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1. INTRODUCTION 

Because of the desire to calculate the areas of elementary figures, a 
variety of integrals has been established, popular among which are the 
Lebesgue integral and the Riemann integral. It is clear that Riemann 
integral is fundamental in elementary calculus and it can be used to define 
and calculate many geometric and physical quantities, such as area, 
volume, and work. However, the Riemann integral has its limitations. The 
theory of the Lebesgue integral reveals that the Riemann integral is 
basically used for continuous functions. In fact, f: [a, b] -+ R is Riemann 
integrable iff S is continuous a.e. on [a, b]. Also, as is known, the 
convergence theorems for this integral are severely restricted. With the 
motivation of generalizing the Riemann integral so as to enlarge the class 
of integrable functions for which the convergence theorems hold, the 
Lebesgue integral was successfully established. 

Generalizations of the Lebesgue integral, such as the Perron integral and 
special Denjoy integral, appeared later. The most interesting generalization 
is the generalized Riemann integral (GR integral for short), discovered by 
Kurzweil and Henstock independently, although it is equivalent to Perron 
and special Denjoy integrals. Contrary to the classical exposition of the 
Lebesgue integral which needs the concepts of measurable sets and 
measurable functions, before defining the integral, one can define the GR 
integral directly based on Riemann sums; therefore, the definition is con- 
structive. Then, if one wishes, one can find all the Lebesgue measurable sets 
and measurable functions via the definition of GR integral. Furthermore, 
all the convergence theorems can be proved using the definition of the 
integral [l-3]. 

It is known that f is Lebesgue integrable iff both f and If] are GR 
integrable. Hence, the Lebesgue integral can be introduced through the GR 
integral, avoiding measure theory. Since the definition of the GR integral is 
very similar to that of the Riemann integral, one can easily grasp the 
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powerful Lebesgue integral, as long as one has a background on the 
Riemann integral. However, as we illustrate in Section 4, to study the GR 
integrable functions which are not Lebesgue integrable is at most of 
marginal interest. We also show that the theory of differential and integral 
inequalities among GR integrable functions cannot go beyond Gronwali 
inequality due to the nature of this integral which lacks necessary 
operational properties. 

For the convenience of presentation, we consider f: [a, 61 + R, 
throughout the paper, although most of the conclusions are valid for 
f: Q+ R”, where Q c R” bounded or unbounded. 

2. HISTORICAL DEVELOPMENTS 

By inverting the result of differentiating a known function, the Newton 
integral is defined to be 

(N)I’f(x)dx=F(b)-F(a), (2.1) 
(I 

where F: [a, b] + R is a primitive off in [a, 61, that is, F’(x) = f(x) for all 
XE [a, b]. The more practical Riemann integral is defined as follows. 

We say that f is Riemann integrable on [a, b] and 

(R) J’f(x)dx=Z (2.2) 
a 

if, for each E > 0, there is a 6 > 0 such that for every partition of [a, b] 

u=x,<x,<x,< ... <x,=b (2.3) 

with tags 

x&-I<tk<Xk, k = 0, 1, 2, . . . . n (2.4) 

we have 

I- i f(fk)( xk-XkLj <E (2.5) 
k=l 

whenever xk - xk-, < 6 for k = 1,2, . . . . n. 

EXAMPLE 2.1. For each k, define fk : [0, 1 ] -+ R by 

fk(x) = {A 
for x=j/k!, O<j<k! 
elsewhere. 
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Then 

lim &(x)=f(x) = 
i 

A 
if x is rational 

k-m if x is irrational. 

However, f(x) is not Riemann integrable, a defect of the Riemann integral 
mentioned in the Introduction. 

The Lebesgue integral successfully overcomes these shortcomings. 
Further, the Newton-Leibnitz formula 

F(x) -F(a) = (L) s-’ F’(t) dt, 
u 

which is valid iff F: [a, b] -+ R is absolutely continuous, shows that the 
theory of the Lebesgue integral makes it possible to reunite the two 
fundamental concepts of the integral, namely, that of the definite integral 
and that of the primitive, which appeared to be forever separated as soon 
as integration went outside the domain of continuous functions. 

