (D;T)-interpolation property, whereas the (D;T)-insti-
tution FOEQ where DFOEQ is the class of signature inclusions and TFOEQ is the class
of signature injections satis'es both the interpolation properties. The above facts follow
from the arguments presented in [3].

Remark 2.19. It follows from Example 2.18 and Lemma 2.17 that the (D;T)-institu-
tion EQ from the above example does not have in'nite conjunction in the sense of
De'nition 2.6 (which is obvious anyway).

De�nition 2.20 (Compactness). The institution I is compact iA for any �-sentence
’∈SenI (�) and any set of �-sentences �⊆SenI (�), if � |=’ then there exists a
'nite set �′ ⊆� such that �′ |=’.

The next property is inspired by the well-known amalgamation property.

De�nition 2.21 (Weak-(D;T)-amalgamation). A (D;T)-institution I satis'es the
weak-(D;T)-amalgamation property iA for any d; d′ ∈DI and t; t′ ∈TI that form a
pushout in SignI (as in De'nition 2.13) and for any M1∈ModI (�1) and M2∈ModI (�2),
if M1|d =M2|t , then there exists a model M ′ ∈ModI (�′) uch that M ′|t′ =M1 and
M ′|d′ =M2.
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Assumption 2.22. Through Sections 3 and 4 we will work with an arbitrary but 'xed
(D;T)-institution I that has conjunction and negation and for which DI ⊆TI .

3. Speci�cations

From now on we will work with speci'cations similar to speci'cations de'ned
in [27].

As in [27] we assume that software systems, described by speci'cations, are ad-
equately represented by models of institutions. This means that a speci'cation must
describe a signature and a class of models over this signature called the class of
models of the speci4cation. For any speci'cation SP we denote its signature by
Sig[SP] and the collection of its models by Mod[SP]; we have Sig[SP]∈ |SignI | and
Mod[SP]⊆ |Mod(Sig[SP])|. If Sig[SP] =� we will call SP a �-speci'cation, and we
denote the class of �-speci'cations by Spec�.

De�nition 3.1 (Speci4cations). Speci'cations over a (D;T)-institution I and their
semantics are de'ned inductively as follows:
1. Any pair 〈�; �〉, where �∈SignI and �⊆SenI (�), is a speci'cation, called also

5at speci4cation or presentation, with the following semantics:
Sig[〈�; �〉] =�;
Mod[〈�; �〉] = {M ∈ |ModI (�)| |M |=I

� �}:
2. For any signature � and �-speci'cations SP1 and SP2; SP1 ∪ SP2 is a speci'cation

with the following semantics:
Sig[SP1 ∪ SP2] =�;
Mod[SP1 ∪ SP2] =Mod[SP1]∩Mod[SP2]:

3. For any morphism (t :�→�′)∈TI and �-speci'cation SP; translate SP by t is a
speci'cation with the following semantics:
Sig[translate SP by t] =�′;
Mod[translate SP by t] = {M ′ ∈ |ModI (�′)| |M ′|t ∈Mod[SP]}:

4. For any morphism (d :�→�′)∈DI and �′-speci'cation SP′,
derive from SP′ by d is a speci'cation with the following semantics:
Sig[derive from SP′ by d] =�;
Mod[derive from SP′ by d] = {M ′|d |M ′ ∈Mod[SP′]}:

The above de'nition introduces a number of operations on speci'cations (union,
translate, derive) called speci4cation building operations or SBOs for short. The above
SBOs semantically refer to certain functions on classes of models and provide some
Nexible mechanism for expressing basic ways of putting speci'cations together in a
structured manner.

De�nition 3.2. Speci'cations SP1 and SP2 are equivalent (written SP1
∼= SP2) if

Sig[SP1] = Sig[SP2] and Mod[SP1] = Mod[SP2]:
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In the above de'nition we use equality of signatures. We can also use signature
equivalences de'ned separately for each category of signatures (as a certain class of
isomorphisms) without any inNuence on the results presented in the rest of the paper.

De�nition 3.3 (Semantic consequence). A �-sentence ’ is a semantic consequence of
a �-speci'cation SP (written SP |=� ’) if Mod[SP] |=I

� ’.

Each �-sentence ’ that is a semantic consequence of a �-speci'cation SP is called
a theorem of SP.

The above de'nition gives us a model-theoretic view of logical consequences of
speci'cations. Although it is the most fundamental concept in this paper, it is also
crucial to be able to prove properties of speci'cations from its de'nitions. This proof-
theoretic view is given by the following de'nition:

De�nition 3.4. For a given (D;T)-institution I the family of entailment relations 3

�� ⊆Spec� ×Sen(�) for �∈ |SignI |; parametrized by the entailment system (SignI ;
SenI ;�I ) for I , is de'ned by the following set of rules:

(CR)
{SP �� ’i}i∈I {’i}i∈I �I

� ’
SP �� ’

(sum1)
SP1 �� ’

SP1 ∪ SP2 �� ’

(trans)
SP �� ’

translate SP by t ��′ t’

(basic)
’ ∈ �

〈�〉� �� ’

(sum2)
SP2 �� ’

SP1 ∪ SP2 �� ’

(derive)
SP′ ��′ d’

derive from SP′ by d �� ’

where (t :�→�′)∈TI and (d :�→�′)∈DI .

The set of rules presented in the above de'nition yields a compositional proof sys-
tem: it allows one to perform proofs of theorems of a given speci'cation SP according
to the structure of SP. The above structured proof system is parameterized (see rule
(CR)) by the proof system for the underlying institution. The main diAerence between
the above set of rules and those presented in [27] are rules (trans) and (derive). In [27]
morphisms occurring in (trans) and (derive) rules (and in corresponding SBOs) can
be any signature morphisms, whereas in the rules presented above morphisms are re-
stricted to 'xed classes of morphisms: TI for the rule (trans) and DI for the rule
(derive).

Let us notice that all the SBOs presented in [8] can be expressed by the generic
SBOs presented in this section. Moreover the proof rules presented in [8] can be derived
from the rules presented above.

One of the aims of this paper is to study mutual relations between the semantic con-
sequence relation and the entailment relation, especially soundness and completeness.

3 Entailment relations de'ned in this de'nition are not the entailment relations in the sense of De'ni-
tion 2.11.
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De�nition 3.5 (Soundness and completeness). For any (D;T)-institution I and signa-
ture �∈ |Sign|, we say that the entailment relation �� ⊆Spec� ×Sen(�) is sound wrt
the semantic consequence relation |=� ⊆Spec� ×Sen(�), if for any �-speci'cation SP
over (D;T)-institution I and �-sentence ’:

SP �� ’ implies SP |=� ’:

We also say that the entailment relation �� is complete, if

SP |=� ’ implies SP �� ’:

The entailment relation de'ned by De'nition 3.4 is sound wrt the semantic con-
sequence relation de'ned by De'nition 3.3 (provided �I is so). The proof follows
directly from semantics of SBOs presented in De'nition 3.1 (see also proof of sound-
ness presented in [27]).

Now, to prove completeness of the entailment relation �� we need some more
notions. The 'rst is the notion of a normal form of a given speci'cation. A similar
de'nition was presented in [8] (cf. also [3]).

De�nition 3.6 (Normal form). We say that the speci'cation SP over (D;T)-institu-
tion I is in the normal form if it has a form

derive from 〈�; �〉 by d;

where (d :Sig[SP]→�)∈DI and �⊆SenI (�).

The following de'nition introduces an operation nf that for every speci'cation SP
gives the speci'cation nf(SP) that is in the normal form and is equivalent to SP in
the sense of De'nition 3:2.

De�nition 3.7 (nf operation). nf operation on speci'cations build over (D;T)-institu-
tion I is de'ned as follows:
1. If SP is a speci'cation of the form 〈�; �〉, then
nf(SP) = derive from 〈�; �〉 by id�:

2. If SP is a speci'cation of the form SP1 ∪ SP2, then
nf(SP) = derive from 〈�′; t′1�2 ∪d′

2�1〉 by d, where
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nf(SPi) = derive from 〈�i; �−i〉 by di for i = 1; 2; d=d1;d′
2 =d2; t′1 and �′; t′1 ∈TI

and d′
2 ∈DI are given by a pushout in SignI :

3. If SP is a speci'cation of the form translate SP1 by t, then
nf(SP) = derive from 〈�′; t′�1〉 by d′

1, where
nf(SP1) = derive from 〈�1; �1〉 by d1 and �′; t′ ∈TI and d′

1 ∈DI are given by a
pushout in SignI :

4. If SP is a speci'cation of the form derive from SP1 by d, then
nf(SP) = derive from 〈�1; �1〉 by (d; d1), where
nf(SP1) = derive from 〈�1; �1〉 by d1.

In De'nition 3.1 we introduce structured speci'cations using sets and speci'c lan-
guage constructions. It is also possible to introduce structured speci'cations as diagrams
in a suitable category. Then the construction presented in the above de'nition can be
considered as the colimit of a proper diagram.

Theorem 3.8. For any speci4cation SP build over (D;T)-institution I satisfying the
weak-(D;T)-amalgamation property; we have

nf(SP) ∼= SP:

Proof. By induction on the structure of SP. The signature part of the equivalence,
Sig[nf(SP)] =Sig[SP]; follows directly from De'nition 3.7 (recall that DI ⊆TI , and
both are closed under composition).

Proof of the model part, Mod[nf(SP)] =Mod[SP] (notation as in De'nition 3.7).
1. If SP is a speci'cation of the form 〈�; �〉: This case is obvious, since the reduct

along identity is the identity.
2. If SP is a speci'cation of the form SP1 ∪ SP2 :⊆—Let M ∈Mod[nf(SP)]. Then there

exists a model M ′ ∈Mod[〈�′; t′1�2 ∪d′
2�1〉] such that M ′|d =M . It means that:

M ′ |= t′1�2 and M ′ |= d′
2�1

which by the satisfaction condition is equivalent to

M ′|t′1 |= �2 and M ′|d′
2
|= �1:
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By De'nitions 3.1 and 3.7 we have

M ′|d2;t′1 ∈Mod[nf(SP2)] and M ′|d1;d′
2
∈Mod[nf(SP1)]:

By the induction hypothesis and because M ′|d2; t′1 =M ′|d =M and similarly M ′|d1;d′
2

=M ′|d =M :

M ∈Mod[SP1]∩Mod[SP2] =Mod[SP]:

⊇—Let M ∈Mod[SP]. Then M ∈Mod[SP1] and M ∈Mod[SP2] which by the induc-
tion hypothesis gives: M ∈Mod[nf(SP1)] and M ∈Mod[nf(SP2)]. By the de'nitions
there exist models Mi ∈Mod[〈�i; �i〉] for i = 1; 2 such that:

Mi|di = M and Mi |= �i for i = 1; 2:

By the weak-(D;T)-amalgamation property there exists a model M ′ ∈Mod(�′)
such that M ′|d′

2
=M1 and M ′|t′1 =M2. Now we have:

M ′|d′
2
|= �1 and M ′|t′1 |= �2

which by the satisfaction condition and De'nition 3.1 is equivalent to: M ′∈Mod[〈�′;
d′

2�1 ∪ t′1�2〉], and so, because M =M ′|d1;d′
2
=M ′|d, we have: M ∈Mod[nf(SP)].

