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GOAP: A Generalized Orientation-Dependent, All-Atom Statistical
Potential for Protein Structure Prediction
Hongyi Zhou and Jeffrey Skolnick*
Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia
ABSTRACT An accurate scoring function is a key component for successful protein structure prediction. To address this
important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The
new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of
the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent
potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance-
and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-
dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized
226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from
decoy sets that have homology-modeled structures that are close to native (all within ~4.0 Å) or from the ROSETTA ab initio
decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus per-
formed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much
better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ~15%worse thanGOAP. Thus, GOAP is a promising
advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/
GOAP.
INTRODUCTION
One key to the solution of the protein folding and structure
prediction problems is an accurate energy function. A perfect
energy function should have its global minimum free energy
in the native state of a protein. In principle, such an energy
function can be obtained from quantum mechanics (1).
This is only feasible for small molecules and in general is
not yet possible for large systems such as a protein in
a solvent. Thus, by necessity, current physics-based
approaches approximate the energy function using empirical
molecular mechanics force fields (2–5) that contain terms
associated with bond lengths, angles, torsional angles, van
der Waals, and electrostatic interactions (2,3). The parame-
ters associated with these terms are typically obtained by
fitting data from quantum mechanical calculations of small
peptide fragments and data from experiment (2–4,6). The re-
sulting physics-based potentials often ignore the contribu-
tion of multibody interactions beyond pairs.

In practice, physics based potentials are currently less
successful than knowledge-based potentials (7). Knowl-
edge-based potentials make use of the growing number of
experimental protein structures and can be categorized into
contact potentials (8–10) and distance-dependent potentials
(11–17) and describe interactions at the residue- or atomic
level (8,9,12–19).Whereasmost potentials are pairwise-addi-
tive, some multibody potentials have been developed (20–
23); these are often residue-based (24–30). On the atomic
level, orientation dependencies for subsets of atoms have
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also been investigated (31–33). For example, in dDFIRE,
Yang andZhou (31,34) introduced intoDFIRE the orientation
dependence of polar atom interactions (treated as dipoles),
which includes hydrogen-bonding interactions, and some
improvement over DFIRE (14) in refolding the protein
terminal regions with secondary structures was observed.

Lu et al. (32) developed an all-atom, orientation-depen-
dent side-chain contact potential. The orientations are de-
fined for blocks of atoms bonded rigidly to the same
residue that lie in the same plane. Because the interaction
centers are on the block, rather than on individual atoms,
this requires that the orientation angles be defined at high
resolution to accurately determine the atomic positions
within the block. Zhang and Zhang (33) added a side-chain
orientation-dependence to their all-atom, distance-depen-
dent potential that uses a reference state generated by
random walk theory and showed some improvement over
potentials lacking such an orientation dependence. Kor-
temme et al. (35) developed an orientation-dependent poten-
tial specifically for hydrogen bonding.

In this work, because an all-atom distance-dependent
potential is likely needed for atomic resolution modeling
and refinement, we focus on developing a more accurate
knowledge-based, all-atom distance-dependent potential.
We generalize the treatment of the orientation-dependence
of polar atoms, blocks of atoms, or side chains to all 167
residue-specific, heavy atom types. This generalization is
based on the observation that the environment around
each atom is anisotropic. This effect is more pronounced
for polar atoms and cannot be fully captured by introducing
a vectorlike dipole (31) that still requires rotational
doi: 10.1016/j.bpj.2011.09.012
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FIGURE 1 Definition of the plane associated with a given heavy atom

and a description of the relative orientation of the planes.
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symmetry around the dipole vector. When residues are
hydrogen-bonded, this rotational symmetry might be broken
(35). To better characterize their anisotropic environment,
a planelike object is introduced for each atom using two
of its bonded neighboring atoms and itself. When there
is only one bonded neighboring atom (e.g., a backbone
oxygen), a next neighboring atom is used (e.g., the Ca

atom for the backbone oxygen). The introduction of a plane
associated with each heavy atom requires five angle param-
eters in addition to the distance between interaction centers
to describe a pair interaction.

We decompose the potential, named ‘‘generalized orien-
tation-dependent all-atom potential’’ (GOAP), into a
distance-dependent and a conditional (dependent on the
given distance) angle (orientation)-dependent part. The
distance dependence is treated identically as in DFIRE
(14), a potential that has performed well across various
applications (31,36–40). The angle-dependent part is de-
noted as GOAP AnGular (GOAP_AG). GOAP naturally
integrates orientation-dependent polar atom interactions
(34), hydrogen-bonding (35), and side-chain interactions
(33). It also captures the geometry of the Cysteine disulfide
bond. The only free parameter needed to derive GOAP is the
sequence separation cutoff for the orientation-dependent
part GOAP_AG that ignores the angular dependence be-
tween heavy atoms in residues that are close in sequence.
This cutoff does not require any training and is determined
from simulating the angle distributions with steric interac-
tions and chain-connectivity (i.e., background distributions
when specific pairwise interactions are switched off).
GOAP was tested on 11 commonly used decoy sets for
native structure recognition (33,41–44,46 and (R. Samu-
drala, E. Huang, and M. Levitt, unpublished)). We describe
the results of this evaluation below.
METHOD

Definition of the relative orientation of interacting
heavy atom planes

In this method, for each heavy (nonhydrogen) atom, we define an associated

plane defined by it and the neighboring bonded heavy atoms; see Fig. 1.