The original definition of the Lebesgue integral is as follows. Define 
Lebesgue measurable sets first, and then Lebesgue measurable functions. 
Suppose that f: [a, b] + R is Lebesgue measurable and -M <f(x) < A4 
on [a, b]. Then f is said to be Lebesgue integrable on [a, b] and 

(L) j+f(x)dx=Z 
a 

(2.7) 

if, for each E > 0, there is a 6 > 0 such that for every partition of [a, b] 

-M= y,< y,< ... < y,=M (2.8) 

with max OGrCn-l (Y,+~-Y,)<& we have 

Z- f SAE,) ~6, (2.9) 
r=l 

wherey,~,~~,~y,,E,={x~[a,b]:~i~,~f(x)dy,},andmdenotesthe 
Lebesgue measure. 

In general, f as well as its domain may be unbounded; we can truncate 
the domain and range off in this case and then use the above definition 
and limit process to give the general definition. 

For every Lebesgue measurable f, f =f+ -f-, where f’ = max{f, 0} 
f- = max{ -f, 0} are Lebesgue measurable; and for every Lebesgue 
measurable g 3 0, there is an increasing sequence of step functions which 
converges to g almost everywhere. The above observation enables us to 
define the Lebesgue integral, avoiding measure theory, as follows. 

409*137&15 
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A4 c R is said to be null if, for every E > 0, there is a sequence of open 
sets { (ak, 6,)) such that Mc up=, (a,, bk) and C;= 1 (bk - uk) <E. 
f: R + R is said to be Lebesgue integrable iff there are increasing sequences 
of step functions, {&I, {gk}, such that [fk(x) - gk(x)] +f(x) as k -+ co 
for all x but a null set and 

!imn (R) 1% fk(x) dx < ~0, 
-cc 

lim (R) Im gk(x) dx< co. 
k-cc -cc 

(Note that the step function is always Riemann integrable.) We then define 

W) jm f(x) dx=!Lrnm (R) jm h(x) dx-2:: (R) jm gk(x) dx. (2.10) 
-m -cc --CD 

Evidently, this definition is descriptive. See [9]. 

EXAMPLE 2.2. Consider the function 

1 x2 sin 1/x2 
F(x)= o 

for x#O 
for x=0. 

Then 

F’(x) =f(x) = 
i 

2x sin l/x2-2/x cos l/x2 for x#O 
o 

for x=0. 

Since f(x) is Newton but not Lebesgue integrable, Newton and Lebesgue 
integrals do not have any inclusive relations. To introduce an integral more 
general than either the Newton or the Lebesgue integral, we first give some 
notation. 

Forf: [a, b] + R, F: [a, b] -+ R is termed the major (minor) function of 
f if, at every XE [a, b], 

--co #DF(x)bf(x) (+ a # DF(x) <f(x)), (2.11) 

where D and 4 denote the lower and upper derivatives, respectively. Then 

A(u, b) = inf{F(b) -F(u)}, (2.12) 

for all major functions off, is the upper Perron integral, .while 

H(a, 6) = SUP(F(b) -F(a)), (2.13) 

for all minor functions off, is the lower Perron integral. f is said to be 
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Perron integrable in [a, b] if f has both major and minor functions on 
[a, b] and H(a, b) = R(a, b); in this case we define 

(P) rbf(x)dx=H(u, b)=li(a, b). (2.14) 

It is known that if we consider only absolutely continuous major and 
minor functions offin (2.12) and (2.13), the resultant integral is exactly the 
Lebesgue integral. Hence, the Perron integral includes both Lebesgue and 
Newton integrals. Also, requiring all the major and minor functions to be 
continuous in (2.12) and (2.13) will yield the same Perron integral. Sup- 
pose that F, G are any major and minor functions off, respectively; then 
F(b) - F(u) B G(b) - G(u). Therefore, f is Perron integrable in [a, b] iff, for 
any E > 0, there exist a major function F and a minor function G of F on 
[a, h] such that F(b) - F(u) < G(b) - G(u) + E. It then becomes clear that 
the Perron integral may be regarded as a synthesis of two fundamental 
concepts of integration: one corresponding to the idea of a definite integral 
as a limit of certain approximating sums, and the other to that of 
an indefinite integral understood as a primitive function (see [7]). The 
following result is known [7]. 

THEOREM 2.1. A measurable function, which has on [a, b] at least one 
continuous major function and one continuous minor function, is necessarily 
Perron integrable on [a, b]. 

Another way to generalize the Lebesgue integral is to replace the 
absolute continuity requirement on Fin (2.6) by a weaker one, and, accor- 
dingly, a more general integral on the right hand side of (2.6) should be 
considered. This idea leads to the special Denjoy integral. For defining this 
integral, we need some preparation. 