3. If SP is a speci'cation of the form translate SP1 by t : ⊆—Let M ∈Mod[nf(SP)].
Then by de'nitions there exists a model M ′ ∈ |Mod(�′)| such that M ′ |= t′�1 and
M ′|d′

1
=M . By the satisfaction condition we obtain: M ′|t′ |= �1 and then: M ′|d1; t′ ∈

Mod[nf(SP1)]. Now, by the induction hypothesis and because M ′|d1; t′ =M ′|t;d′
1

=
M |t , we have that M |t ∈Mod[SP1] and by De'nition 3.1, M ∈
Mod[SP].
⊇—Let M ∈Mod[SP]. Then M |t ∈Mod[SP1] and by the induction hypothesis M |t ∈
Mod[nf(SP1)]. There exists a model M1 ∈ |Mod(�1)| such that M1 |=�1 and M1|d1 =
M |t (see De'nition 3.7). By the weak-(D;T)-amalgamation property there ex-
ists a model M ′ ∈ |Mod(�′)| such that: M ′|d′

1
=M and M ′|t′ =M1. Now we have

M ′|t′ |=�1 and so, by the satisfaction condition M ′|= t′�1 and M ′|d′
1
∈Mod[nf(SP)],

which is equivalent to M ∈Mod[nf(SP)].
4. If SP is a speci'cation of the form derive from SP1 by d: ⊆—Let M ∈Mod[nf(SP)].

Then by de'nitions there exists a model M1 ∈ |Mod(�1)| such that M1 |=�1 and
M1|d;d1 =M . Now, by the induction hypothesis: M1|d1 ∈Mod[SP1] which by De'ni-
tion 3.1 means that M ∈Mod[SP].
⊇—Let M ∈Mod[SP]. Then there exists M1 ∈Mod[SP1] such that M1|d =M . By the
induction hypothesis: M1 ∈Mod[nf(SP1)]. Now there exists M2 ∈ |Mod(�1)| such
that M2|d1 =M1 and because M2|d;d1 =M we have: M ∈Mod[nf(SP)].

The above theorem is very important from our point of view and its proof is crucial
for understanding of the rules presented above and then of the proof of their com-
pleteness. It allows us to replace any speci'cation by its appropriate normal form, for
which some basic properties are more easily visible.
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Theorem 3.9 (Completeness). Let I be a (D;T)-institution that has in4nite conjunc-
tion and implication. If
1: institution I satis4es (D;T)-interpolation and weak-(D;T)-amalgamation proper-

ties; and
2: entailment relations �I used in rule (CR) are complete for |=I ;

then for any �-speci4cation SP over (D;T)-institution I and any �-sentence ’,

SP |=� ’ implies SP �� ’:

Proof. By induction on the structure of SP.
1. If SP is a speci'cation of the form 〈�; �〉, then

〈�; �〉 |=� ’ iA Mod[〈�; �〉] |=I
� ’ iA � |=I

� ’

and this, by assumption 2, is equivalent to � �I
� ’. Now, if ’∈� then the rule

(basic) completes the proof. If ’ =∈�, then (CR) and (basic) rules must be used to
complete the proof.

2. Let SP be a speci'cation of the form SP1 ∪ SP2 and let
nf(SPi) = derive from 〈�i; �i〉 by (di :�→�i) for i = 1; 2.
Then nf(SP) = derive from 〈�′; t′2�1 ∪d′

1�2〉 by (d :�→�′), where d′
1 ∈DI ; t′2 ∈TI

and �′ are given by the following pushout in Sign:

From Theorem 3.8 we have Mod[nf(SP)] |=I
� ’: Therefore by the satisfaction con-

dition t′2�1 ∪d′
1�2 |=I

�′ d’, which is equivalent to t′2(
∧

�1) |=I
�′ (

∧
d′

1�2)⇒d’ in I .
Since d=d2;d′

1, this is equivalent to t′2(
∧

�1) |=I
�′ d′

1(
∧

�2 ⇒d2’): By (D;T)-inter-
polation property for I , we have that there exists a �-sentence ’3 such that
(1)

∧
�1 |=I

�1
d1’3,

(2) d2’3 |=I
�2

∧
�2 ⇒d2’.

Condition (1) imply Mod[〈�1; �1〉] |=I
�1

d1’3, which by the satisfaction condition is
equivalent to Mod[nf(SP1)] |=I

� ’3 and so, by Theorem 3.8, to Mod[SP1] |=I
� ’3.

Now, by the induction hypothesis we obtain SP1 �� ’3.
Condition (2) by Theorem 2:10 is equivalent to

∧
�2 |=I

�2
d2(’3 ⇒’). Next, we

obtain Mod[〈�2; �2〉] |=I
�2

d2(’3 ⇒’) and by the satisfaction condition and Theo-
rem 3.8, Mod[SP2] |=I

� ’3 ⇒’ which by the induction hypothesis gives: SP2 �� ’3



T. Borzyszkowski / Theoretical Computer Science 286 (2002) 197–245 211

⇒’. The following derivation completes the proof:

(CR)
(sum1)

SP1 �� ’3

SP1 ∪ SP2 �� ’3
(sum2)

SP2 �� ’3’3 ⇒ ’
SP1 ∪ SP2 �� ’3 ⇒ ’ {’3 ⇒ ’; ’3} �I

� ’

SP1 ∪ SP2 �� ’

where {’3 ⇒’; ’3} �I
� ’ follows from (4) by Theorem 2:10 and because �I

� is
complete for |=I

� (assumption 2).
3. If SP is a speci'cation of the form translate SP′ by (t :�′ →�), then let nf(SP′) =
derive from 〈�1; �1〉 by (d1 :�′ →�1) and
nf(SP) = derive from 〈�′

1; t
′�1〉 by (d′

1 :�→�′
1), where t′; d′

1 and �′
1 are given by

a pushout diagram in Sign:

Now, similarly to case 2, SP |=� ’ iA Mod[nf(SP)] |=I
� ’:

By the satisfaction condition, we obtain Mod[〈�′
1; t

′�1〉] |=I
�′

1
d′

1’, which is equivalent

to t′(
∧

�1) |=I
�′

1
d′

1’: By the (D;T)-interpolation property, there exists a �′-sentence
’′ such that
(1)

∧
�1 |=I

�1
d1’′,

(2) t’′ |=I
� ’:

Because Mod[〈�1; �1〉] |=I
�1

�1 and (1), we have Mod[〈�1; �1〉] |=I
�1

d1’′ and by the
satisfaction condition and Theorem 3.8, Mod[SP′] |=I

�′ ’′, which by the induction
hypothesis is equivalent to SP′ ��′ ’′: The following derivation completes this case:

(CR)
(trans)

SP′ ��′ ’′

translate SP′ by t �� t’′ t’′ �I
� ’

translate SP′ by t �� ’

where t’′ �I
� ’ follows from (2) by assumption 2.

4. If SP is a speci'cation of the form derive from SP′ by d, where d :�→�′, then
SP |=� ’ iA (Mod[SP′])|d |=I

� ’: By the satisfaction condition, we have Mod[SP′]
|=I

�′ d’, and by the induction hypothesis SP′ ��′ d’: Application of the (derive)
rule completes the proof.

If the (D;T)-institution over which we build speci'cations is compact then we can
modify Theorem 3.9 and obtain:
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Corollary 3.10. Let I be a (D;T)-institution that has conjunction and implication. If
1: institution I satis4es the weak-(D;T)-interpolation and weak-(D;T)-amalga-

mation properties;
2: the entailment relations �I used in the rule (CR) are complete for |=I ; and
3: the institution I is compact;
then for any �-speci4cation SP over the institution I and any �-sentence ’;

SP |=� ’ i; SP �� ’:

Proof. By soundness of �� wrt |=� and by an obvious modi'cation of the proof of
Theorem 3.9: in each case when from � |= ’ we deduce

∧
� |= ’, we 'rst have to

choose a 'nite set �1 ⊆� such that �1 |= ’ and then work with
∧

�1 |= ’ .

Directly from Lemma 2.17 and Theorem 3.9 we have:

Corollary 3.11. Let I be a (D;T)-institution that has in4nite conjunction and impli-
cation. If
1: institution I satis4es the weak-(D;T)-interpolation and weak-(D;T)-amalgama-

tion properties; and
2: the entailment relations �I ; used in the rule (CR) are complete for |=I ;

then for any �-speci4cation SP over the institution I and any �-sentence ’;

SP |=� ’ i; SP �� ’:

De�nition 3.12. We say that speci'cations de'ned by De'nition 3.1 are 4nite iA in
point 1 of De'nition 3.1 we additionally assume that the set � is 'nite.

Fact 3.13. The normal form of a 4nite speci4cation is 4nite.

Proof. By induction on the structure of SP.

Now for 'nite speci'cations we can skip assumption 3 in Corollary 3.10 and obtain:

Corollary 3.14. Let I be a (D;T)-institution that has conjunction and implication.
If
1: institution I satis4es the (D;T)-interpolation and weak-(D;T)-amalga-

mation properties; and
2: the entailment relations �I used in the rule (CR) are complete for |=I ;

then for any 4nite �-speci4cation SP over the institution I and any �-sentence ’

SP |=� ’ i; SP �� ’:

Proof. By inspection of the proof of Theorem 3.9. It is easy to check that all the sets
of sentences used there are 'nite if SP is a 'nite speci'cation.
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Another consequence of completeness of entailment relation �� is presented by the
following lemma:

Lemma 3.15. For any (D;T)-institution I; signature �∈ |SignI |; �-speci4cations SP1

and SP2; ’∈SenI (�) and the entailment relation �� which is complete; if SP1
∼= SP2

then

SP1 �� ’ i; SP2 �� ’:

Proof. ⇒: By soundness of the entailment relation �� we obtain SP1 |=� ’. From
SP1

∼= SP2 we have Mod[SP1] =Mod[SP2] and next SP2 |=� ’ which by completeness
of �� gives us SP2 �� ’.
⇐: By symmetry.

In particular, from the above lemma it follows that if �� is complete and we can prove
the judgment nf(SP) �� ’, then there also exists a proof of SP �� ’.

In the next lemma we show that the interpolation property is crucial for completeness
of the compositional proof system.

Lemma 3.16. If the (D;T)-institution I satisfying the weak-(D;T)-amalgamation
property does not have the weak-(D;T)-interpolation property; then the logical sys-
tem for proving logical consequences of speci4cations over I presented in De4nition
3:4 is not complete.

Proof. Let

be a diagram in SignI and

t′’1 |=I
�′ d′’2 (1)

where ’i ∈SenI (�i) are such that there is no �⊆SenI (�) such that

’1 |=I
�1

d� and t� |=I
�2

’2: (2)

Let us assume that the logical system for proving logical consequences of speci'cations
over I is complete.
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Now we show that

t′’1 |=I
�′ d′’2 implies translate (derive from 〈�1; {’1}〉 by d) by t |=�2 ’2:

Let M2 ∈Mod[translate (derive from 〈�1; {’1}〉 by d) by t]. Then by De'nition 3.1

M2|t ∈Mod[derive from 〈�1; {’1}〉 by d]

and there exists M1 ∈Mod(�1) such that

M1|d = M2|t and M1 |=I
�1

’1:

By the weak-(D;T)-amalgamation property there exists M ′ ∈Mod(�′) such that

M ′|t′ = M1 and M ′|d′ = M2:

Because M1 |=I
�1

’1 and M ′|t′ =M1 we obtain M ′ |=I
�′ t′’1 and by the assumption

M ′ |=I
�′ d′’2. Next, we have M ′|d′ |=I

�2
’2 and 'nally because M ′|d′ =M2, M2 |=I

�2
’2.