When an atom has two or more bonded heavy atoms (atom A in Fig. 1,

left), any two of the bonded heavy atoms can be used (of course, a consistent

selection is always made in deriving and evaluating the energy score).

When there is only one bonded heavy atom (atom A in Fig. 1, right, e.g.,

main-chain oxygen), the next-neighbor, bonded atom is used (e.g., the Ca

atom for the main-chain oxygen).

For each plane defined by these three atoms (e.g., A, A1, A2 in Fig. 1, left),

we define a local coordinate system using the following unit vectors,

~vz ¼ ð~r12 þ~r13Þ
j~r12 þ~r13j

~vy ¼ ð~vz � ~r13Þ
j~vz � ~r13j

~vx ¼ ~vy � ~vz

; (1)
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where ~r12 ¼~rðA1Þ �~rðAÞ; ~r13 ¼~rðA2Þ �~rðAÞ are the relative vectors

from atom A to atoms A1 and A2, respectively; ~vx and ~vz lie within the

plane, and ~vy is the normal vector to the plane. When there is only one

bonded heavy atom (Fig. 1, right), we change the definition of ~vz to
~vz ¼~r12=j~r12j. The values~vx and~vy do not change.

To specify the relative position of the two planes associated with the

interacting atoms, we require the distance among A and B, rab, and five

angles as defined in Fig. 1: The polar angles (qa, ja) of vector
~rab ¼~rðBÞ �~rðAÞ in the local coordinate system of atom A, the polar

angles (qb, jb) of vector~rba ¼~rðAÞ �~rðBÞ in the local coordinate system

of atom B, and the torsional angle c between~vzðAÞ and~vzðBÞ around the

axis~rab or~rba.
The GOAP potential

The GOAP potential is extracted from known protein structures based on

the inverse Boltzmann equation,

Eðrab; qa;ja; qb;jb;cÞ ¼ �RT log
pobsðrab; qa;ja; qb;jb;cÞ
pexpðrab; qa;ja; qb;jb;cÞ

;

(2)

where a and b are the atom types of the two interacting atoms, pobs is the

probability of the property (rab,qa,ja,qb,jb,c) observed in known protein

structures, and pexp is the expected probability of the same property in

a reference state without specific interactions (i.e., when E(rab,qa,ja,qb,jb,

c) ¼ 0). R is the universal gas constant and T is the absolute temperature at

which all the observed states equilibrate. T is usually assumed to be room

temperature (~300 K). In this work, as in others (14,17,19), we consider

167 heavy atom types. Equation 2 can be decomposed into two terms, as

Eðrab; qa;ca; qb;jb;cÞ¼ �RT log
pobsðrabÞ
pexpðrabÞ

� RT log
pobsðqa;ja; qb;jb;cjrabÞ
pexpðqa;ja; qb;jb;cjrabÞ

;

(3)

where the first term depends only on the distance rab, and the second term

depends on the conditional probabilities pobs(qa,ja,qb,jb,cjrab) and

pexp(qa,ja,qb,jb,cjrab). We deal with the two types of terms separately.
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The DFIRE potential

For the term that depends only on distance in Eq. 3, we employ the DFIRE

(14) reference state for extracting the energy score. The DFIRE reference

state is a uniformly distributed set of ideal gas (or equivalently an ideal solu-

tion of) points in a finite space. In an unbounded systemcomprised of an ideal

gas (noninteracting point particles), the number of pairwise counts at a given

distance is density � 4pr2abDrab. Here, Drab is the bin size at the given

distance. Proteins are of course finite in size. The finite size effect is taken

into account by introducing a scaling factor a < 2; then, the dependence

on distance in the reference state becomes density � 4praabDrab. Another

important feature of the DFIRE reference state is the assumption that at

a large distance cutoff (rcut), the distribution in the reference state equals

the observed distribution in real protein structures: Nobs(rcut) ¼ density �
4pracutDrcut.

This assumption not only eliminates the problem of an unphysical

nonzero energy at the cutoff distance found in other statistical potentials

(17,19), but also determines the unknown density parameter. Therefore,

the pairwise counts in the reference state can be written as

NexpðrabÞ ¼ density � 4praabDrab ¼ NobsðrcutÞ
racutDrcut

� raabDrab:

(4)

By substituting the probabilities in the first term in Eq. 3 with the number

of pairwise observations and expected values, we obtain the DFIRE energy

function:

EDFIREðrabÞ ¼ �RT log
pobsðrabÞ
pexpðrabÞ

¼ �RT log
NobsðrabÞ
NexpðrabÞ

¼ �RT log
NobsðrabÞ�

rab
rcut

�a�
Drab
Drcut

�
NobsðrcutÞ

: (5)

The cutoff rcut is set to 15 Å, and a¼ 1.61 as determined by the best fit of ra

to the actual distance-dependent number of ideal gas points in the 1011

finite protein-size spheres that have sizes corresponding to the 1011 nonre-

dundant high-resolution protein structures used for deriving DFIRE (14).

