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Abstract

We provide an algorithm to compute the 2-norm maximum of a multilinear map over a product of
spheres. As a corollary we give a method to compute the first singular value of a linear map and an appli-
cation to the theory of entangled states in quantum physics. Also, we give an application to find a closest
rank-one tensor of a given one.
c⃝ 2012 Elsevier Inc. All rights reserved.
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0. Introduction

Many problems in mathematics need to maximize a bilinear form over a product of spheres.
For example, the 2-norm of a matrix is given by the maximum of the bilinear form (x, y) →

x t Ay, where ∥x∥ = ∥y∥ = 1. Another interesting problem is to find a closest rank-one tensor of
a given tensor,


ai jk xi ⊗ y j ⊗ zk . To answer this problem one has to find the maximum of a

trilinear form over a product of three spheres (see the examples).
This article provides an algorithm to find the maximum of a multilinear map over a product

of spheres,

ℓ : Rn1+1
× · · · × Rnr +1

→ Rnr+1+1, max
∥x1∥=···=∥xr ∥=1

∥ℓ(x1, . . . , xr )∥.
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We have reduced the problem of finding the maximum of ℓ to a problem of finding fixed points
of a map ∇ℓ : Pn1 × · · · × Pnr+1 → Pn1 × · · · × Pnr+1 . The advantage of this reduction is the
possibility to count the number of extreme points of ℓ, and also, to find the fixed points of ∇ℓ

solving a system of polynomial equations. There are standard algebro-geometric tools to solve
systems of polynomial equations.

In Section 1 we review some concepts and definitions in algebraic geometry such as projective
spaces, maps, products of projective spaces and maps between them.

In Section 2, using Lagrange’s method of multipliers, see [1, Section 13.7], we reduce the
problem of finding the maximum of a multilinear map ℓ to the problem of finding fixed points of
a map ∇ℓ. We compare our approach with the ones in the literature.

In Section 3 we make a digression to discuss the number of extreme points of a multilinear
map over a product of spheres. We use intersection theory to count the number of fixed points of
the map ∇ℓ : Pn1 × · · · × Pnr+1 → Pn1 × · · · × Pnr+1 . Recall that the number of fixed points of a
generic map F : PN

→ PN , of degree d, is 1 + d + · · · + d N . In this section we give a formula
to compute the number of extreme points of a multilinear map over a product of spheres. If the
map is generic, this number is achieved over C, and if it is not generic, this number is a bound
when the extreme points are finite. In the literature, the extreme points of ℓ are called singular
vectors (see [17]) and in this section we count them.

In Section 4 we use our approach to find the maximum of a bilinear form over a product of
spheres. In the bilinear case, the map ∇ℓ, induces a linear map L : PN

→ PN , where N is a natu-
ral number, and we prove that for a generic q ∈ PN , the sequence {q, L(q), L2(q), . . .} converges
to the absolute maximum. In other words, the absolute maximum is an attractive fixed point of
L . Also, with the same tools, we give an algorithm to find the spectral radius of a square matrix.

In Section 5 we use the theory developed to present the algorithm. We take advantage of a
result in Section 2; the classes of extreme points of a multilinear form ℓ, are in bijection with
the fixed points of ∇ℓ. We reduce the problem of finding fixed points of ∇ℓ to solve a system of
polynomial equations with finitely many solutions. In the literature about computational aspects
of algebraic geometry, there exists a lot of algorithms to solve a system of polynomial equations
with finitely many solutions; see [10]. This gives us the ability to find the absolute maximum of
ℓ. It is important to mention that the system of polynomial equations obtained with our approach
is slightly different from the system of polynomial equations obtained naively from the method
of Lagrange’s multipliers. Our approach in projective geometry allows us to find the correct
solution removing some constraints. In the first part of the section, we present a direct method
to find the maximum value of a generic multilinear form over a product of spheres. Basically, it
reduces to finding the spectral radius of a matrix. In the second part of the section, we give an
algorithm to find the point (x1, . . . , xr ) ∈ Rn1+1

× · · · × Rnr +1, where ∥xi∥ = 1, 1 ≤ i ≤ r ,
such that ∥ℓ(x1, . . . , xr )∥ is maximum.