Now, from the above implication and (1) and also by the assumption (completeness)
we obtain

translate (derive from 〈�1; {’1}〉 by d) by t ��2 ’2:

Because of the shape of (trans) rule and since �I has transitivity and is stable under
translation (see De'nitions 2.11 and 2.12) there exists � = { i | i∈I}⊆SenI (�) such
that

(CR)


 (trans)

(derive)
(basic)

’1 �I
�1

d i
〈�1; {’1}〉 ��1 d i

derive from 〈�1; {’1}〉 by d ��  i
translate (derive from 〈�1; {’1}〉 by d) by t ��2 t i




i∈I
t� �I

�2
’2

translate (derive from 〈�1; {’1}〉 by d) by t ��2 ’2

From the above proof tree we have

{’1 �I
�1

d i}i∈I and t� �I
�2

’2

and because �I is sound wrt |=I :

’1 |=I
�1

d� and t� |=I
�2

’2;

which is in contradiction to (2).

There are at least two kinds of negative examples of speci'cations, known from
the literature, where the (D;T)-interpolation (and also Theorem 3.9) does not hold
for the underlying (D;T)-institution and therefore certain semantic consequences of
speci'cations cannot be proved using the rules of De'nition 3.4. The 'rst, presented
also in [17], is based on empty carriers.
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Example 3.17. Let us consider a speci'cation SP over (D;T)-institution EQ, where
DEQ is the class of signature inclusions and TEQ is the class of all signature mor-
phisms, and

SP0 = 〈�0; ∅〉;
SP2 = 〈�1; {∀x:s:b = c}〉;

SP1 = derive from SP0 by –;

SP = SP1 ∪ SP2;

where
• �0 = sig sorts s; s′ opns a : s; b; c : s′ end;
• �1 = sig sorts s; s′ opns b; c : s′ end;
• – :�1 ,→ �0.
As shown in [28]:

SP |=�1 b = c; (3)

whereas the judgment:

SP ��1 b = c (4)

cannot be proved in EQ because the sentence b= c cannot be derived from the sentence
∀x:s:b= c (the nonemptiness of the carrier of sort s, ensured by the hidden constant a,
cannot be expressed using equations, cf. [15]).

The second example is based on the example presented in [3].

Example 3.18. Let the (D;T)-institution EQ be the same as in Example 3.17 and let
us consider speci'cation SP over (D;T)-institution EQ de'ned as follows:

SP0 = 〈�0; {f(c) = c}〉;
SP1 = 〈�1; {h(x; x; y) = y; h(x; f(x); a) = h(x; f(x); b)}〉;
SP2 = derive from SP0 by –;

SP = (translate SP2 by —) ∪ SP1;

where
• �0 = sig sorts s opns c : s; f : s→ s end;
• �1 = sig sorts s opns a; b : s; f : s→ s; h : s× s× s→ s end;
• �2 = sig sorts s opns f : s→ s; end;
• – : �2 ,→ �0 and — : �2 ,→ �1.

Now, Mod[SP0] is the class of all �0-algebras, which satisfy f(c) = c. Mod[SP1]
consists of all �1-algebras for which h(x; x; y) =y and h(x; f(x); a) = h(x; f(x); b). For
some �1-algebras in Mod[SP1] the equality a= b is satis'ed, but not for all. The class
Mod[SP2] consists of reducts of algebras from Mod[SP0] obtained by removing the
constant c. Let us notice that we do not touch interpretation of f in Mod[SP2]. It means
that for every M ∈Mod[SP2] there exists value v∈ |M |s such that f(v) = v: Mod[SP]
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is intersection of Mod[SP2], viewed as a class of �1-algebras, and Mod[SP1]. Because
in Mod[SP] there exists value v∈ |M |s such that f(v) = v we have

a = h(v; v; a) = h(v; f(v); a) = h(v; f(v); b) = h(v; v; b) = b:

It means that SP |=�1 a= b.
On the other hand, we cannot prove SP ��1 a= b, because in EQ we cannot express

the existence of value v of sort s such that f(v) = v.

In Lemma 3.16, we argued that the entailment relation de'ned in De'nition 3.4
is not complete, if the underlying logical system does not satisfy the weak-(D;T)-
interpolation property. In both examples presented above the underlying (D;T)-insti-
tution EQ satis'es the weak-(D;T)-interpolation property but does not satisfy the
(D;T)-interpolation property. An interesting question is

What are the minimal conditions, that have to be satis'ed by the underlying (D;
T)-institution (apart from the weak-(D;T)-interpolation property) in order to en-
sure completeness of the entailment relation �� wrt the semantic consequence |=�?

In Corollaries 3.11 and 3.10 gives some (not minimal) answer for the above question.
In general the problem presented in the above question is open.

Now, we present a positive example based on Example 5:3:3 from [8], and also
presented in [4]. It shows how to construct a nontrivial speci'cation and how to use
the logical system de'ned in this section for reasoning about this speci'cation.

Example 3.19. In this example we will work with speci'cations over the (D;T)-
institution FOEQ.

First, we de'ne two speci'cations: the 'rst ST specifying stacks and the second
NAT specifying natural numbers. Then we put them together to obtain speci'cation
NAT-ST of stacks of natural numbers. Let us start with signatures:

SIG-ST = sig
sorts Elem; Stack
opns empty :Stack;

push : Elem× Stack → Stack;
top : Stack → Elem;
pop : Stack → Stack

rels is empty ⊆ Stack
end

SIG-NAT = sig
sorts Nat
opns zero :Nat;

succ :Nat → Nat
rels is zero ⊆ Nat

end
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In the next step we de'ne speci'cations of stacks and natural numbers:
ST= 〈SIG-ST , {∀e:Elem:∀x:Stack :pop(push(e; x)) = x;

∀e:Elem:∀x:Stack :top(push(e; x)) = e;
is empty(empty);
∀e:Elem:∀x:Stack :¬(is empty(push(e; x)))}〉

NAT = 〈SIG-NAT , {∀m;n:Nat :succ m = succ n ⇒ m = n;
∀m:Nat :¬(succ m = zero);
is zero(zero);
∀m:Nat :¬is zero(succ m)}〉

Now, we put above speci'cations together to obtain the speci'cation of stacks of
natural numbers. Let us consider the following pushout in Sign:

where
• SIG-ELEM = sig sorts Elem end;
• t(Elem) =Nat;
• d is an inclusion.

From the above we can de'ne

NAT -ST = (translate NAT by d′) ∪ (translate ST by t′)

and prove several properties of the NAT-ST speci'cation, e.g.

NAT -ST �SIG-NAT-ST ∀x:Stack :is zero(top(push(zero; x))):

In the following proof of the above property, we write � as an abbreviation for
�SIG-NAT-ST ; Ax of ST for the set of axions of the speci'cation ST and Ax of NAT
for the set of axions of the speci'cation NAT:

(CR)

(3)
NAT -ST � is zero(zero)

(2)
NAT -ST � ∀n:Nat:∀x:Stack :top(push(n;x))=n

(1)

NAT -ST � ∀x:Stack :is zero(top(push(zero; x)))

where (1) is a proof in FOEQ of the following judgment:

{
is zero(zero);
∀n:Nat :∀x:Stack :top(push(n; x)) = n

}
�FOEQSIG-NAT-ST ∀x:Stack :is zero(top(push(zero; x)));
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(2) is the following proof:

(sum2)
(trans)

(basic)
(∀n:Elem:∀x:Stack :top(push(n; x)) = n) ∈ Ax of ST
ST �SIG-ST ∀n:Elem:∀x:Stack :top(push(n; x)) = n

translate ST by t′ � ∀n:Nat :∀x:Stack :top(push(n; x)) = n
NAT -ST � ∀n:Nat :∀x:Stack :top(push(n; x)) = n

and 'nally (3) is

(sum1)
(trans)

(basic)
(is zero(zero)) ∈ Ax of NAT
NAT �SIG-NAT is zero(zero)

translate NAT by d′ � is zero(zero)
NAT -ST � is zero(zero)

:

At the end of this section we want to mention a noncompositional proof system for
proving logical consequences of structural speci'cations (see also [8, 32]). It can be
de'ned by the following rules:

(n-nf )
nf(SP) �(n)

� ’

SP �(n)
� ’

(n-derive)
�′ �I

�′ d’

derive from 〈�′; �′〉 by d �(n)
� ’

where SP is a �-speci'cation, ’ is �-sentence, �′ is a set of �′-sentences and
(d :�′ →�)∈DI .

The above proof system is sound wrt the semantic consequence |=� and complete
if �I

� is complete. As we can see this proof system has nice proof-theoretic properties
but has also several disadvantages in practice. The 'rst is the technical complexity of
computing a normal form which can be very important for larger speci'cations. The
second is the loss of structure. The structured nature of the speci'cation is ignored,
and too many axioms occurring in the normal form may cause the proof to become
hard to deal with and the proof search more diQcult.

4. Re�nement

In this section we consider the re'nement relation for speci'cations build over
(D;T)-institutions and prove that the logical system for reasoning about the re'nement
relation, presented in this section, is sound and complete.

In addition to Assumption 2.22 throughout this section we also adopt the following
restriction on classes D and T:

Assumption 4.1. We assume that every (D;T)-institution I satis'es TI = IsoI ;DI ,
where IsoI is a class of isomorphisms of institution I , i.e. every t ∈TI can be presented
as t = i;d, where i∈ IsoI and d∈DI .

De�nition 4.2 (Semantic re4nement). A �-speci'cation SP2 is a semantic re4nement
of a �-speci'cation SP1 (written SP1  � SP2) if Mod[SP1] ⊇Mod[SP2].
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De�nition 4.3 (Conservative extension along d). For any speci'cations SP1 and SP2

over (D;T)-institution I and (d : Sig[SP2]→Sig[SP1])∈DI ; SP1 is a conservative
extension of SP2 along d if Mod[SP1]|d =Mod[SP2].

De�nition 4.4. For a given (D;T)-institution I the family of re4nement relations
{❀� ⊆Spec� × Spec�}�∈|SignI |, parameterized by the family of entailment relations
{��}�∈|SignI | (see De'nition 3.4) which we assume is sound wrt the family of semantic
consequence relations {|=�}�∈|SignI | (see De'nition 3.3), is de'ned by the following
set of rules:

(Basic)
SP �� �

〈�; �〉 ❀� SP

(Trans1)
SP ❀� translate SP′ by r−1

translate SP by r ❀�′ SP′

(Sum)
SP1 ❀� SP SP2 ❀� SP

SP1 ∪ SP2 ❀� SP

(Trans2)
SP′ ❀�′ derive from SP′′ by d
translate SP′ by d ❀�′′ SP′′

(Derive)
SP ❀�′′ SP′′

derive from SP by d ❀�′ SP′
SP′′ is a conservative extension of
SP′ along d

(Trans-equiv)
translate (translate SP by r) by d ❀�′′ SP′′

translate SP by r;d ❀�′′ SP′′

where (r : �→�′)∈ IsoI and (d : �′ →�′′)∈DI .