Beyond the cutoff distance rcut (i.e., for rab> rcut), E
DFIRE(rab) is set to zero.
The GOAP_AG potential

To overcome the problem of insufficient statistics if the angle is treated as

nonseparable, we make the assumption for GOAP_AG that the dependence

of the potential on the angles qa, ja, qb, jb, and c are independent of each

other at the given distance. This gives for the angular contribution

EGOAP AGðqa;ja; qb;jb;cjrabÞ
¼ �RT log

pobsðqa;ja; qb;jb;cjrabÞ
pexpðqa;ja; qb;jb;cjrabÞ

yEðqajrabÞ þ EðjajrabÞ
þEðqbjrabÞ þ EðjbjrabÞ þ EðcjrabÞ;

; (6)

where E(qijrab) ¼ –RTlog(pobs(qijrab)/pexp(qijrab)); E(jijrab) ¼ �RT log(pobs

(jijrab)/pexp(jijrab)), i ¼ a,b; and E(cjrab) ¼ –RTlog(pobs(cjrab)/pexp(cjrab)).
Here, pobs(anglejrab) and pexp(anglejrab) with angle ¼ qa,ja,qb,jb,c, are
the conditional probabilities of the observed and expected angles at the given

distance rab. This assumption of independence of angular distributions has

also been made in treatments of H-bonding (36) and in dDFIRE (31,35).

In deriving EGOAP_AG, we bin the cos(qa,b), ja,b, c-values into Nbin ¼ 12

equally sized bins and assume that the expected probabilities are constant

for all bins,

pexpðanglejrabÞ ¼
PNbin

i

pobsðanglejrabÞ
Nbin

:

However, this assumption is only good when a suitable sequence separation

cutoff is applied for EGOAP_AG. To avoid a zero count, the initial count

values for each angle bin are set to 0.1.
The sequence separation cutoff for GOAP_AG

The rationale of applying a sequence separation cutoff s (i.e., two interacting

atoms a and b must reside in separate residues i and j satisfying ji� jjR s)

for the angle-dependent energy term EGOAP_AG is based on the observation

that at small s, the angle distributions are mainly determined by steric inter-

actions and direct chain connectivity rather than by nonbonded, nonsteric

interactions. Therefore, the expected distributions (when nonbonded, pair-

wise interactions are switched off) will not be constant (i.e., independent

of angle). It is not trivial to obtain accurate expected angle distributions

when they are not constant, which is what happens for small cutoff values

of s. Therefore, we introduce the cutoff parameter s into GOAP and ignore

the orientation dependence when ji – jj< s (because it cannot be accurately

obtained). Then, GOAP can be written as

GOAP ¼ DFIRE ji� jj<s
DFIREþ GOAP AG ji� jjRs

;

�
(7)

where i and j are the residue numbers on which the two interacting atoms

reside.

To determine the value of s for which the expected angle distribution is

essentially constant, we employed a Monte Carlo simulation to simulate the

angular distributions allowing only steric interactions (we exclude any

nonbonded heavy atom pair atoms within a distance of 3.3 Å from each

other) in a 50-residue Alanine peptide with ideal bond lengths and bond

angles taken from CHARMM (3). The standard deviations of the binned

distributions are then examined. The standard deviation is defined as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"��ðpexpÞ2�� hpexpi2	

Nbin

#vuut ;

where the average hi is over all bins at given distance, in which Nbin ¼ 12 is

the number of bins for each angle parameter. The value s measures the

uniformity of the distribution. The value s should be large enough so that

the background distribution is close to uniform, i.e., s ¼ 0. It should also

be small enough so that the contribution of GOAP_AG to the total potential

will not be neglected too much (note that s ¼ 0 when s ¼ N). Therefore,

a suitable value of s is a compromise of the two effects. In practice, we look

at the change of the background standard deviation at each s (the slope of

s(s) versus s curve). A reasonable choice of s is when the change in slope is

close to zero (then, an increase of s will result in a negligible change of the

standard deviation).

Fig. 2 shows the average standard deviations from the simulation of ex-

pected angle distributions on a 50-residue Alanine peptide when only steric

interactions are applied. The main-chain dihedral angles of the peptide were

randomly sampled for 5,000,000 steps. At each step, all the dihedral angles
Biophysical Journal 101(8) 2043–2052



FIGURE 2 Dependence of standard deviations of the expected dis-

tributions on the sequence separation cutoff from a Monte Carlo simula-

tion on a 50-residue Alanine peptide where only steric interactions are

allowed.
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are set to random values. When no steric clashes are present, the conforma-

tion will be used for counting the angle distributions. The angle distribu-

tions (normalized summation over bins to be 1 for each angle) at each

distance bin (20 bins span from 0 to 15 Å) were obtained. The plot shows

the standard deviations (s) of the distributions averaged over all-atom type

pairs and all distance bins. The steric interactions and chain-connectivity

most affect the q-angle and least the c-dihedral angle. At a small cutoff

of s ¼ 3, the distributions deviate the most from uniform. Beyond s ¼ 7,

the curves are almost flat with little change. Defining the slope at s as

s(sþ1)–s(s), we find the slope at s ¼ 7 for q-angle distribution to

be �0.013. The slopes at s ¼ 5, s ¼ 6, and s ¼ 8 are �0.045, �0.020,

and �0.010, respectively. Therefore, at ~s ¼ 7, s starts to change very

slowly. In this work, s¼ 7 is applied to GOAP_AG. For the distance-depen-

dent part, DFIRE potential, we set s¼ 1, so as to exclude interactions within

the same residue.
URL for Protein Structure Library and GOAP

GOAP is obtained using the same 1011 protein structures as in DFIRE (14);

the list of structures along with the GOAP potential is available at http://

cssb.biology.gatech.edu/GOAP. Using more structures to obtain the poten-

tial does not significantly change the performance of GOAP.
TABLE 1 Performance of different potentials in native structure re