In Section 6 we use the theory developed to compute a lot of examples and applications. One
of them is the ability to find a closest rank-one tensor of a given tensor. We prove that this problem
is well posed and we apply our algorithm to solve it. Another application is related to quantum
physics. It is a criterion of separability. Given a quantum state, we can say if it is separable (see
Remark 22 for definitions and related concepts).

1. Review on projective geometry

In this section we give some definitions that we are going to use such as projective spaces,
maps, projective tangent spaces, product of projective spaces and maps between them. We are
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assuming that the base field is R, but all the definitions are true in the complex case. All the
notions in this section may be found in [14].

Definition 1. Let n be a natural number and let Rn+1 be a real vector space of dimension n + 1.
The projective space, Pn , is the space of lines passing through the origin in Rn+1. We say that the
dimension of Pn is n. Every non-zero vector v in Rn+1 determines the line [v] that joins v with
the origin 0 ∈ Rn+1. The vectors v and λv, λ ∈ R, λ ≠ 0, determine the same point [v] ∈ Pn .

Let us fix a basis {v0, . . . , vn} of Rn+1. If the coordinates in this basis of v are (a0, . . . , an),
then the coordinates of the point [v] are

[v] = (a0 : . . . : an) = (λa0 : . . . : λan), λ ∈ R, λ ≠ 0.

In general, we denote [v] ∈ Pn to remark that the point [v] is represented by the vector v ∈ Rn+1.
Also, we denote an arbitrary point in the projective space, as p ∈ Pn . The projective space Pn is
a compact space.

Let n and m be two natural numbers. We say that a polynomial P in n + 1 variables is
homogeneous of degree d , where d is a natural number, if

P(λx0, . . . , λxn) = λd P(x0, . . . , xn), λ ∈ R, λ ≠ 0.

For example, a linear form is homogeneous of degree 1.
A map F from Pn to Pm , denoted by F : Pn

→ Pm , is given by m + 1 homogeneous
polynomials, F0, . . . , Fm of degree d ,

F = (F0 : . . . : Fm) : Pn
→ Pm, F(x) = (F0(x) : . . . : Fm(x)), x ∈ Pn .

The homogeneity of the polynomials F0, . . . , Fm , implies that the value of F at [v] and at [λv]

is the same in Pm . We say that F has degree d. When d = 1 we say that F is linear.
Let n1, . . . , nr be a list of natural numbers. A multihomogeneous polynomial is a polynomial

P in variables xi,0, . . . , xi,ni , 1 ≤ i ≤ r , such that

P(λ1x1, . . . , λr xr ) = λ
d1
1 · · · λdr

r P(x1, . . . , xr ), xi = (xi,0, . . . , xi,ni ), λi ∈ R.

The vector (d1, . . . , dr ) is called the multidegree of P . For example, a multilinear form is a
multihomogeneous polynomial of multidegree (1, . . . , 1).

A map F : Pn1 × · · · × Pnr → Pm , where m ∈ N, is given by m + 1 multihomogeneous
polynomials, F0, . . . , Fm of multidegree (d1, . . . , dr ),

F(x1, . . . , xr ) = (F0(x1, . . . , xr ) : . . . : Fm(x1, . . . , xr )), xi ∈ Pni , 1 ≤ i ≤ r.

The multi-homogeneity of the polynomials F0, . . . , Fm , implies that the value of F at
([v1], . . . , [vr ]) and at ([λ1v1], . . . , [λrvr ]) is the same in Pm . We say that F has multidegree
(d1, . . . , dr ).

Finally, a map F : Pn1 ×· · ·× Pnr → Pm1 ×· · ·× Pms is given by s maps F = (F1, . . . , Fs),

Fi : Pn1 × · · · × Pnr → Pmi , 1 ≤ i ≤ s.

Note that the multidegree of Fi may differ from the multidegree of F j , i ≠ j . When all the forms
{F1, . . . , Fs} are multilinear, we say that F is a multilinear map.