The above de'nition of the re'nement relation is inspired by the de'nition of ana-
logical relation presented in [8, 32]. The semantic side condition in the rule (Derive)
is outside the system presented by the above de'nition and we do not have any gen-
eral strategy for proving it. In practical examples (see [8, 32] where DI is a class of
inclusions) SP′′ can be de'nitional extension of SP′. A more model-theoretic aspect
of this side condition can be found in [12].

Now, we prove that the re'nement relation is sound and complete wrt the semantic
re'nement.

Theorem 4.5 (Soundness and completeness). For any �-speci4cations SP1 and SP2

over (D;T)-institution I ,

if SP1 ❀� SP2 then SP1  � SP2:

The converse implication holds if the entailment �� is complete.

Proof. Soundness (⇒): First we prove that the rules from De'nition 4.4 are sound
and hence by the soundness of �� we obtain soundness of ❀�.
1. (Basic) Let us assume that SP |=� � and let M ∈Mod[SP]. By de'nitions M |=� �,

and so by De'nition 3.1, M ∈Mod[〈�; �〉].
2. (Sum) Let Mod[SP1]⊇Mod[SP] and Mod[SP2]⊇Mod[SP]. This means that
Mod[SP]⊆Mod[SP1]∩Mod[SP2] =Mod[SP1 ∪ SP2].
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3. (Trans1) Let Mod[SP]⊇Mod[translate SP′ by r−1] and M ∈Mod[SP′]. By def-
initions, since (M |r)|r−1 =M , M |r ∈Mod[translate SP′ by r−1]⊆Mod[SP] which
means that M ∈Mod[translate SP by r].

4. (Trans2) Let Mod[SP′]⊇Mod[derive from SP′′ by d] and M ∈Mod[SP′′]. By def-
initions we have M |d ∈Mod[derive from SP′′ by d]⊆Mod[SP′] and 'nally M ∈
Mod[translate SP′ by d].

5. (Derive) Let Mod[SP]⊇Mod[SP′′] and M ∈Mod[SP′]. Because SP′′ is a conser-
vative extension of SP′ along d, there exists M ′′ ∈Mod[SP′′] such that M ′′|d =M .
By the assumption, M ′′ ∈Mod[SP], which means that
M =M ′′|d ∈Mod[derive from SP by d].

6. (Trans-equiv) Let Mod[translate (translate SP by r) by d]⊇Mod[SP′′] and M ∈
Mod[SP′′] which means that M ∈Mod[translate (translate SP by r) by d]. By def-
initions we have (M |d)|r ∈Mod[SP]. Because (M |d)|r =M |r;d we obtain M ∈Mod
[translate SP by r;d].
Completeness (⇐): By induction on the structure of SP1.

1. SP1 is a speci'cation expression of the form 〈�; �〉.
By the assumption, Mod[〈�; �〉]⊇Mod[SP2], which is equivalent to SP2 |=� �. Be-
cause �� is complete we obtain SP2 �� � and by the (Basic) rule 〈�; �〉❀� SP2.

2. SP1 is a speci'cation expression of the form SP′
1 ∪ SP′

2 . By the assumption, Mod
[SP′

1 ]∩Mod[SP′
2 ]⊇Mod[SP2], which is equivalent to Mod[SP′

i ]⊇Mod[SP2] for
i = 1; 2, and then by the induction hypothesis we have SP′

i ❀� SP2 for i = 1; 2. Fi-
nally, by the rule (Sum) we obtain SP′

1 ∪ SP′
2 ❀� SP2.

3. SP1 is a speci'cation expression of the form translate SP by (t : � → �′′), where
t = r;d for r ∈ IsoI and d∈DI . By the assumption, we have Mod[SP1]⊇Mod[SP2].
Let

M ∈Mod[translate (derive from SP2 by d) by r−1]:

By de'nitions we have M |r−1 ∈Mod[derive from SP2 by d] and also there exists
M2 ∈Mod[SP2] such that M2|d =M |r−1 , which is equivalent to M2|r;d =M . Because
also M2 ∈Mod[SP1], it means that M =M2|r;d ∈Mod[SP] which shows that

SP ❀� translate (derive from SP2 by d) by r−1:

Now by the induction hypothesis we obtain

SP ❀� translate (derive from SP2 by d) by r−1

and by applying rules (Trans1) and (Trans2)

translate (translate SP by r) by d ❀�′′ SP2;

which by the (Trans-equiv) gives us translate SP by t❀�′′ SP2.
4. SP1 is a speci'cation expression of the form derive from SP′ by (d : �→�′). Let

SP′′ = SP′ ∪ (translate SP2 by d). We prove that SP′′ is a conservative extension
of SP2 along d.



T. Borzyszkowski / Theoretical Computer Science 286 (2002) 197–245 221

(a) Mod[SP′′]|d ⊇Mod[SP2]: Let M ∈Mod[SP2]. By the assumption, M ∈Mod
[SP1] and so there exists M ′ ∈Mod[SP′] such that M ′|d =M . This shows that
M ′ ∈Mod[translate SP2 by d], and M ∈Mod[SP′′]|d.

(b) Mod[SP′′]|d ⊆Mod[SP2]: Let M ∈Mod[SP′′]|d. There exists M2 ∈Mod
[translate SP2 by d] such that M2|d =M . By de'nitions we have M2|d ∈Mod
[SP2] and 'nally M ∈Mod[SP2].

Now,

Mod[SP′] ⊇Mod[SP′] ∩Mod[translate SP2 by d]

=Mod[SP′ ∪ (translate SP2 by d) = Mod[SP′′]

and so by the induction hypothesis we have SP′ ❀�′ SP′′. Next, because SP′′ is
conservative extension of SP2 along d, by the rule (Derive) we obtain
derive from SP′ by d❀� SP2.

Let us consider the family of re'nement relations de'ned as in De'nition 4.4 except
the (Derive) rule where we weaken the semantic side condition “SP′′ is a conservative
extension of SP′ along d” to “Mod[SP′′]|d ⊇Mod[SP′]”, then Theorem 4.5 also holds.
In fact, this weaker condition is necessary for the rule (Derive) to be sound, and so in
particular, if we consider the (Derive) rule without any side conditions, then the family
of re'nement relations is still complete wrt the semantic re'nement relation, but is not
sound in general.

Let us notice that if we consider the proof system de'ned by De'nition 4.4 without
the (Trans-equiv) rule then the system is still sound but not complete. For instance,
the judgment

translate SP by r;d ❀�′′ translate (translate SP by r) by d;

where (r :�→�′)∈ IsoI and (d :�′ →�′′)∈DI , is true but cannot be proved without
the (Trans-equiv) rule.

On the other hand, having completeness we can introduce even more general rule
then the (Trans-equiv) rule:

Lemma 4.6. For any (D;T)-institution I; signature �∈ |SignI |; �-speci4cations SP1;
SP′

1 ; SP2 and SP′
2 and the re4nement relation ❀� which is complete; if SP1

∼= SP′
1 and

SP2
∼= SP′

2 then

SP1 ❀� SP2 i; SP′
1 ❀� SP′

2:

Proof. By analogy to proof of Lemma 3.15.

Similarly as for Lemma 3.15, it follows that if ❀� is complete and we can prove
the judgment SP1 ❀� nf(SP2), then there also exists a proof of SP1 ❀� SP2.
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The following example shows that if the entailment relation �� is not complete, then
also the re'nement relation ❀� is not complete.

Example 4.7. Let SP be a �-speci'cation and ’ be a �-sentence such that ’ is satis-
'ed in every model of speci'cation SP, but the judgment SP �� ’ cannot be proved.
Examples of such SP and ’ are presented in Examples 3.17 and 3.18. Let us consider
following judgment:

〈�; {’}〉 ❀� SP:

Because Mod[〈�; {’}〉]⊇Mod[SP], we have 〈�; {’}〉❀� SP; which means that the
above judgment is true. Now we try to prove it. We have to apply the (Basic) rule,
for which we need

SP �� ’;

which, by assumption, is not provable.

5. Representing speci�cations

The notion of an institution representation, introduced below, is a special case of
a simple map of institutions (see [20]). The de'nition presented below is exactly the
same as in [30].

De�nition 5.1 (Institution representation [30]). Let I = 〈Sign;Sen;Mod; 〈|=�〉�∈|Sign|〉
and I ′ = 〈Sign′;Sen′;Mod′; 〈|=′

�〉�∈|Sign′|〉 be arbitrary institutions. An institution rep-
resentation � : I → I ′ consists of:
• a functor �Sign :Sign→Sign′; and
• a natural transformation: �Sen :Sen→ �Sign;Sen′, that is, a family of functions �Sen� :
Sen(�)→Sen′(�Sign(�)), natural in �∈ |Sign|:

• a natural transformation �Mod : (�Sign)op; Mod′ →Mod, that is, a family of functions
�Mod� :Mod′(�Sign(�))→Mod(�), natural in �∈ |Sign|:
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such that for any signature �∈ |Sign| the translations �Sen� :Sen(�)→Sen′(�Sign(�))
of sentences and �Mod� :Mod′(�Sign(�))→Mod(�) of models preserve the satisfaction
relation, that is, for any ’∈Sen(�) and M ′ ∈ |Mod′(�Sign(�))|:

M ′ |=′
�Sign(�) �Sen� (’) iA �Mod� (M ′) |=� ’ (Representation condition)

An institution representation � : I → I ′ shows how institution I is encoded in institu-
tion I ′. It means that all parts of I are represented, but only some parts of I ′ are used
for representing various parts of I .

The above de'nition of institution representation can be easily extended to (D;T)-
institution representation.

De�nition 5.2 ((D;T)-institution representation). A (D;T)-institution representation
� : I → I ′ is a usual institution representation � : I → I ′ which additionally satis'es

�Sign(DI ) ⊆ DI ′ and �Sign(TI ) ⊆ TI ′ :

The following example was also presented in [30]:

Example 5.3. The institution representation �EQ→FOEQ :EQ→FOEQ is given
by the embedding of the category of algebraic signatures into the category of 'rst-
order signatures which equips algebraic signatures with the empty set of predicate
names. The translation of sentences is an inclusion of (universally quanti'ed) equations
as 'rst-order logic sentences, and the translation of models is the
identity.

In the next example the model part of the institution representation is an embedding.

Example 5.4. The institution representation �PEQ→EQ :PEQ→EQ is given by the
identity on the category of algebraic signatures. Translation of an equality from PEQ
is the corresponding equality in EQ. Translation of the de'nedness formulae
D(t) is the equality t = t. Translation of models is the embedding of the category
of total many-sorted algebras into the category of partial many-sorted
algebras.
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The institution representation presented in the above example does not quite 't our
expectations (see the explanations after De'nition 5.1). To improve this situation we
put some extra condition on the model part of institution representations.

De�nition 5.5 (�-Expansion). An institution representation � : I → I ′ has the �-expan-
sion property, if for any signature �∈ |Sign|, any �-model M has a �-expansion to a
�Sign(�)-model, that is, there exists a �Sign(�)-model M ′ such that �Mod� (M ′) =M .

Example 5.6. The institution representation �EQ→FOEQ :EQ→FOEQ has the
�-expansion property, whereas the institution representation �PEQ→EQ :PEQ→EQ
does not have it.

De�nition 5.7 (Weak-D-amalgamation). Let � : I → I ′ be an institution representation
and D be a class of signature morphisms in I . We say that the institution representa-
tion � has the weak-D-amalgamation property iA for every signatures �1; �2 ∈ |Sign|,
(d :�2 →�1)∈D, M1 ∈ |Mod(�1)| and M2 ∈ |Mod′(�Sign(�2))|, as in the following
diagram

if �Mod�2
(M2) =M1|d then there exists M ∈ |Mod′(�Sign(�1))| such that �Mod�1

(M) =M1

and M |�Sign(d) =M2.