Decoy sets DFIRE RWplus dDF

4state_reduced 6(�3.48) 6(�3.51) 7(�4

fisa 3(�4.87) 3(�4.79) 3(�3

fisa_casp3 4(�4.80) 4(�5.17) 4(�4

lmds 7(�0.88) 7(�1.03) 6(�2

lattice_ssfit 8(�9.44) 8(�8.85) 8(�1

hg_structal 12(�1.97) 12(�1.74) 16(�
ig_structal 0(0.92) 0(1.11) 26(�
ig_structal_hires 0(0.17) 0(0.32) 16(�
MOULDER 19(�2.97) 19(�2.84) 18(�
ROSETTA 20(�1.82) 20(�1.47) 12(�
I-TASSER 49(�4.02) 56(�5.77) 48(�
No. total (Z-score) 128(�1.94) 135(�2.13) 164(�
Numbers in parentheses are the average Z-scores of the native structures. More n
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Decoy sets and potentials evaluated

Tested decoy sets include the multiple decoy sets from the ‘R’ Us s decoy

set at http://dd.compbio.washington.edu/. These sets are the 4state_reduced

(42), fisa (41), fisa_casp3 (41), lmds (43), lattice_ssfit (44,47), hg_structal

and ig_structal (R. Samudrala, E. Huang, and M. Levitt, unpublished),

and ig_structal_hires (45). The MOULDER decoy set (46) is downloaded

from http://salilab.org/decoys/. The ROSETTA all-atom decoy set is

obtained from http://depts.washington.edu/bakerpg/decoys/, and the

I-TASSER set (33) from the Zhang lab is obtained from http://zhanglab.

ccmb.med.umich.edu/.

We compare our GOAP potential with the following all-atom potentials:

the DFIRE potential (14) that is part of GOAP; the RWplus potential (33)

that uses random walk theory for the reference state and includes side-chain

orientations; the dDFIRE potential (31,34) that includes polar-polar, polar-

nonpolar atom orientations described with vectorlike dipoles; and the

OPUS-PSP potential (32) that defines orientations of blocks of side-chain

atoms. OPUS-PSP is a contact potential, whereas the others are distance-

dependent. The programs dDFIRE, RWplus, and OPUS-PSP are down-

loaded from the corresponding author’s websites. A perfect potential should

rank the native structure as the lowest energy structure. The significance of

the native structure energy (Enative) is given by its Z-score defined as

Z-score ¼ (Enative–Eave)/sE where Eave is the average energy of all decoys

and sE is the energy standard deviation of all decoys.
RESULTS

Native structure recognition from decoys

The performance of various potentials on the 11 decoy sets
for native structure recognition is compared in Table 1.
GOAP achieves the best success rate with 226 out of 278
targets having their native energy as the lowest and the
best average Z-score per target. Compared to DFIRE (at
128), RWplus (at 135), and dDFIRE (at 164), GOAP
provides for a significant improvement in both success
rate and Z-score. Only the performance of OPUS-PSP (at
196) is comparable. Still, our method shows a 15% better
success rate compared to OPUS-PSP. All the improvements
of GOAP are from the three homology modeling sets
(hg_structal, ig_structal, and ig_structal_hires (45)) and
the ab initio ROSETTA set.

These sets have the common feature that their decoys
have more realistic bond lengths and angles than decoys
cognition

IRE OPUS-PSP GOAP No. of targets

.15) 7(�4.49) 7(�4.38) 7

.80) 3(�4.24) 3(�3.97) 4

.83) 5(�6.33) 5(�5.27) 5

.44) 8(�5.63) 7(�4.07) 10

0.12) 8(�6.75) 8(�8.38) 8

1.33) 18(1.87) 22(�2.73) 29

1.02) 20(0.69) 47(�1.62) 61

2.05) 14(�0.77) 18(�2.35) 20

2.74) 19(�4.84) 19(�3.58) 20

0.83) 39(�3.00) 45(�3.70) 58

5.03) 55(�7.43) 45(�5.36) 56

2.52) 196(�2.86) 226(�3.57) 278

egative is better. Highlighted entries are the best ones in the respective set.

http://cssb.biology.gatech.edu/GOAP
http://cssb.biology.gatech.edu/GOAP
http://dd.compbio.washington.edu/
http://salilab.org/decoys/
http://depts.washington.edu/bakerpg/decoys/
http://zhanglab.ccmb.med.umich.edu/
http://zhanglab.ccmb.med.umich.edu/
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in most other sets. They are relatively hard for conventional
methods such as DFIRE and RWplus without fully incorpo-
rating orientation dependence. dDFIRE’s success rate on the
homology modeling sets is comparable to OPUS-PSP, but
performs poorest on the ROSETTA set. For the five tradi-
tional Decoy ‘R’ Us sets (4stat_reduced, fisa, fisa_casp3,
lmds, and lattice_ssfit) that mostly used in the literature
(14,17,19,21,33), GOAP recognizes the native energy as
lowest for 30 out of 34 targets, whereas DFIRE, RWplus,
and dDFIRE all recognize 28, and OPUS-PSP recognizes
31 targets whose native energy is the lowest. It should be
noted that OPUS-PSP has a free parameter (the weight of
the repulsive Lennard-Jones term) trained on the 4stat_re-
duced set.
Correlation of energy score with model quality
and model selection