For a function F: [a, b] + R and a strictly increasing U: [a, b] + R, we 
may define the four Dini derivatives of F with respect to U at x. For 
example, D+FU the upper-right Dini derivative with respect to U, is 
defined by 

F(Y) -F(x) 
D+FJx) = ,:lt: sup u(y) - U(x)’ (2.15) 

For any F: E c R -+ R, we introduce 

DEFINITION 2.1. The weak variation V(F, E) and strong variation 
V,(F; E) of F on E are defined by 

J’(F; E)=sUpC (F(bi)-F(ai)ly V,(F; E) = sup 1 O(F; I,), (2.16) 
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where Z, = [a;, bi] and { [ai, bi] } is any sequence of non-overlapping inter- 
vals whose end-points belong to E, and O(F; Zi) denotes the oscillation of F 
on Ii. If V(F; E) (V,(c E)) < + co, the function F is said to be of bounded 
variation in the wide (restricted) sense on E, or VB (VB,) on E. F is said 
to be of generalized bounded variation in the wide (restricted) sense on E, 
or simply VBG (VBG,) on E, if E is the sum of a sequence of sets on each 
of which F is VB (VB,). 

DEFINJTJON 2.2. F is said to be absolutely continuous in the wide 
(restricted) sense on E, or simply AC (AC,) on E, if to each E > 0 there 
corresponds an 9 > 0 such that for every sequence of non-overlapping inter- 
vals {Zi= [ai, b,] > whose end-points belong to E, C(b, - ai) < q implies 
C IF(bi) - F(ai)l < E(C O(F; Zi) < E). F is said to be generalized absolutely 
continuous in the wide (restricted) sense on E, or simply ACG (ACG,) on 
E, if F is continuous on E and E is the sum of a sequence of sets on each of 
which F is AC (AC,). 

The basic relations among them are given in [7] by 

THEOREM 2.2. In order that F be AC,(ACG,) on a bounded closed E, it 
is necessary and sufficient that F be both VB, and AC (VBG, and ACG) on 
E. F is ACG, on an open interval Z iff there is a strictly increasing and 
absolutely continuous function with respect to which F has its Dini derivatives 
finite at every point qf I. 

For the difference between ACG and ACG, functions, it is known that a 
VBG, (hence ACG,) function on E is almost everywhere finitely differen- 
tiable on E and this is not true for ACG functions, in general. 

f: [a, b] -+ R is said to be special Denjoy integrable, if there is an ACG, 
function F on [a, b] with F’(x) =,f( ) x a.e. on [a, b], and in this case we 
define the special Denjoy integral by 

(D,) !“bf(x)dx=F(b)-F(a). 
a 

(2.17) 

In general, we have 

F(x) - F(u) = (D,) [-‘ F’(t) dt 
a 

(2.18) 

iff F is ACG,. By comparison of (2.18) with (2.6) the intention stated 
below Theorem 2.1 is realized. Evidently, the special Denjoy integral is 
more general than the Lebesgue integral, since F from Example 2.2 is 
ACG, but not absolutely continuous. In fact, the special Denjoy integral 
and Perron integral are equivalent (see [ 73). The monotone convergence 
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theorem among special Denjoy integrable functions is obviously true since 
f,<f*< ... <fn< ... implies that f, - f, is non-negative, hence Lebesgue 
integrable, and 

= lim P,) lb CfJ4 -h(x)1 dx n-02 (1 

+P,) jbfiW u 

= Jima (L) lb IIf, -fi(x)l dx + CD),) Jbfi(X) dx LI a 

= (L) jb [If,(x) -fib)1 dx + (D,) j-"fd4 dx 
u 0 

= (D,) 1” Cfm(x)-f,(x)1 dx+ (D,) jbf,(x)dx 
u (I 

= (D,) jb lim f,,(x) dx. 
a n-m 

3. GENERALIZED RIEMANN INTEGRAL 

We have already seen in Section 2 that the Perron-Denjoy integral is 
more general than the Lebesgue integral, and Perron’s approach does not 
even need the help of any notions of measurability. However, the 
definitions of these two integrals are by no means easier than that of 
Lebesgue since both Perron’s and Denjoy’s definitions are descriptive. 
Kurzweil and Henstock successfully gave a constructive definition for the 
so-called generalized Riemann integral (or Henstock integral, or Riemann- 
complete integral), which is equivalent to the Perron-Denjoy integral, and 
hence, it can be utilized to define the Lebesgue integral constructively. 