Example 5.8. The institution representation �EQ→FOEQ :EQ→FOEQ presented in
Example 5.3 has the weak-D-amalgamation property for the class D being the class
of all inclusions in the category of algebraic signatures.

Example 5.9. The institution representation �PEQ→EQ :PEQ→EQ de'ned in
Example 5.4, for D being class of all inclusions in the category of algebraic signatures,
does not have the weak-D-amalgamation property. Counterexample follows.

In the rest of this example we will write � as an abbreviation for the institution
representation �PEQ→EQ.

Let:
• �= sig sorts s opns op : s→ s end and
• �′ = sig sorts s opns op : s→ s; pop : s→ s end
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be signatures in PEQ and – :� ,→�′ an inclusion, then in the model part of represen-
tation �, we have the following diagram:

Let us take M ∈ |ModPEQ(�)| such that it interprets operation op : s→ s as a total
operation, and M ′ ∈ |ModPEQ(�′)| interpreting operation op : s→ s in the same way as
M and operation pop : s→ s as a partial operation. The forgetful functor ModPEQ(–)
just forgets interpretation of pop : s→ s. From the de'nition of � (cf. Example 5.4),
we know that �Sign(�) and �Sign(�′) are just � and �′, but considered as signatures in
EQ. Now, if RM ∈ |ModEQ(�Sign(�))| interprets op : s→ s in the same way as M , then

�Mod� ( RM) = M = ModPEQ(–)(M ′):

On the other hand, from the de'nition of � we know that

for any RM ′ ∈ |ModEQ(�Sign(�′))|; �Mod�′ ( RM ′) is total

hence there is no RM ′ ∈ |ModEQ(�Sign(�′))| such that �Mod�′ ( RM ′) =M ′. It means that �
does not have the weak-D-amalgamation property for D being the class of all inclusions
in the category of algebraic signatures.

The institution representation �PEQ→EQ does not have either of the two properties:
�-expansion and weak-D-amalgamation. In general, the two properties are orthogonal,
i.e., there are examples of institution representations which have �-expansion but do
not have the weak-D-amalgamation property (see Examples 5.11 and 6.6) and also
which have the weak-D-amalgamation property but do not have �-expansion (see the
example below).

Example 5.10. Let I and I ′ be institutions without sentences, de'ned as follows:
• categories of signatures consists of two distinct objects: �A; �B in SignI and �A′ ; �B′

in SignI ′ and one arrow in each category d :�A →�B and d′ :�A′ →�B′ (plus iden-
tities);

• model functors:

ModI (�A) = {M 1
A;M

2
A}; ModI ′(�A′) = {MA′};

ModI (�B) = {MB}; ModI ′(�B′) = {MB′};
ModI (d)(MB) = M 1

A; ModI ′(d′)(MB′) = MA′ ;

where ModI (�A); ModI (�B); ModI ′(�A′) and ModI ′(�B′) are discrete categories;
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• satisfaction relations |=I
�A

, |=I
�B

, |=I ′
�A′

and |=I ′
�B′

are empty.
The satisfaction condition holds obviously for both institutions I and I ′.
Let us de'ne institution representation � : I → I ′:

�Sign(�A) = �A′ ; �Mod�A
(MA′) = M 1

A;

�Sign(�B) = �B′ ; �Mod�B
(MB′) = MB;

�Sign(d) = d′:

We omit �Sen�A
and �Sen�B

in the above de'nition of � because their domains are empty.
The representation condition holds obviously.

� satis'es the weak-D-amalgamation for D=SignI , but does not satisfy the
�-expansion property. The correspondence between models can be illustrated by the
following diagram:

Example 5.11. Let I and I ′ be institutions without sentences, with the same categories
of signatures, SignI and SignI ′ , as in Example 5.10, and:
• model functors:

ModI (�A) = {MA}; ModI ′(�A′) = {M 1
A′ ; M 2

A′};
ModI (�B) = {MB}; ModI ′(�B′) = {MB′};
ModI (d)(MB) = MA; ModI ′(d′)(MB′) = M 1

A′ ;

where ModI (�A); ModI (�B); ModI ′(�A′) and ModI ′(�B′) are discrete categories;
• satisfaction relations |=I

�A
, |=I

�B
, |=I ′

�A′
and |=I ′

�B′
are empty.

Similarly as in Example 5.10, the satisfaction condition holds obviously for both
institutions I and I ′.

Now, we de'ne the institution representation � : I → I ′ as follows:
• the functor �Sign and the natural transformation �Sen are de'ned as in Example 5.10;
• the natural transformation �Mod is given as follows:

�Mod�A
(M 1

A′) = MA = �Mod�A
(M 2

A′) and �Mod�B
(MB′) = MB:

The representation condition holds obviously.
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� satis'es the �-expansion property, but does not satisfy the weak-D-amalgamation
property for D=SignI . The correspondence between models can be illustrated by the
following diagram:

In the following de'nition we use the notion of institution representation to translate
speci'cations along a given institution representation.

De�nition 5.12 (Speci4cation representation). For any (D;T)-institution representa-
tion � : I → I ′, the speci4cation representation �̂ is a family of functions {�̂�}�∈|Sign|
between classes of speci'cations over (D;T)-institutions I and I ′ de'ned as follows:
1. if SP is a �-speci'cation of the form 〈�; �〉, then

�̂�(SP) = 〈�Sign(�); �Sen� (�)〉;
2. if SP is a �-speci'cation of the form SP1 ∪ SP2, then

�̂�(SP) = �̂�(SP1)∪ �̂�(SP2);
3. if SP is a �-speci'cation of the form translate SP1 by (t :�1 →�), then

�̂�(SP) = translate �̂�1
(SP1) by �Sign(t :�1 →�);

4. if SP is a �-speci'cation of the form derive from SP1 by (d :�→�1), then
�̂�(SP) = derive from �̂�1

(SP1) by �Sign(d :�→�1),
where t ∈TI and d∈DI .
For a �-speci'cation SP we will write �̂(SP) as an abbreviation for �̂�(SP).

Remark 5.13. For any (D;T)-institution representation � : I → I ′ and �-speci'cation
SP over (D;T)-institution I; �̂(SP) is a �Sign(�)-speci'cation over (D;T)-institution I ′.

Theorem 5.14. For any (D;T)-institution representation � : I → I ′, �∈ |Sign| and
�-speci4cation SP over (D;T)-institution I; if �Sign :Sign→Sign′ preserves pushouts
then

nf(�̂(SP)) = �̂(nf(SP))

Proof. By induction on the structure of speci'cation SP.
1. SP is a speci'cation of the form 〈�; �〉. By De'nition 5.12 we have nf(�̂(〈�; �〉)) is

equal to nf(〈�Sign(�); �Sen(�)〉) and next by De'nition 3.7 it is equal to derive from
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〈�Sign(�); �Sen(�)〉 by id�Sign(�). Again by De'nition 5.12 we obtain that the last is
equal to �̂(derive from 〈�; �〉 by id�) and 'nally to �̂(nf(〈�; �〉)).

2. SP is a speci'cation of the form SP1 ∪ SP2. Let us assume that nf(SPi) = derive from
〈�i�i〉 by di) then nf(SP) = derive from 〈�′; t′1�2 ∪d′

2�1〉 by d, where d=d1; d′
2 and

�′; t′1 ∈TI and d′
2 ∈DI are given by the following pushout diagram in SignI :

Now, by the induction hypothesis and De'nition 5.12 we have

nf(�̂(SPi)) = �̂(nf(SPi)) = derive from �̂(〈�i; �i〉) by �Sign(di) for i = 1; 2:

Next by De'nitions 3.7 and 5.12 and because � preserves pushouts we obtain

nf(�̂(SP)) = nf(�̂(SP1) ∪ �̂(SP2))

= derive from �̂(〈�′; t′1�2 ∪ d′
2�1〉) by �Sign(d) = �̂(nf(SP)):

3. SP is a speci'cation of the form translate SP1 by (t :�1 →�): Let us assume
that nf(SP1) = derive from 〈�1; �1〉 by d1 then nf(SP) = derive from 〈�′; t′�1〉 by d′

1,
where �′; t′ ∈TI and d′

1 ∈DI are given by a pushout in SignI :

By the induction hypothesis and De'nition 5.12 we obtain

nf(�̂(SP1)) = �̂(nf(SP1)) = derive from �̂(〈�1; �1) by �Sign(d1):

Finally, by De'nitions 3.7 and 5.12 and because � preserves pushouts

nf(�̂(SP)) = nf(translate �̂(SP1) by �Sign(t))

= derive from �̂(〈�′; (�Sign(t′))(�1〉)) by �Sign(d′
1) = �̂(nf(SP)):
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4. SP is a speci'cation of the form derive from SP1 by (d :�→�1). By the induction
hypothesis we have nf(�̂(SP1)) = �̂(nf(SP1)). Let us assume that nf(SP1) = derive
from 〈�1; �1〉 by d1 then

nf(�̂(SP1)) = derive from �̂(〈�1; �1〉) by �Sign(d1):

Now by De'nitions 3.7 and 5.12 we obtain

nf(derive from �̂(SP1) by �Sign(d))

= derive from �̂(〈�1; �1〉) by �Sign(d;d1) = �̂(nf(SP)):

Corollary 5.15. For any (D;T)-institution representation � : I → I ′; �∈ |Sign| and
�-speci4cation SP over (D;T)-institution I; if �Sign :Sign→Sign′ preserves pushouts
and I ′ satis4es the weak-(D;T)-amalgamation property then

�̂(SP) ∼= �̂(nf(SP))

Proof. By Theorems 3.8 and 5.14 we have �̂(SP)∼= nf(�̂(SP)) = �̂(nf(SP)).

It follows from the above corollary that to verify the equality of model classes of
speci'cations �̂(SP1) and �̂(SP2), where � satis'es assumptions of Corollary 5.15, it
is enough to verify the equality of model classes of speci'cations in the normal form
�̂(nf(SP1)) and �̂(nf(SP1)).

6. Mod[SP] vs. Mod[�̂(SP)]

In this section we study mutual relationships between models of a given speci'cation
SP and the speci'cation �̂(SP). We assume that � : I → I ′ is an arbitrary but 'xed
(D;T)-institution representation.

In the 'rst part we show that inclusion

�Mod� (Mod[�̂(SP)]) ⊆Mod[SP]

holds “for free”—that is, we need just the representation condition to ensure it. The
inclusion in the opposite direction is more diQcult. As demonstrated in [9, 30], for Nat
speci'cations the inclusion in the opposite direction holds if the institution represen-
tation � has the �-expansion property. We show that this result can be extended to
structured speci'cation provided that � additionally satis'es the weak-D-amalgamation
property.