Although the ability to assign the native structure as being
lowest in energy is the most important characteristic of
a good potential, for an energy function to be useful for
guiding conformation sampling, it should also have a
good correlation with model quality. In Table 2, we compare
the performance of different potentials as assessed by both
their Pearson correlation coefficient of energy and TM-score
(48) and the TM-score of the lowest energy structure. The
112-protein CASP9 (49) target set (models were generated
by all CASP9 servers and downloaded from the CASP9
website http://predictioncenter.org/casp9/; most are ho-
mology modeling structures) is also included. Here, we
use the TM-score (48) instead of the root mean-square devi-
ation of the model to native, because if the majority of the
structure is of good quality, the TM-score is insensitive to
TABLE 2 Average Pearson’s correlation coefficient of energy scor

Decoy sets DFIRE RWplus dDFI

4state_reduced �0.635 0.659 �0.606 0.667 �0.693

fisa �0.446 0.449 �0.462 0.434 �0.461

fisa_casp3 �0.243 0.288 �0.240 0.277 �0.149

lmds �0.118 0.333 �0.147 0.346 �0.248

lattice_ssfit �0.094 0.247 �0.097 0.251 �0.070

hg_structal �0.817 0.890 �0.806 0.891 �0.796

ig_structal �0.785 0.945 �0.782 0.948 �0.766

ig_structal_hires �0.876 0.947 �0.879 0.950 �0.844

MOULDER �0.859 0.734 �0.840 0.745 �0.881

ROSETTA �0.441 0.507 �0.444 0.505 �0.393

I-TASSER �0.519 0.571 �0.488 0.577 �0.525

CASP9 �0.604 0.618 �0.585 0.609 �0.481

All average �0.610 0.669 �0.599 0.668 �0.566

P value* 0.010 5.0 � 10�5 1.8 � 1

P valuey 0.042 0.036 9.2 �
No. of targetsz 274 273 269

Native structures are excluded from all sets. Highlighted entries are the best ones

coefficient; the second number is the TM-score of lowest energy selected mode

*Two-sided P value of Student’s t-test of the difference of the Pearson’s correla
yTwo-sided P value of Student’s t-test of the difference of TM-score of top-ran
zNumber of targets whose top-rank model has a TM-score to native >0.5.
local substructures that differ significantly from native,
whereas root mean-square deviation is quite sensitive to
such effects.

We find that GOAP gives the best Pearson coefficient of
the energy score with TM-score (48) and has the best
average TM-scores of the selected models. OPUS-PSP
does much worse as assessed by the correlation coefficient,
but comes in second in model selection. DFIRE is very close
to OPUS-PSP in model selection but does much better than
OPUS-PSP in its correlation with TM-score. Because
DFIRE is part of GOAP, its good performance in correlation
and model selection is passed on to GOAP. Because of the
inclusion of the orientation-dependent part GOAP_AG,
GOAP performs better than DFIRE; e.g., for the three
homology modeling decoy sets, GOAP is >5% better, on
average, than the other methods in terms of its correlation
with TM-score.

Fig. 3 shows some examples of the correlation of TM-
score and GOAP energy. It is noteworthy that for target
T0581 in the CASP9 set, a template-free modeling target,
only GOAP identifies the single good model with a TM-
score ¼ 0.66 (BAKER-ROSETTASERVER_TS4; the next
best has a TM-score of 0.36) in the first position (see
Fig. 3 d). The ranking of this model by other methods are:
fourth in DFIRE and RWplus, third in dDFIRE, and fifth
in OPUS-PSP. These results show the advantage of GOAP
in selecting the best models.

To establish the statistical significance of the small differ-
ence between GOAP and other methods, two-sided P values
of the Student’s t-test of the differences between GOAP and
other methods for the Pearson’s correlation coefficients and
the TM-scores of the lowest energy models are also shown
in Table 2. Except for the TM-score difference between
e with TM-score and average TM-score of selected models

RE OPUS-PSP GOAP No. of targets

0.732 �0.589 0.755 �0.694 0.818 7

0.454 �0.282 0.405 �0.347 0.475 4

0.309 �0.095 0.270 �0.221 0.300 5

0.364 �0.091 0.339 �0.146 0.339 10

0.266 �0.051 0.248 �0.058 0.248 8

0.891 �0.752 0.891 �0.825 0.889 29

0.948 �0.779 0.953 �0.865 0.946 61

0.946 �0.832 0.946 �0.885 0.944 20

0.748 �0.802 0.738 �0.886 0.771 20

0.480 �0.343 0.506 �0.476 0.511 58

0.578 �0.284 0.547 �0.477 0.567 56

0.593 �0.448 0.624 �0.611 0.627 112

0.663 �0.500 0.670 �0.626 0.677 390

0�10 1.8 � 10�45 —

10�4 0.065 —

268 274

in the respective set. The first number in each cell is the Pearson correlation

l.

tion coefficient between GOAP and the given method.

ked model between GOAP and the given method.
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FIGURE 3 Examples of correlations between GOAP score and TM-score. (a–c) Native structures are included to show their positions in the energy

landscapes.
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GOAP and OPUS-PSP (P value ¼ 0.065), GOAP gives
statistically significant (P value < 0.05) better results than
all other methods for both TM-score and Pearson correla-
tion. The number of targets whose top-ranked models
have a TM-score to native>0.5 are also given; clearly, there
is very little difference between methods.