As we know, the Riemann integral has the limitation that convergence 
theorems are severely restricted. This is because the class of Riemann 
integrable functions is very small, as Example 2.1 shows. Suppose f(x) 2 0 
on [a, b]; then the integral off over [a, b] should be understood as the 
area in some sense of the region S under the graph off: Hence, each term 
f(fk)(xk - xkp ,) in (2.5) should be a good approximation to the area of the 
strip S, under the graph and between x = xk _ i, x = xk. In the definition of 
the Riemann integral, we usually choose {xk} first and then require (2.5) 
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foranyt,E[~~~~,~~]aslongasx,-x,~,<6fork=1,2,...,n.Thiscan 
be impossible if f is very steep in [xk _, , xk] and xk - xk _, is relatively 
large since we have many choices for tk from [xk ~ 1, xk]. This is exactly the 
reason why many functions are not Riemann integrable. In other words, 
the local behavior off should be considered in the definition in order to 
generalize the Riemann integral. 

Contrary to the classical process, choose t, first and then, according to 
the behavior off around tk, decide how close xk _, and xk should be to tk 
so that f(tk)(xk - xk ~. ,) is a good approximation of Sk. Overall, for any 
t E [a, 61, choose an open interval h(t) containing t such that f(t)(u- U) is 
a good approximation to the area of the strip under the graph between 
x = u and x = u, whenever t E [u, u] c b(t). This idea leads to the following 
definition of the generalized Riemann integral. 

f: [a, b] + R is said to be generalized Riemann integrable and 

(GR) J’j-(x)dx=Z (3.1) 
0 

if for each E >O there is a function 6: [a, b] -+ (0, co) such that for any 
partition of [a, b] with tags { tk}, 

a=x,<t,<x,< ... <xnel<t,<x,,=b (3.2) 

satisfying 

xk-xk&l<S(tk) (3.3) 

for each k. it follows that 

n 

I- c f(tk)(Xk-Xk-l) <&. 

k=l 

(3.4) 

It is easy to prove that for any given 6: [a, b] + (0, co), a partition of 
[a, b] satisfying (3.2) and (3.3) is always available, and hence the GR 
integral is unique if it exists. 

EXAMPLE 3.1. We are going to prove (GR) shf(x) dx=O for the f of 
Example 2.1. Enumerate all the rationals in [0, l] as (rk) and define 

b(t) = 
1 for t irrational 
&/2k for t = rk, k= 1, 2, . . . . 

For any partition of [0, l] satisfying (3.2) and (3.3) with respect to so- 
defined 6, we have 
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< f f(rk)bk-Xk--l) 
k= I 

< f E/2k=E, 
k=l 

where C’ denotes the sum for all rational tk and C” for all irrational t,. 

THEOREM 3.1 [4]. For F, f: [a, b] + R, suppose F is continuous and 
F’(x) = f(x) on [a, b], except at most a countable set. Then f is generalized 
Riemann integrable on [a, b], and 

i 
U’ f(x) dx= F(b)-F(a). (3.5) 

It is known that the generalized Riemann integral and Perron-Denjoy 
integral are equivalent. Hence for an integrable function f, the function 
must be measurable, finitely valued almost everywhere, F(x) = 
(GR) J; f(t) dr is ACG,, and F’(x)=f(x) a.e. on [a, b]. 

It is proved [4] that f: [a, b] *R is Lebesgue integral iff both IfI and f 
are GR integrable. Hence we can equivalently define the Lebesgue measure 
just through the elementary definition of the GR integral as follows. 

For any bounded E c R, let E c [a, b] and 

If x~(,x) is GR integrable on [a, b], we say that E is a Lebesgue measurable 
set with measure m(E)= (GR) SS: &x) dx. For any EC R, let 
E, = En [ -n, n]. If E, is Lebesgue measurable for all n, we say that E is 
Lebesgue measurable with measure m(E) = lim, _ oD m(E,). In this manner, 
we can actually give the whole theory of the Lebesgue integral. It is 
interesting to point out that if we enlarge the collection of tagged partitions 
in the definition of the GR integral by allowing that fk can be outside of 
[xk- r, xk] for every k, then the same process will give exactly the 
Lebesgue integral. See [S]. 
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4. PROPERTIES OF GR INTEGRAL AND INTEGRABLE FUNCTIONS 

The basic properties are included in the following two theorems. Suppose 
F, f, g: [a,b] + R, CE (a, b), a, /3 are constants. As a convention, we omit 
GR in front of integral signs. 