Lemma 6.1. For any (D;T)-institutions I and I ′; (D;T)-institution representation
� : I → I ′; signature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I and
�Sign(�)-model M ′ ∈Mod[�̂(SP)]; we have

�Mod� (M ′)∈Mod[SP]:
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Proof. By induction on the structure of the speci'cation SP. Let us assume that
M ′ ∈Mod[�̂(SP)].
1. If SP = 〈�; �〉: By assumption and De'nition 5.12 we have M ′∈Mod[〈�Sign(�); �Sen�

(�)〉]. This is equivalent to M ′ |=′
�Sign(�) �

Sen
� (�) and by the representation condition

to �Mod� (M ′) |=��, which yields �Mod� (M ′)∈Mod[〈�; �〉].
2. If SP = SP1 ∪ SP2: By assumption, M ′ ∈Mod[�̂(SP1)]∩Mod[�̂(SP2)]. Now, by the

induction hypothesis, we obtain �Mod� (M ′)∈Mod[SP1]∩Mod[SP2] =Mod[SP].
3. If SP = translate SP1 by (t :�1 →�): By assumption, M ′ ∈Mod[translate �̂(SP1) by

�Sign(t)]. By de'nition, M ′|�Sign(t) ∈Mod[�̂(SP1)]. Now, by the induction hypothesis

�Mod�1
(M ′|�Sign(t)) ∈Mod[SP1]

and because the following diagram commutes

(5)

we have �Mod�1
(M ′|�Sign(t)) = (�Mod� (M ′))|t , hence �Mod� (M ′)|t ∈Mod[SP1] and 'nally

�Mod� (M ′)∈Mod[SP].
4. If SP = derive from SP1 by d :�→�1: By assumption, M ′ ∈Mod[derive from �̂

(SP1) by �Sign(d)]. Now, there exists M ′′ ∈Mod[�̂(SP1)] such that M ′′|�Sign(d) =M ′.
By the induction hypothesis, �Mod�1

(M ′′)∈Mod[SP1]. Then, since �Mod�1
(M ′′)|d ∈

Mod[SP] and because the following diagram commutes:

(6)

we have �Mod�1
(M ′′)|d = �Mod� (M ′′|�Sign(d)) = �Mod� (M ′)∈Mod[SP].

As a consequence we obtain:

Corollary 6.2. For any (D;T)-institutions I and I ′, (D;T)-institution representa-
tion � : I → I ′; signature �∈ |Sign| and �-speci4cation SP over (D;T)-institution I;
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we have:

�Mod� (Mod[�̂(SP)]) ⊆Mod[SP]:

Now, we present proof of the inclusion in the opposite direction. Let us start with
a simpler result for which we do not need �-expansion.

Lemma 6.3. For any (D;T)-institutions I and I ′ and (D;T)-institution represen-
tation � : I → I ′, if � satis4es the weak-D-amalgamation then for every signature
�∈ |Sign|, �-speci4cation SP over the (D;T)-institution I and �Sign(�)-model M ′

�Mod� (M ′) ∈Mod[SP] implies M ′ ∈Mod[�̂(SP)]:

Proof. By induction on the structure of SP.
1. If SP = 〈�; �〉: By assumption, �Mod� (M ′)∈Mod[〈�; �〉]. It is equivalent to �Mod�

(M ′) |=� �. By the representation condition, we obtain M ′ |=′
�Sign(�) �Sen� (�), which is

equivalent to M ′ ∈Mod[�̂(〈�; �〉)].
2. If SP = SP1 ∪ SP2: By assumption, �Mod� (M ′)∈Mod[SP1]∩Mod[SP2]. Next, by the

induction hypothesis, we obtain M ′ ∈Mod[�̂(SP1)]∩Mod[�̂(SP2)] =Mod[�̂(SP1 ∪
SP2)].

3. If SP = translate SP1 by (t :�1 →�): By assumption, �Mod� (M ′)∈Mod[translateSP1

by t]. Next, by De'nition 3.1, �Mod� (M ′)|t ∈Mod[SP1], which by the commutativity
of the diagram (5) (see the proof of Lemma 6.1) is equivalent to �Mod�1

(M ′|�Sign(t))∈
Mod[SP1]. Now, by the induction hypothesis we obtain
M ′ ∈Mod[translate �̂(SP1) by �Sign(t)] =Mod[�̂(translate SP1 by t)].

4. If SP = derive from SP1 by (d :�→�1): By assumption, �Mod� (M ′)∈Mod[derive
from SP1 by d]. There exists M1 ∈Mod[SP1] such that M1|d = �Mod(M ′). Now, be-
cause � has the weak-D-amalgamation property, there exists M ′

1 ∈ |Mod(�Sign(�1))|
such that �Mod�1

(M ′
1) =M1 and M ′

1 |�Sign(d) =M ′ (see diagram (6) from the proof of
Lemma 6.1). By the induction hypothesis, we obtain M ′

1 ∈Mod[�̂(SP1)], and 'nally
M ′

1 |�Sign(d) ∈Mod[�̂(SP)].

In the next step we just add assumption about �-expansion and obtain expected
inclusion.

Lemma 6.4. For any (D;T)-institutions I and I ′ and (D;T)-institution represen-
tation � : I → I ′; if � has the weak-D-amalgamation property; then for every sig-
nature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I; if each model
M ∈Mod[SP] has a �-expansion to a �Sign(�)-model; then

Mod[SP] ⊆ �Mod� (Mod[�̂(SP)]):

Proof. Let M ∈Mod[SP]. By the �-expansion, there exists a �Sign(�)-model M ′ such
that �Mod� (M ′) =M . By Lemma 6.3, we have M ′ ∈Mod[�̂(SP)]. Finally, since �Mod�

(M ′) =M , we have M ∈ �Mod� (Mod[�̂(SP)]).
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In the following example, we show that the inclusion considered in Lemma 6.4 does
not hold for institution representation �PEQ→EQ de'ned in Example 5.4.

Example 6.5. In this example we will write � for the institution representation
�PEQ→EQ. Let SP = 〈�; ∅〉 be a �-speci'cation over the (D;T)-institution PEQ, where
�∈ |SignPEQ|. Let us notice that every M ∈ |ModPEQ(�)| is a model of SP. It means
that Mod[SP] = |ModPEQ(�)|. Similarly, Mod[�̂(SP)] = |ModEQ(�Sign(�))|. Now, by
de'nition of �, we have that Mod[SP] is not included in �Mod� (Mod[�̂(SP)]):

The next example shows that the weak-D-amalgamation property is really crucial
for the inclusion presented in Lemma 6.4 and for Lemma 6.3.

Example 6.6. Let I and I ′ be institutions de'ned as in Example 5.11, except that
• categories of signatures SignI and SignI ′ have additional objects �C and �C′ and

additional arrows d1 :�A →�C and d′
1 :�A′ →�C′ , respectively;

• sentence functor is given as follows:

SenI (�A) = ∅ = SenI (�B);

SenI (�C) = {’};
SenI ′(�A′) = ∅ = SenI ′(�B′);

SenI ′(�C′) = {’′};

• model functor is given now as follows:

ModI (�A) = {MA};
ModI (�B) = {MB};
ModI ′(�C′) = {M 1

C′ ; M 2
C′};

ModI ′(d′)(MB′) = M 1
A′ ;

ModI (d1)(Mi
C) = MA for i = 1; 2;

ModI ′(�A′) = {M 1
A′ ; M 2

A′};
ModI ′(�B′) = {MB′};
ModI (�C) = {M 1

C;M
2
C};

ModI (d)(MB) = MA;

ModI ′(d′
1)(Mi

C′) = Mi
A′ for i = 1; 2;

• satisfaction relations |=I
�A

, |=I
�B

, |=I ′
�A′

and |=I ′
�B′

are empty, and |=I
�C

and |=I ′
�C′

are
given as follows:

M 1
C �|=I

�C
’

M 2
C |=I

�C
’

M 1
C′ �|=I

�C′ ’′

M 2
C′ |=I

�C′ ’′:

The satisfaction condition holds trivially for both institutions I and I ′. The institution
representation � : I → I ′ is de'ned as follows:

�Sign(�A) = �A′ ;

�Sign(�B) = �B′ ;

�Sign(�C) = �C′ ;

�Sen�C
(’) = ’′;

�Sign(d) = d′;

�Sign(d1) = d′
1;

�Mod�A
(Mi

A′) = MA

�Mod�B
(MB′) = MB;

�Mod�A
(Mi

C′) = Mi
C

for i = 1; 2;

for i = 1; 2:

The representation condition holds (trivially) as well. � satis'es the �-expansion prop-
erty, whereas does not satisfy the weak-D-amalgamation for D=SignI (there is no
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model M ?
B′ ∈ModI ′(�B′) with M ?

B′ |d′ =M 2
A′ and �Mod�B

(M ?
B′) =MB). The correspondence

between models can be illustrated by the following diagram:

Now, let SP = (derive from 〈�B; ∅〉 by d)∪ (derive from 〈�C; {’}〉 by d1). Then
�̂ (SP) = (derive from〈�B′ ; ∅〉 by d′)∪ (derive from 〈�C′ ; {’′}〉 by d′

1), and by de'ni-
tions

Mod[SP] = {MA} ∩ {MA} = {MA} and Mod[�̂(SP)] = {M 1
A′} ∩ {M 2

A′} = ∅:

Finally, Mod[SP] = {MA} �⊆ ∅= �Mod�A
(Mod[�̂(SP)]) and also �Mod�A

(M 1
A′)∈Mod[SP]

does not imply M 1
A′ ∈Mod[�̂(SP)].

Corollary 6.7. For any (D;T)-institutions I and I ′ and (D;T)-institution represen-
tation � : I → I ′; if � has the weak-D-amalgamation property; then for every sig-
nature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I; if each model
M ∈Mod[SP] has a �-expansion to a �Sign(�)-model; then

Mod[SP] = �Mod� (Mod[�̂(SP)]) and (�Mod� )−1(Mod[SP]) = Mod[�̂(SP)]:

7. Reusing proof systems

Results presented in this section are consequences of the results presented in the
previous section. The 'rst result for the case of Nat speci'cations was presented in [9]
for institution maps and also in [10] for institution representations.

Theorem 7.1. For any (D;T)-institutions I and I ′ and (D;T)-institution representa-
tion � : I → I ′; if � has the weak-D-amalgamation property; then for every signature
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�∈ |Sign|; �-speci4cation SP over (D;T)-institution I and �-sentence ’; if each
�-model M ∈Mod[SP] has a �-expansion to a �Sign(�)-model; then

SP |=� ’ i; �̂(SP) |=′
�Sign(�) �Sen� (’):

Proof. ⇒: Let M ′ ∈Mod[�̂(SP)]. Then �Mod� (M ′)∈ �Mod� (Mod[�̂(SP)]). By Lemma
6.1, we obtain �Mod� (M ′)∈Mod[SP], which implies �Mod� (M ′) |=� ’. By the represen-
tation condition, this is equivalent to M ′ |=′

�Sign(�) �
Sen
� (’).

⇐: Let M ∈Mod[SP]. Then by Lemma 6.4 M ∈ �Mod� (Mod[�̂(SP)]). This means
that there exists M ′ ∈Mod[�̂(SP)] such that �Mod� (M ′) =M and M ′ |=′

�Sign(�) �
Sen
� (’).

By the representation condition, we obtain �Mod� (M ′) |=� ’, that is M |=� ’.

In the following example we demonstrate that the weak-D-amalgamation property is
crucial for Theorem 7.1.