We have shown that GOAP performs much better than
other all-atom statistical potentials in native structure recog-
nition and consistently better than those potentials in the
correlation of the energy with TM-score of the models
and in selecting the best models. In what follows, we shall
examine the factors that could contribute to the better
performance of GOAP as well as the validity of its
approximations.
Effects of sequence separation cutoff and
main-chain atoms

The angle-dependent GOAP_AG potential depends on the
sequence separation cutoff s. We have suggested that s
Biophysical Journal 101(8) 2043–2052
should not be too small and have chosen a reasonable value
s¼ 7. To show that this choice indeed results in better poten-
tial than a smaller, or a larger s (more orientation-dependent
energy will be neglected), in Table 3, we give the perfor-
mance of GOAP with s ¼ 2 and s ¼ 10. Because two of
the compared methods RWplus (33) and OPUS-PSP (32)
considered orientations using only side-chain atoms, we
also give in Table 3 the performance of GOAP with s ¼ 7
(the default value) and evaluated using GOAP_AG
for main-chain, side-chain atoms, respectively. Clearly,
with a smaller s ¼ 2, or larger s ¼ 10, GOAP’s performance
is worse than with the default choice s ¼ 7 in native rec-
ognition success rate and Z-score (compare Table 3 with
Table 1).

Even worse performance is seen when main-chain atoms
are not included in the GOAP_AG energy. Therefore, the
contribution to GOAP_AG from main-chain atoms is more
important than that from side-chain atoms. However, the
sensitivities of decoy sets to the s cutoff and main-chain
atom inclusion are different. The most sensitive sets



TABLE 3 Performance of GOAP using a sequence cutoff s ¼ 2, 10, and the default s ¼ 7 and GOAP_AG evaluated only for

main-chain or side-chain atoms, respectively

Decoy sets s ¼ 2 s ¼ 10

Default s ¼ 7 and main-chain

atoms only for GOAP_AG

Default s ¼ 7 and side-chain

atoms only for GOAP_AG GOAP No. of targets

4state_reduced 7(�4.34) 7(�4.15) 7(�3.95) 6(�4.25) 7(�4.38) 7

fisa 2(�2.31) 3(�3.89) 3(�4.28) 3(�4.58) 3(�3.97) 4

fisa_casp3 4(�4.11) 4(�4.94) 5(�5.55) 4(�5.47) 5(�5.27) 5

lmds 7(�4.03) 6(�3.42) 7(�3.20) 6(�2.68) 7(�4.07) 10

lattice_ssfit 8(�10.23) 8(�7.82) 8(�9.19) 8(�9.29) 8(�8.38) 8

hg_structal 21(�2.20) 22(�2.85) 18(�2.08) 18(�2.68) 22(�2.73) 29

ig_structal 38(�1.49) 45(�1.50) 45(�1.80) 8(�0.31) 47(�1.62) 61

ig_structal_hires 18(�2.38) 18(�2.16) 19(�2.72) 6(�0.75) 18(�2.35) 20

MOULDER 19(�3.36) 19(�3.52) 19(�2.88) 19(�3.88) 19(�3.58) 20

ROSETTA 20(�1.28) 43(�3.81) 37(�2.76) 35(�2.95) 45(�3.70) 58

I-TASSER 47(�7.50) 45(�5.11) 47(�4.81) 46(�4.23) 45(�5.36) 56

No. total (Z-score) 191(�3.40) 220(�3.46) 215(�3.20) 159(�2.78) 226(�3.57) 278

Numbers in parentheses are the average Z-scores of the native structures.
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are the homology modeling sets hg_structal, ig_structal,
ig_structal_hires, and ROSETTA ab initio set. Thus, proper
choice of sequence separation cutoff and inclusion of all
atoms in the orientation-dependent energy term are crucial
for our method to improve over other orientation-depen-
dent/independent, all-atom potentials.
Examples of orientation dependence

Here, we examine some examples of angle distributions
involving polar-polar, polar-nonpolar, and nonpolar-
nonpolar atom pairs. To show that it is necessary to consider
the orientations of all, not just polar, atoms, and at what
distance the effects of orientations are most important, in
Fig. S1 a–c (see Supporting Material), we present the
average standard deviation of the angle-dependent energy
terms (see Eq. 6) of the GOAP potential over all polar-polar,
polar-nonpolar, and nonpolar-nonpolar pairs, respectively
for 1), E(qjrab), 2), E(jjrab), and 3), E(cjrab). Polar atoms
are nitrogen, oxygen, and sulfur in Cysteine; all other atoms
are nonpolar. The standard deviation for the energy term of
a given pair at given distance is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
<
�
EðanglejrabÞ2

		
>� <E

�
anglejrab>2

	�
Nbin

�q
; (8)

where the average hi is over Nbin ¼ 12 of angle bins. From
Fig. S1, we see that all three angles (q, j, and c) for all
three kinds of pairs (polar-polar, polar-nonpolar, and
nonpolar-nonpolar) deviate most from uniform at ~4 Å,
but the differences between different kinds of pairs become
obvious at ~6 Å. It is understandable that the differences be-
tween different kinds of pairs are larger at distances <4 Å.
These results demonstrate that even for nonpolar-nonpolar
atom pairs, their full orientation dependence is required.
When GOAP is used to calculate the energy scores on
the 1011 native protein structures that are used for deriv-
ing the GOAP potential, the average DFIRE score per
protein is �21,565, whereas the average GOAP_AG score
is �19,769. This means that the energy contribution of
orientation-dependent part is almost the same as that of
the distance-dependent part for a typical protein.