Definition 2. Let n and m be two natural numbers and fix bases for Rn+1 and Rm+1. Every
vector v ∈ Rn+1 has associated a vector space of dimension n + 1, the tangent space, denoted
by TvRn+1.
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A polynomial map F = (F0, . . . , Fm) : Rn+1
→ Rm+1 such that F(v) = w determines a

linear map, d Fv , called the differential of F at v,d Fv : TvRn+1
→ TwRm+1,

d Fv(a0, . . . , an) =


n

i=0

∂ F0

∂xi
(v)ai , . . . ,

n
i=0

∂ Fm

∂xi
(v)ai


.

In the projective space the situation is similar [14, p. 181]. Every point, x ∈ Pn , has associated
a projective space of dimension n, the projective tangent space, denoted by TxPn . A map
F = (F0 : . . . : Fm) : Pn

→ Pm of degree d such that F(x) = y induces a linear map
between projective tangent spaces,

d Fx : TxPn
→ TyPm,

d Fx (a0 : . . . : an) =


n

i=0

∂ F0

∂xi
(x)ai : . . . :

n
i=0

∂ Fm

∂xi
(x)ai


.

Given that the partial derivative of a homogeneous polynomial is also homogeneous, the map
d Fx is well defined.

Remark 3. Recall the Euler relation for a homogeneous polynomial P of degree d , [14, p. 182],

N
i=0

∂ P

∂xi
(v)vi = d · P(v), v = (v0, . . . , vN ) ∈ RN+1.

The relation follows at once by differentiating both sides of the equation P(λv) = λd P(v).
If F = (F0 : . . . : FN ) : PN

→ PN is a map of degree d and x ∈ PN is a point such that
F(x) = x , then using the Euler relation, we get d Fx (x) = x ,

d Fx : TxPN
→ TxPN ,

d Fx (a0 : . . . : aN ) =


N

i=0

∂ F0

∂xi
(x)ai : . . . :

N
i=0

∂ FN

∂xi
(x)ai


.

In particular, if the vector v ∈ RN+1 represents x ∈ PN , x = [v], and the matrix d Fx represent
the linear map d Fx ,d Fx


i+1, j+1 =

∂ Fi

∂x j
(v), 0 ≤ i, j ≤ N ,

then v is an eigenvector of d Fx . Let us compute the eigenvalue of the eigenvector v. Given that
F(x) = x , there exists a non-zero real number λ such that (F0(v), . . . , FN (v)) = λv. Then

λv j = F j (v) =
1
d

N
i=0

∂ F j

∂xi
(v)vi , 0 ≤ j ≤ N .

Then the eigenvalue of v is d · λ, where d is the degree of the map F .

2. Theory for a multilinear map

In this section we translate the problem of finding a maximum of a multilinear map to a
problem of finding fixed points. Let us present the notation and some preliminaries.
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Let Sn be the sphere in Rn+1,

Sn
=


u ∈ Rn+1: ∥u∥ =


|u0|

2 + · · · + |un|2 = 1


,

and let ⟨−, −⟩ : Rn+1
× Rn+1

→ R be the inner product, ⟨x, y⟩ = x0 y0 + · · · + xn yn . The norm
assigned to this inner product is the usual 2-norm, ⟨u, u⟩ = ∥u∥

2.
When the codomain of a map is R, we say that the map is a form.

Lemma 4. Given a multilinear map ℓ : Rn1+1
×· · ·×Rnr +1

−→ Rs+1 there exists a multilinear
formℓ,ℓ : Rn1+1

× · · · × Rnr +1
× Rs+1

−→ R, ℓ(x1, . . . , xr , y) = ⟨ℓ(x1, . . . , xr ), y⟩,

such that

max
∥x1∥=···=∥xr ∥=1

∥ℓ(x1, . . . , xr )∥ = max
∥x1∥=···=∥xr ∥=∥y∥=1

|ℓ(x1, . . . , xr , y)|.