Example 7.2. Let I and I ′ be institutions de'ned as in Example 6.6 except
• sentence functors, de'ned now as follows:

SenI (�A) = {false} = SenI (�B);

SenI (�C) = {’; false};
SenI (�)(false) = false;

SenI ′(�A′) = {false} = SenI ′(�B′);

SenI ′(�C′) = {’′; false};
SenI ′(�′)(false) = false;

for �∈{d; d1} and �′ ∈{d′; d′
1};

• and satisfaction relations, which are the same as in Example 6.6, except that the
sentence false is not satis'ed by any model.

It is easy to check that the satisfaction condition holds for both institutions I and I ′.
We de'ne the institution representation � : I → I ′ in the same way as in Example 6.6,

except that the sentence part is de'ned now as follows:

�Sen�A
(false) = false; �Sen�B

(false) = false; �Sen�C
(false) = false; �Sen�C

(’) = ’′:

The representation condition holds as well. Because the correspondence between models
is the same as in Example 6.6, � satis'es the �-expansion property, whereas does not
the weak-D-amalgamation for D=SignI .

Now, let SP be the speci'cations de'ned in Example 6.6, then we have

�̂(SP) |=′
�Sign(�A) �Sen�A

(false) but SP �|=�A false:

Let us see what the advantages of Theorem 7.1 are. First of all, it ensures soundness
of the following scheme of rules:

(�-join-entailment)
�̂(SP) �′

�Sign(�) �Sen� (’)

SP �� ’



T. Borzyszkowski / Theoretical Computer Science 286 (2002) 197–245 235

where � and SP satisfy the assumptions of Theorem 7.1. Now, let us assume that we
have
1. A sound and complete set of rules for proving logical consequences of speci'cations

over (D;T)-institution I ′.
2. A (D;T)-institution representation: � : I → I ′ satisfying assumptions of Theorem 7.1.

We can construct a sound and complete set of rules for the logical system for
reasoning about speci'cations over (D;T)-institution I from rules from point 1 and
the (�-join-entailment) rule schema for � from point 2.

In the following example we demonstrate how to use such a proof technique in
practice.

Example 7.3. In this example we use the (�-join-entailment) rule schema to prove
judgment SP ��1 b= c from Example 3.17. Let us notice that the institution representa-
tion �EQ→FOEQ de'ned in Example 5.3 satis'es assumptions of Theorem 7.1. We will
write � as an abbreviation for �EQ→FOEQ.

The following tree makes the proof:

(CR)

(1)
�̂(SP) �′

�Sign(�1) ∀x:s:�Sen�1
(b = c)

(2)
�̂(SP) �′

�Sign(�1) ∃x:s:true (3)

(�-join-entailment)
�̂(SP) �′

�Sign(�1) �Sen�1
(b = c)

SP ��1 b = c

where (1) is

(sum2)

(basic)
∀x:s:�Sen�1

(b = c) ∈ {�Sen�1
(∀x:s:b = c)}

�̂(〈�1;∀x:s:b = c〉) �′
�Sign(�1) ∀x:s:�Sen�1

(b = c)

�̂(SP1) ∪ �̂(SP2) �′
�Sign(�1) ∀x:s:�Sen�1

(b = c)

(2) is

(derive)

(CR)

...

∅ �FOEQ�Sign(�0) ∃x:s:true

�̂(〈{{s; s′}; {a : s; b; c : s′}}; ∅〉) �′
�Sign(�0) ∃x:s:true

(sum1)
derive from �̂(SP0) by �Sign(–) �′

�Sign(�1) ∃x:s:true

�̂(SP1) ∪ �̂(SP2) �′
�Sign(�1) ∃x:s:true

and 'nally, (3) is

{∀x:s:�Sen�1
(b = c);∃x:s:true} �FOEQ�Sign(�1) �Sen�1

(b = c)

Similar reasoning as presented in this example can be repeated for Example 3.18.

Having the (�-join-entailment) rule schema we can show even something slightly
more general:
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Example 7.4. Let �EQ→FOEQ be the (D;T)-institution representation de'ned in
Example 5.3, �∈ |SignEQ|, SP be any �-speci'cation over the (D;T)-institution EQ
and ’ be a �-sentence, then by Theorem 7.1 and completeness of the logical sys-
tem for structured speci'cations over the (D;T)-institution FOEQ (see [8] and also
Theorem 3.9) we have

SP |=� ’ implies SP �� ’

in (D;T)-institution EQ, which means that every theorem of SP can be proved,
where �� is the entailment relation de'ned by De'nition 3.4 extended by the (�-
join-entailment) rule schema.

The next theorem allows us to repeat the above argument also for the re'nement
relation.

Theorem 7.5. For any (D;T)-institutions I and I ′ and (D;T)-institution representa-
tion � : I → I ′; if � has the weak-D-amalgamation property; then for every signature
�∈ |Sign| and �-speci4cations SP1 and SP2 over (D;T)-institution I; if any �-model
has �-expansion to a �Sign(�)-model; then

SP1 ❀� SP2 i; �̂(SP1) ❀�Sign(�) �̂(SP2):

Proof. ⇒: Assumption Mod[SP2]⊆Mod[SP1]. Let M ∈Mod[�̂(SP2)]. Then by
Lemma 6.1, we have �Mod� (M)∈Mod[SP2] and next, by the assumption �Mod� (M)∈
Mod[SP1]. Now, by Lemma 6.3, we obtain M ∈Mod[�̂(SP1)].
⇐: Assumption Mod[�̂(SP2)]⊆Mod[�̂(SP1)]. By Corollary 6.7 and monotonicity of

the image function,

Mod[SP2] = �Mod� (Mod[�̂(SP2)]) ⊆ �Mod� (Mod[�̂(SP1)]) = Mod[SP1]:

The weak-D-amalgamation property is also crucial for the above theorem.

Example 7.6. Let SP be the speci'cation and �A be the signature, both de'ned in
Example 6.6, then

SP ❀�A 〈�A; ∅〉 but �̂(SP) ❀�Sign(�A) �̂(〈�A; ∅〉):

Now, similarly as for Theorem 7.1, we can introduce sound scheme of rules:

(�-join-re'nement)
�̂(SP1) ❀′

�Sign(�) �̂(SP2)

SP1 ❀� SP2

where �, SP1 and SP2 satisfy the assumptions of Theorem 7.5. For the above (�-join-
re'nement) rule scheme we also can have similar proof strategy as for
(�-join-entailment) rule scheme.
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Example 7.7. In Example 4.7 we showed that

〈�; {’}〉 ❀� SP

cannot be proved in an institution I , whenever SP �� ’ cannot be proved, where � is
a signature, ’ is a �-sentence and SP is a �-speci'cation.

Let us assume that the institution representation � : I → I ′ satis'es assumptions of
Theorem 7.5. We also assume that I ′ is rich enough to ensure completeness of �′.
Now we can prove that 〈�; {’}〉❀� SP as follows:

(�-join-re'nement)

(Basic)
�̂(SP) �′

�Sign(�) �Sen� (’)

�̂(〈�; {’}〉) ❀′
�Sign(�) �̂(SP)

〈�; {’}〉 ❀� SP

The proof of �̂(SP)�′
�Sign(�) �

Sen
� (’) can be obtained by completeness of �′

�Sign(�) (since

SP �� ’ and therefore �̂(SP) |=′
�Sign(�) �

Sen
� (’)).

8. Mapping speci�cations

In this section we want to show how to obtain results similar to presented in
Sections 6 and 7 for maps of institutions (see [20]).

Given an entailment system (or an institution) its category Th0 of theories has
as objects pairs T = (�; �), where � is a signature and � a set of sentences on �.
Morphisms � : (�1; �1)→ (�2; �2) are the signature morphisms � :�1 →�2 such that
Sen(�)(�1)⊆Cl(�2), where Cl(�2) is the closure of �2-sentences �2 de'ned as follows
(see [14]):

Cl(�2) = {’ ∈ SenI (�2) |�2 |=I
�2

’}:

We will use auxiliary functor sign :Th0 →SignI given as follows: sign(�; �) =�, for
(�; �)∈ |Th0| and sign(�) is the signature morphism �, for �∈Th0.

Next, for any institution I we extend the model functor ModI :SignopI →Cat to
ModI :Thop0 →Cat which for any theory (�; �) gives the full subcategory of �-models
that satisfy all the sentences �. Similarly, by assigning to each theory (�; �) the sen-
tences SenI (�) we can extend the functor SenI :SignI →Set to a functor SenI :Th0 →
Set. We can also extend the closure de'ned above to theories in the obvious way.

De�nition 8.1 (Map of institutions [20]). Given institutions I = 〈Sign;Sen;Mod;
〈 |=� 〉�∈|Sign|〉 and I ′ = 〈Sign′;Sen′;Mod′; 〈 |=′

�〉�∈|Sign′|〉 a map of institutions (+; ,;
-) : I →I ′ consists of:
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• a functor + :Th0 →Th′0 which is ,-sensible; 4 and
• a natural transformation: , : Sen→+;Sen′, that is, a family of functions ,� :
Sen(�)→Sen′(+(�; ∅)), natural in �∈ |Sign|:

• a natural transformation - : +op;Mod′ →Mod, that is, a family of functions -th :
Mod′(+(th))→Mod(th), natural in th∈ |Th0|:

such that for any signature �∈ |Sign| the translations ,� : Sen(�)→Sen′(+(�; ∅)) of
sentences and -(�;∅) : Mod′(+(�; ∅))→Mod(�; ∅) of models preserve the satisfaction
relation, that is, for any ’∈Sen(�) and M ′ ∈ |Mod′(+(�; ∅))|:

M ′ |=′
Sign′(+(�;∅)) ,�(’) iA -(�;∅)(M

′) |=� ’ (Map condition)

The above de'nition of a map of institutions can be easily extended to a map of
(D;T)-institutions.

De�nition 8.2 (Map of (D;T)-institutions). A map of (D;T)-institutions (+; ,; -) :
I → I ′ is a usual map of institutions (+; ,; -) : I → I ′ which additionally satis'es

�(DI ) ⊆ DI ′ and �(TI ) ⊆ TI ′ ;

where � =+; sign.

4 We refer to [20] for detailed de'nition of ,-sensible functors. Basically, it is required that the provable
consequences of the theory +(�; �) are entirely determined by +(�; ∅) and ,, i.e.

Cl(+(�; �)) = Cl(�′; �′ ∪ ,(�));

where (�′; �′) =+(�; ∅).
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We also rede'ne the �-expansion and weak-D-amalgamation properties (see
Section 5) and obtain

De�nition 8.3 (--Expansion). A map of institutions (+; ,; -) : I → I ′ has the --expan-
sion property, if for any signature �∈ |Sign|, any �-model M has a --expansion to a
+(�; ∅)-model, that is, there exists a +(�; ∅)-model M ′ such that -(�;∅)(M ′) =M .

De�nition 8.4 (Weak-D-amalgamation). Let (+; ,; -) : I → I ′ be a map of institutions
and D be a class of signature morphisms in I . We say that the map of institutions
(+; ,; -) has the weak-D-amalgamation property iA for every signatures �1; �2 ∈ |Sign|;
(d : �2 →�1)∈D; M1 ∈ |Mod(�1; ∅)| and M2 ∈ |Mod′(+(�2; ∅))|, given as in the fol-
lowing diagram

if -(�2 ;∅)(M2) =M1|d then there exists M ∈ |Mod′(+(�1; ∅))| such that -(�1 ;∅)(M) =M1

and M |+(d) =M2.

Now, we extend the notion of map of institutions to speci'cations.