In Fig. S2, we show some specific examples of the
angular dependence of polar-polar, polar-nonpolar, and
nonpolar-nonpolar pairs. We shall focus mainly on the j-
dependence because the q, c dependences for polar atoms
have been investigated in the dDFIRE potential (31,34).
Fig. S2 a shows the nonuniform j-dependence of the disul-
fide bond Cys SG-Cys SG at 2.25 Å. The energy has two
favorable positions of 575�. Fig. S2 b shows the j-depen-
dence of a typical hydrogen bond (H-bond) between Ala N
and Ala O at 2.75 Å. The dip at �105� shows that the
j-degree of freedom is necessary for accurately describing
a H-bond. In the dDFIRE potential (31), polar atoms are rep-
resented by a dipole and only q is defined for each atom.
Fig. S2 c shows an example of a polar-nonpolar interaction,
Ala O-Ala CB at 3.25 Å. The j-dependence of the nonpolar
atom Ala CB is shown. The interaction is favored when j>
75�. Fig. S2, d–f, shows the q-, j-, and c-dependences of the
Ala CB-Ala CB interactions at 3.75 Å, respectively. Even
though this interaction involves only nonpolar atoms, its
dependence on all three angles is not uniform. Thus, they
are required to describe this typical nonpolar atom interac-
tion accurately.
Effects of orientation dependence on GOAP’s
performance

The above analysis presented with some observations
regarding the orientation dependence of atomic pair interac-
tions. Here, we analyze the contributions of different orien-
tational terms and the overall orientational contribution of
the nonpolar-nonpolar interactions. In Table 4, we show
the performance of GOAP when the contribution of each
of the three types of angle (q, j, and c) terms is not included
and when all angle-dependent terms are not considered for
Biophysical Journal 101(8) 2043–2052



TABLE 4 Performance of GOAP when different angular components are turned off

Decoy sets Angle q Angle j Angle c

All angle terms for

nonpolar-nonpolar GOAP No. of targets

4state_reduced 7(�4.33) 7(�4.34) 7(�4.37) 7(�4.33) 7(�4.38) 7

fisa 3(�3.86) 3(�4.57) 3(�4.00) 3(�4.21) 3(�3.97) 4

fisa_casp3 4(�4.94) 5(�6.01) 5(�5.20) 5(�5.33) 5(�5.27) 5

lmds 6(�3.40) 7(�4.27) 7(�3.85) 7(�3.79) 7(�4.07) 10

lattice_ssfit 8(�9.04) 8(�8.42) 8(�8.40) 8(�9.00) 8(�8.38) 8

hg_structal 20(�2.59) 22(�2.66) 22(�2.71) 20(�2.53) 22(�2.73) 29

ig_structal 35(�1.26) 43(�1.66) 44(�1.46) 46(�1.69) 47(�1.62) 61

ig_structal_hires 17(�1.96) 18(�2.52) 18(�2.15) 18(�2.56) 18(�2.35) 20

MOULDER 19(�3.58) 19(�3.51) 19(�3.55) 19(�3.30) 19(�3.58) 20

ROSETTA 41(�3.30) 43(�3.80) 40(�3.46) 40(�3.42) 45(�3.70) 58

I-TASSER 45(�4.95) 46(�4.94) 45(�5.07) 47(�5.28) 45(�5.36) 56

No. total (Z-score) 205(�3.27) 221(�3.56) 218(�3.40) 220(�3.50) 226(�3.57) 278

Numbers in parentheses are the average Z-scores of the native structures.
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nonpolar-nonpolar pairs. Table 4 shows that the contribution
from q-angle is the most important and from j the least. It
also shows that, consistent with previous analysis, the orien-
tational dependence from nonpolar-nonpolar interactions
contributes somewhat positively to GOAP’s performance.
The independence of angular distributions

The assumption made in Eq. 6 that all angle distributions are
independent is intended to overcome the problem of too few
cases that satisfy the joint distribution of five angles at each
distance. How well this assumption holds is not yet known.
We examine here a typical polar-polar interaction of main-
chain N-O pairs using amino-acid nonspecific atom types to
increase the statistics of the joint distribution and derive the
joint distribution with a larger dataset of 3506 proteins
downloaded from http://dunbrack.fccc.edu/PISCES.php
(50). The covariance of all angle pairs at different distances
is given in Fig. S3, a–c. From these figures, we observe that
qN has a relatively stronger covariance with qo at ~6 Å and
8 Å, whereas, with the other three angles, it shows weaker
covariation for all distances (see Fig. S3 a). The covariance
of jN with jo and c has a dip or peak at ~2 Å. Beyond 4 Å,
the covariance is weak (see Fig. S3 b). These results indicate
that except for a somewhat narrow range of distances, the
assumption of independent angular distributions holds
reasonably well.
DISCUSSION

In this article, we have improved the description of pairwise
atomic interactions by introducing the orientation depen-
dence of all individual heavy atoms. However, to obtain
the orientational contribution to the potential, a sequence
separation cutoff is needed. The cutoff is the only free
parameter and is obtained by Monte Carlo simulation of a
noninteracting peptide. We find that inclusion of main-chain
atoms has a greater effect on GOAP’s performance than the
cutoff (see Table 3). This is consistent with the findings in
Biophysical Journal 101(8) 2043–2052
the OPUS-PSP article (32), where the authors reported the
results for the decoy sets ig_structal and ig_structal_hires
when main-chain block types were included.