Proof. The proof is based on the compactness of the sphere. Let (x1, . . . , xr ) ∈ Sn1 × · · · × Snr

be a point such that z = ℓ(x1, . . . , xr ) has the maximum norm and let y = z/∥z∥. Then

|ℓ(x1, . . . , xr , y)| = |⟨z, y⟩| =
⟨z, z⟩

∥z∥
= ∥z∥ = ∥ℓ(x1, . . . , xr )∥ H⇒

max
∥x1∥=···=∥xr ∥=∥y∥=1

|ℓ(x1, . . . , xr , y)| ≥ max
∥x1∥=···=∥xr ∥=1

∥ℓ(x1, . . . , xr )∥.

Analogously, let (x1, . . . , xr , y) ∈ Sn1 × · · · × Snr × Ss be a point such that |ℓ(x1, . . . , xr , y)| is
maximum. Let z = ℓ(x1, . . . , xr ). Then

|ℓ(x1, . . . , xr , y)| = |⟨z, y⟩| ≤ ∥z∥ ∥y∥ = ∥ℓ(x1, . . . , xr )∥ H⇒

max
∥x1∥=···=∥xr ∥=∥y∥=1

|ℓ(x1, . . . , xr , y)| ≤ max
∥x1∥=···=∥xr ∥=1

∥ℓ(x1, . . . , xr )∥. �

As a corollary of the previous lemma, we will work with multilinear forms. Specifically, to
make the notation easiest, we will work with ℓ : Rn+1

× Rm+1
× Rs+1

−→ R a trilinear form.
Our goal is to find the maximum of ℓ over a product of three spheres.

Using Lagrange’s method of multipliers, ([1, Section 13.7]), we know that the extreme points
of ℓ, over Sn

× Sm
× Ss , satisfy∂ℓ/∂xi (x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2αxi , 0 ≤ i ≤ n,

∂ℓ/∂y j (x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2βy j , 0 ≤ j ≤ m,

∂ℓ/∂zk(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2λzk, 0 ≤ k ≤ s,

α, β, λ ∈ R, ∥x∥ = ∥y∥ = ∥z∥ = 1.

Let us use a better notation,

x = (x0, . . . , xn), y = (y0, . . . , ym), z = (z0, . . . , zs),

∂ℓ

∂x
(x, y, z) =


∂ℓ

∂x0
(x, y, z), . . . ,

∂ℓ

∂xn
(x, y, z)


,

∂ℓ

∂y
(x, y, z) =


∂ℓ

∂y0
(x, y, z), . . . ,

∂ℓ

∂ym
(x, y, z)


,
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∂ℓ

∂z
(x, y, z) =


∂ℓ

∂z0
(x, y, z), . . . ,

∂ℓ

∂zs
(x, y, z)


,

∇ℓ(x, y, z) =


∂ℓ

∂x
(x, y, z),

∂ℓ

∂y
(x, y, z),

∂ℓ

∂z
(x, y, z)


.

Definition 5. A point (x, y, z) ∈ Sn
× Sm

× Ss is called an extreme point of ℓ if it satisfies the
system of equations

∇ℓ(x, y, z) = (2αx, 2βy, 2λz),

for some α, β, λ ∈ R. Note that if (x, y, z) is an extreme point, then (±x, ±y, ±z) is also an
extreme point. We say that they belong to the same class.

Proposition 6. There is a bijection between classes of extreme points of ℓ and fixed points of the
map

∇ℓ : Pn
× Pm

× Ps
→ Pn

× Pm
× Ps,

([x], [y], [z]) →


∂ℓ

∂x
([x], [y], [z]),

∂ℓ

∂y
([x], [y], [z]),

∂ℓ

∂z
([x], [y], [z])


.

In the multilinear case, we get a similar result.

Proof. Given an extreme point (x, y, z), consider ([x], [y], [z]). This assignment is independent
of the class of (x, y, z). By definition, it gives a fixed point of ∇ℓ.