De�nition 8.5 (Map of speci4cations). For any map of (D;T)-institutions (+; ,; -) :
I → I ′, the map of speci4cations . is a family of functions {.�}�∈|Sign| between classes
of speci'cations over (D;T)-institutions I and I ′ de'ned as follows:
1. if SP is a �-speci'cation of the form 〈�; �〉, then .�(SP) = 〈�′; �′ ∪ ,�(�)〉, where

(�′; �′) =+(�; ∅);
2. if SP is a �-speci'cation of the form SP1 ∪ SP2, then .�(SP) = .�(SP1)∪ .�

(SP2);
3. if SP is a �-speci'cation of the form translate SP1 by (t : �1 →�), then .�(SP)

= translate .�1 (SP1) by �(t : �1 →�)∪ 〈�′; �′〉, where (�′; �′) =+(�; ∅);
4. if SP is a �-speci'cation of the form derive from SP1 by (d : �→�1), then .�(SP)

= derive from .�1 (SP1) by �(d : �→�1),
where t ∈TI ; d∈DI and � =+; sign. For a �-speci'cation SP we will write .(SP)
as an abbreviation for .�(SP).

The map of speci4cations de'ned above diAers form the speci4cation representation
de'ned by De'nition 5.12 in two cases: presentations and translate SBO. To obtain, for
the above de'ned map of speci'cations, results similar to presented in Section 6 for
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the speci'cation representation (especially Lemmas 6.1 and 6.3) we have to repeat the
proofs presented there at least for presentations and translate (cf. a similar translation
of speci'cations for logical institution encodings in [31]).

Lemma 8.6. For any (D;T)-institutions I and I ′; map of (D;T)-institutions (+; ,; -) :
I → I ′; signature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I and +(�;
∅)-model M ′ ∈Mod[.(SP)]; we have -(�;∅)(M ′)∈Mod[SP]:

Proof. By induction on the structure of the speci'cation SP. Let us assume that
M ′ ∈Mod[.(SP)].
1. If SP = 〈�; �〉: By assumption and De'nition 8.5 we have M ′ ∈Mod[〈�′; �′ ∪ ,�

(�)〉], where (�′; �′) =+(�; ∅). This implies M ′ |=′
sign′(+(�;∅)) ,�(�). By the map

condition we obtain -(�;∅)(M ′) |=� �, which yields -(�;∅)(M ′)∈Mod[〈�; �〉].
2. If SP = SP1 ∪ SP2: Proof similar to case 2 of the proof of Lemma 6.1.
3. If SP = translate SP1 by (t : �1 →�): By assumption, M ′ ∈Mod[translate .

(SP1) by �(t)]∩Mod[〈�′; �′〉], where (�′; �′) =+(�; ∅) and �(t) : �′
1 →�′ for

(�′
1; �

′
1 ) =+(�1; ∅) and � =+; sign. By de'nition, M ′|�(t) ∈Mod[.(SP1)]. Now, by

the induction hypothesis -(�1 ;∅)(M ′|�(t))∈Mod[SP1] and because the following di-
agram commutes

(7)

we have -(�1 ;∅)(M ′|�(t)) = (-(�;∅)(M ′))|t , hence -(�;∅)(M ′)|t ∈Mod[SP1] and 'nally
-(�;∅)(M ′)∈Mod[SP].

4. If SP = derive from SP1 by d : �→�1: Proof similar to case 4 of the proof of
Lemma 6.1.

And similarly as in Section 6 we obtain as a consequence:

Corollary 8.7. For any (D;T)-institutions I and I ′, map of (D;T)-institutions (+; ,;
-) : I → I ′; signature �∈ |Sign| and �-speci4cation SP over (D;T)-institution I; we
have:

-(�;∅)(Mod[.(SP)]) ⊆Mod[SP]:

The inclusion in the opposite direction we can prove as follows:

Lemma 8.8. For any (D;T)-institutions I and I ′ and map of (D;T)-institutions
(+; ,; -) : I → I ′; if the map (+; ,; -) satis4es the weak-D-amalgamation then for every
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signature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I and +(�; ∅)-
model M ′

-(�;∅)(M
′) ∈Mod[SP] implies M ′ ∈Mod[.(SP)]:

Proof. By induction on the structure of SP.
1. If SP = 〈�; �〉: By assumption -(�;∅)(M ′)∈Mod[〈�; �〉]. It is equivalent to -(�;∅)

(M ′) |=� �. By the map condition, we obtain M ′ |=′
�′ ,�(�) and because M ′ is

+(�; ∅)-model we have M ′ |=′
�′ �′, where (�′; �′) =+(�; ∅). Next, by De'nition 8.5

we obtain M ′ ∈Mod[.〈�; �〉].
2. If SP = SP1 ∪ SP2: Proof similar to case 2 of the proof of Lemma 6.3.
3. If SP = translate SP1 by (t : �1 →�): By assumption -(�;∅)(M ′)∈Mod[translate

SP1 by t]. Next, by De'nition 3.1, -(�;∅)(M ′)|t ∈Mod[SP1], which by the commuta-
tivity of the diagram (7) (see the proof of Lemma 8.6) is equivalent to -(�1 ;∅)(M ′|�(t))
∈Mod[SP1]. Now, since M ′|�(t) is a +(�1; ∅)-model and by the induction hypothesis
we obtain M ′ ∈Mod[translate .(SP1) by �(t)]: By assumption M ′ is a +(�; ∅)-
model and we have M ′ ∈Mod[〈�′; �′〉], where (�′; �′) =+(�; ∅). Finally, by De'-
nition 8.5 we obtain M ′ ∈Mod[.(SP)].

4. If SP = derive from SP1 by (d : �→�1): Proof similar to case 4 of the proof of
Lemma 6.3.

In the next step we just add assumption about --expansion and obtain expected
inclusion.

Lemma 8.9. For any (D;T)-institutions I and I ′ and map of (D;T)-institutions
(+; ,; -) : I → I ′; if (+; ,; -) has the weak-D-amalgamation property; then for every
signature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I; if each model
M ∈Mod[SP] has a --expansion to a +(�; ∅)-model; then

Mod[SP] ⊆ -(�;∅)(Mod[.(SP)]):

Proof. By analogy to proof of Lemma 6.4.

As a consequence we obtain:

Corollary 8.10. For any (D;T)-institutions I and I ′ and map of (D;T)-institutions
(+; ,; -) : I → I ′; if the map has the weak-D-amalgamation property; then for every
signature �∈ |Sign|; �-speci4cation SP over the (D;T)-institution I; if each model
M ∈Mod[SP] has a --expansion to a +(�; ∅)-model; then

Mod[SP] = -(�;∅)(Mod[.(SP)]):

Having the above equality we can obtain results similar to Theorems 7.1 and 7.5.
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Theorem 8.11. For any (D;T)-institutions I and I ′ and map of (D;T)-institutions
(+; ,; -) : I → I ′; if the map has the weak-D-amalgamation property; then for every
signature �∈ |Sign|; �-speci4cation SP over (D;T)-institution I and �-sentence ’;
if each �-model M ∈Mod[SP] has a --expansion to a +(�; ∅)-model; then

SP |=� ’ i; .(SP) |=′
sign′(+(�;∅)) ,�(’):

Theorem 8.12. For any (D;T)-institutions I and I ′ and map of (D;T)-institutions
(+; ,; -) : I → I ′; if the map has the weak-D-amalgamation property; then for every
signature �∈ |Sign| and �-speci4cations SP1 and SP2 over (D;T)-institution I; if
each �-model has a --expansion to a +(�; ∅)-model; then

SP1 ❀� SP2 i; .(SP1) ❀sign′(+(�;∅)) .(SP2):

9. Conclusions

In this paper we have studied compositional logical systems for reasoning about
logical consequences and re'nement of structured speci'cations in an arbitrary insti-
tution, based on the logical system presented in [27] and also in [8, 32]. In the 'rst
part of the paper we identi'ed the formal properties of the underlying institution that
ensure (soundness and) completeness of the logical system considered. Results similar
to those presented in this part of the paper were also presented in [8, 32] for the case of
'rst-order logic. Our results generalized this to an arbitrary institution satisfying certain
conditions. We showed that the underlying logical system has to satisfy at least weak-
(D;T)-interpolation, but the question about minimal conditions ensuring completeness
of the logical system considered is still open.

We then considered the problem of completing proofs of logical consequences and
re'nement of structured speci'cations when the underlying logical system is too weak
to satisfy the conditions formulated in the 'rst part, and so need not ensure the
completeness of formal systems for reasoning about logical consequences and re-
'nement of structured speci'cations. We formulated conditions under which we can
reuse proof systems built over institutions rich enough to satisfy conditions required
for systems completeness for speci'cations built over poorer institutions (that are too
poor to ensure completeness). Similar results to those presented in this part (espe-
cially in Theorems 7.1 and 8.11) for the case of Nat speci'cations were presented
in [1, 9, 30]. In [1] we can also 'nd a study on a similar topic for the case of
structured speci'cations. As presented in papers mentioned above, the �-expansion
property is a suQcient condition for Theorems 7.1 and 7.5 (and --expansion for The-
orems 8.11 and 8.12) for Nat speci'cations. In this paper we showed that to extend
these results to structured speci'cations we need an additional condition: weak-D-
amalgamation.

In [17] authors presented similar results to our reusing results (Theorems 7.1 and
7.5), but on the theory level. The proof rules given in [17] are more restricted then
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our proof strategy presented in Section 7. For instance, Example 7.3 is an example of
a successful use of our strategy, whereas when using the strategy proposed in [17],
we are not able to complete the proof of a judgment similar to presented in Example
7.3 (in fact, this has to be so, since this judgment is not sound under the theory level
semantics considered there).

For the future work we consider extensions of results presented in this paper to
speci'cations with more SBOs than presented in De'nition 3.1 (see [22, 26] for ref-
erence). Other possible directions are extensions of presented results to parameter-
ized speci'cations (see [8, 26, 32]) and to observational speci'cations presented in
[16].

Before the results presented become practically important some technical de'nitions
and assumptions have to be considerably re'ned. For example proving the two as-
sumptions about representations considered in Theorems 7.1 and 7.5 (�-expansion=
--expansion and weak-D-amalgamation) may cause problems in practice. Some stan-
dard ways of building institution representations from simpler components should be
provided so that the two properties of the resulting representation follow from more
elementary and quite natural properties of these components.

Also some more eQcient proof strategies have to be worked out. For instance, proof
system for proving re'nement might contain following rules:

SP ❀ SP′ SP′ ❀ SP′′

SP ❀ SP′′
SP1 ❀ SP′

1 : : : SPn ❀ SP′
n

op(SP1; : : : ; SPn) ❀ op(SP′
1; : : : ; SP′

n)
;

where op is an arbitrary (monotonic) SBO. The above rules are known as “vertical
composability” and “horizontal composability”, respectively (see [13, 28]).

Another interesting task is to present within our framework some standard examples
of universal logics (cf. [30]), in which we will represent simpler logics in order to
reuse for them strategies known=worked out for stronger universal logics. Theorem
7.1 together with Theorem 3.9 indicate the interpolation property as one property of
a reasonable universal logic. We expect that some of known logical frameworks turn
out to satisfy this property. Proper candidates seem to be for instance LF and HOL.
It seems also to be possible to prove that assumptions of Corollary 3.10 hold for the
structural part of the CASL language (see [22]) or at least for a reasonable part of the
CASL language.
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