The results inWu et al. (26) (46(�2.79) for ig_structal and
19(�3.03) for ig_structal_hires) are much better than the
ones (20(0.693) and 14(�0.768)) we obtained using the
downloaded OPUS-PSP program that ignores such main-
chain interactions. The main-chain blocks include the
main-chain amide and carbonyl groups, and therefore, they
take into account the hydrogen-bond interactions. However,
when these blocks are included in OPUS-PSP, it only recog-
nizes 24 of 34 native structures in the fiveDecoys ‘R’ Us sets.
Thus, inclusion of main-chain interactions does not neces-
sarily improve the overall performance of OPUS-PSP. The
authors of OPUS-PSP(32) suggest that their rigid-body
description is not suited for optimizing main-chain
hydrogen-bond interactions. Another reason could be that
OPUS-PSP defines main-chain blocks that do not depend
on specific amino-acid types, whereas in real proteins, there
are different preferences of different amino acids for different
secondary structures; this feature is included in GOAP.

In testing of the GOAP potential on commonly used
decoy sets, we find that GOAP performs better than other
all-atom potentials in native structure recognition and is
consistently better in terms of the correlation of energy
score with model quality as assessed by the correlation of
the TM-score to native and in good model selection. The
close homology modeling decoys and the ROSETTA ab ini-
tio decoys are particularly sensitive to the performance of
all-atom potentials. Here, GOAP performs consistently
better than other potentials on these decoy sets. Thus,
GOAP might prove to be useful in high accuracy protein
structure refinement and in ab initio structure prediction,
but this remains to be demonstrated. Its application to
side-chain modeling and protein design might give better
results than the OPUS-PSP potential, because it has atomic
resolution and a distance dependence, and it includes main-
chain atoms compared to the block resolution, contact
nature, and side-chain atom restrictions of the OPUS-PSP

http://dunbrack.fccc.edu/PISCES.php
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potential (51). Applications of GOAP to these areas are
under investigation.

GOAP can also be included in possible composite knowl-
edge-based scores like the QMEAN score (52) and that
employed by Eramian et al. (53) to develop a more accurate
score function for model rank and selection, and for absolute
model quality prediction (54,55). These methods integrate
different kinds of scores using a machine learning approach
or a linear combination with trained weights. Because
GOAP does not include short-range (<7 sequence separa-
tion) angle correlations, some kind of backbone torsional,
angle-dependent, knowledge-based scores as in the
QMEAN approach might further enhance its performance
in native structure recognition and model selection.

The physical source of the orientation-dependence is the
anisotropic nature of the atomic electronic environment that
also depends on the position and identity of the interacting
partner. Our potential demonstrates that such anisotropy
is found in all kinds of atoms (polar and nonpolar). The
improved performance of our GOAP potential and other
orientation-dependent potentials over orientation-indepen-
dent ones (such as the DFIRE) has implications for the
development of more accurate physics-based, all-atom
potentials. Traditional physics-based all-atom force fields
(2,3) represent atoms as hard spheres and take into account
orientation dependencies only for bonded atoms in the angle
and dihedral angle terms.

Nonbonded interactions are described by short-range van
der Waals and long-range electrostatic terms and lack any
angular orientation dependence. In recent developments of
molecular-mechanics force fields, the electronic polariza-
tion of the atomic environment has been taken into account
by calculating induced charges during the simulation (56).
However, this is too computationally expensive for protein
simulations even though a dipole description of electronic
polarization is still inadequate for protein atoms. In contrast,
GOAP naturally takes into account the orientation-depen-
dence of H-bonds, disulfide bonds, salt-bridges, and other
possible pair interactions at all distances.

However, due to the introduction of a sequence separation
cutoff s ¼ 7 because of the inaccurate estimation of ex-
pected angle distributions at shorter cutoffs, only nonlocal
H-bonds (e.g., those in b-sheets and long separated side
chains) are included. Although the knowledge-based poten-
tial can be directly used in Monte Carlo simulations and
in model selection, its application to molecular dynamics
simulations requires differentiable functions. This could
be done using splines. Although GOAP might be useful
for sampling conformations using molecular dynamics, the
resulting thermodynamic properties might be unrealistic
because GOAP is a potential of mean force derived from
the statistics of solved protein structures. However, as a
means of generating good quality models, our ranking
results here are suggestive; but it remains to be demon-
strated whether the good performance of GOAP will be
retained when it is used to drive the conformational search
rather than to select among extrinsically generated decoys.
This is a promising avenue that is currently being pursued.
SUPPORTING MATERIAL

Three figures are available at http://www.biophysj.org/biophysj/supplemental/
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