THEOREM 4.1. (a) rff; g are GR integrable, so is af + pg and 

j” (af+bg)(x) dx= a i”f(x) dx+P j” g(x) dx. 
u u u 

(4.1) 

(b) f is integrable on [a, b] ljjf it is integrable on [a, c] for any 
CE (a, 6) and lim,,,- ]I; f(x) dx exists. ji f(x) dx = lim, _ h- J: f(x) dx if 
integrable. 

(c) f is GR integrable on [a, b] iff it is integrable on [a, c] and 
[c, d]. Moreover, 

j.bf(x)dx=l’.f(x)dx+jhf(x)dx. (4.2) 
u u < 

(d) If F is continuous and F’(x) = f(x) on [a, b], except at most a 
countable set, then (f(x)1 is GR integrable on [a, b] ljjf F is of bounded 
variation on [a, b]. Moreover, 

s ab If( dx = ‘) VI. (4.3) 
Ll 

(e) rff is GR integrable and g is of bounded variation on [a, b], then 
fg is GR integrable on [a, b]. Moreover, 

s" g(x)f(x)dx=g(b)F(b)-g(a)F(a)-(S) ~bFOdg(x)~ (4.4) 
a a 

where F(x) = (GR) s;: f(t) dt and (S) denotes the Stieltjes integral. 

(f) Suppose that f and g are GR integrable. Let F(x) = ji f(t) dt and 
G(x) = ji g(t) dx. Then fG is GR integrable iff Fg is. Moreover, 

lab f(x)G(x) dx = F(b)G(b) - F(a)G(a) -1” F(x) g(x) dx. (4.5) 
(I 

(g) f is GR integrable iff there exists an ACG, function F on [a, b] 
such that F’(x) = f(x) a.e. on [a, b]. Furthermore, 

s y’f(t)dt=F(x)-F(a). (4.6) 
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THEOREM 4.2. Suppose f,,: [a, b] + R are all GR integrable and non- 
decreasing for almost all x E [a, b]. Let f(x) = lim, _ J3 f,(x); then f is GR 
integrable iff lim, _ co jS: f,(x) dx < + 00. Moreover, 

fu f(x) dx = ,,limrn fb f,(x) dx. (1 (4.7) 

Evidently, the dominated convergence theorem of GR integrable 
functions is no more than that of Lebesgue integrable functions because of 
the relation between these two integrals. For the proofs of these two 
theorems, see [4, 7, 81. 

We say that g: [a, b] + R is a GR multiplier if fg is GR integrable on 
[a, b] as long as f is. Theorem 4.1(e) shows that any function of bounded 
variation is a GR multiplier. The following example convinces us that this 
might be the best general result since even an ACG, function may not 
be a GR multiplier. This means, in particular, that fG and Fg from 
Theorem 4.1(f) may not be integrable in general. 

EXAMPLE 4.1. Define 

x#O 
x = 0, 

then F(x) is continuous and F’(x) = cos a/x + (n/x) sin X/X for x # 0. Hence 
F'(x) is GR integrable on [0, $1 and so is f(x) = (rc/x) sin x/x. Obviously, 
lim E+O+ Ji’* If(x)] dx = + co; therefore, we can find a C’ function 
4: [0, +] -+ [0, l] with the properties that 4(O) = 0, strictly increasing and 
such that lim,,,, j;‘* 4(x) If(x)1 dx = + co. Note that f(x)>0 in 
(1/(2k+ l), 1/2k) and f(x)<0 in (1/(2k+2), 1/(2k+ 1)) for k= 1, 2, 3, . . . . 
it is then not difficult to define a C’ function II/: (0, t] --+ R such that 
1$(x)1 <d(x) for XE (0, 41 and 

JIk+(x)f(x)dx+Yx) If(x)1 dx-+ 
1 1 

for any Ik= k+l,k , II 1 
k = 1, 2, . . . . By defining $(O) = 0, we see that 111 is continuous on [O, $1 and 
ACG, . However, lim, _ ,, + sup ji’* $(x)f(x) dx = + co. Hence $f is not 
GR integrable on [0, 4-j by Theorem 4.1(b). 

EXAMPLE 4.2. Assume that g: R + R and x: [a, b] + R. It is in general 
nonsense to ask the GR integrability of g(x(t)) in case one of them is only 
GR integrable. Let g(s) = IsI, which is Lipschitzian, and x(t) be GR 
integrable but not Lebesgue integrable; then g(x(t)) is not GR integrable. 
Let g(s) = s ~ I’*, which is GR integrable, x(t) = t*, which is Lipschitzian; 
g(x(t)) is not GR integrable on [0, 11, however. 
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In conclusion, unlike Lebesgue integrable functions, GR integrable 
functions lack some important operational properties which are necessary 
in the theories of differential and integral equations. Because of this, it is 
clear that the importance of the GR integral is only to provide an elemen- 
tary and constructive treatment of the theory of the Lebesgue integral. 

Finally, we give the following (GR) integral inequality which is a 
generalization of [6]. As Example 4.2 reveals, we can consider only linear 
type problems when GR integrals are involved. 

THEOREM 4.3. (Generalized Gronwall’s Inequality). Assume 4, CI, /?: 
[a, b] -+ R such that q3 is GR integrable, a is ACG,, p is of bounded 
variation, and a’(t) > 0, j?(t) 3 0 a.e. [a, b]. Then 

d(t) G 4t) + j-’ B(sM(s) 6 a<t<b (4.8) 0 
implies 

~(I)~OL(t)exp(~~B(s)ds), a<t<b. (4.9) 

Zf (4.8) holds a.e., then so does (4.9). 

Proof Let R(t) = j; b(s)d(s) d s, which is well-defined by Theorem 4.1 (e). 
Then 

R’(t)=B(t)#(t)<j?(t)cl(t)+P(t)R(t) a.e. (4.10) 

This implies 

and hence 

R’(t)-B(t)R(t)<p(t)a(t) a.e. (4.11) 

[R(t)exp( -/ibis)] 

<b(t)a(t)exp( -J:j?(s)ds) ax. (4.12) 

Since exp( - j; b(s) ds) is Lipschitzian and R(t) is ACG,, it is then easy to 
prove that R(t) exp( - J; j?(s) d s is also ACG,. Hence, by Theorem 4.1(g) ) 
one can integrate (4.12), obtaining 

<I’ j?(s)a(s) exp ( - js B(u) du) ds. 
a a 

(4.13) 
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Thus 

R(t) d 1’ fl(s)a(s) exp (1’ P(u) du) ds. (4.14) 
u s 

Let F = cc, G = - exp(j: B(U) du) in Theorem 4.1(f); then f = ~1’ and 
g = /I(s) exp(j’, p(u) du). Applying (4.5) to (4.14) we get 

R(t)< -a(r)+z(a)exp(/Ia(s)ds) 

+ 1’ a’(s) exp (l’ /I(u) du) ds. 
(1 s 

Consequently, 

(4.15) 

R(t)< -a(r)+exp(JIj(s)ds) 

= -a(t) + cc(t) exp (J j(s) 
a 

since tl( t) is ACG, . Finally, 

~(t)$a(f)fR(t)$a(t)exp(?:iP(s)ds), taa, 

and the proof is complete. 

REFERENCES 

1. R. DAVIES AND Z. SCHUSS, A proof that Henstock’s integral includes Lebesgue’s, J. London 
Math. Sot. 2 No. 2 (1970) 561-562. 

2. R. HENSTOCK, “Theory of Integration,” Butterworths, London, 1963. 
3. J. KURZWEIL, Generalized ordinary differential equations and continuous dependence on a 

parameter, Czechoslouak Math. .I. 7 No. 22 (1957) 41849. 
4. R. MCLEOD, The generalized Riemann integral, in “The Carus Mathematical Monographs” 

No. 20, Math. Assoc. America, Washington, DC, 1980. 
5. E. MCSHANE, A unified theory of integration, Amer. Math. Monthly SO (1973), 349-359. 
6. 0. OSTASZEWSKI AND J. SOCHACHI, Gronwall’s inequality and the Henstock integral, 

J. Math. Anal. Appl., in press. 
7. S. SAKS, “Theory of the Integral,” Hafner, New York, 1937. 
8. L. YEE AND W. NAAK-IN, A direct proof that Henstock and Denjoy integrals are 

equivalent, Bull. Malaysian Math. Sot. 2 No. 5 (1982), 4347. 
9. A. J. WEIR, “Lebesgue Integration and Measure,” University Printing House, Cambridge, 

1973 