Given a fixed point ([x], [y], [z]) ∈ Pn
×Pm

×Ps of ∇ℓ, consider representatives x, y, z such
that ∥x∥ = ∥y∥ = ∥z∥ = 1. Then (x, y, z) is an extreme point of ℓ. �

Remark 7. The map ∇ℓ : Pn
× Pm

× Ps
→ Pn

× Pm
× Ps from Proposition 6 is not defined

over the closed subset
(x, y, z)

 ∂ℓ

∂x
(x, y, z) = 0 or

∂ℓ

∂y
(x, y, z) = 0 or

∂ℓ

∂z
(x, y, z) = 0


⊆ Pn

× Pm
× Ps .

This set is empty if and only if the hyperdeterminant of ℓ is zero. The hyperdeterminant is a
polynomial in the coefficient of ℓ; for the definition and some properties see [13, Section 14].

By a result in [13, Section 14, 1.3], if

2n, 2m, 2s ≤ n + m + s

then a generic choice of ℓ, makes ∇ℓ defined everywhere.

In [17], there is a definition of singular values and singular vectors for a multilinear form.
For example, for a trilinear form ℓ, the author defined the singular vectors of ℓ as the solutions
of the system ∇ℓ(x, y, z) = (2αx, 2βy, 2λz). It is the same as our definition of extreme points.
It is of interest to know the number of singular values/vectors of ℓ, and in Section 3, we count
them. In the same article, the author proved that the first singular value is the maximum of
ℓ over a product of spheres. Also, under the hypothesis 2n, 2m, 2s ≤ n + m + s, he proved
that the hyperdeterminant of ℓ is zero if and only if 0 is a singular value of ℓ. Given that the
hyperdeterminant is a polynomial in the coefficients of ℓ, if ℓ is generic, then the number 0 is not
a singular value of ℓ.
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There exists another article to mention [8]. In it, the authors gave a different definition of
singular values and proposed a multidimensional singular value decomposition. Their decompo-
sition does not preserve the properties that we need, for example, the first singular value of ℓ,
does not correspond to the maximum of ℓ over a product of spheres.

3. Number of extreme points of a multilinear form

In this section we use intersection theory ([12, 8.4]) to count the number of fixed points of a
generic map Pn

× Pm
× Ps

→ Pn
× Pm

× Ps over C. Recall from Proposition 6 that there is a
bijection between fixed points of

∇ℓ : Pn
× Pm

× Ps
→ Pn

× Pm
× Ps

and classes of extreme points of the trilinear form ℓ over Sn
× Sm

× Ss . It is known that if
F : PN

→ PN is a generic map of degree d , then F has 1 + d2
+ · · · + d N fixed points,

[11, 1.3]. Here we generalize this result to a generic map between products of projective spaces.
Before we continue with this section, let us make a survey of some related concepts that are

in the literature.
In [6,21,20,5,16,3] there is a notion of eigenvectors and eigenvalues assigned to a multilinear

form ℓ. There are a lot of applications and in [5], the authors counted the number of eigenvalues
of ℓ as the number of roots of a characteristic polynomial assigned to ℓ. The idea is to look at
ℓ : Cn

× · · · × Cn
→ C as a polynomial map P : Cn

→ (Cn)∨ ∼= Cn, P(x) = ℓ(x, . . . , x, −),
and then an eigenvector of ℓ is a vector x ∈ Cn such that P(x) = λx . If ℓ is m-multilinear, P has
degree m −1 and as a map, Pn−1

→ Pn−1, it has (m −1)n−1
+ (m −1)n−2

+· · ·+1 fixed points,
i.e. eigenvectors of P . They arrived at this number using toric varieties and Newton polytopes.

In [10, 7.1.4] and [19, 3.1] there is a theory of multihomogeneous Bézout number, or
m-Bézout. The m-Bézout gives an upper bound on the cardinality of the intersection of
multihomogeneous polynomials in Pn1 × · · · × Pnk . Given that we are counting the fixed points
of a map F : Pn1 × · · · × Pnk → Pn1 × · · · × Pnk , in order to apply this formula, we need to
realize the fixed points of F as an intersection in some product of projective spaces. Concretely,
the intersection of the graph of F and the diagonal. Let us make an explicit example. Assume for
simplicity that F is linear, F : Pn

→ Pn , we will see that the m-Bézout formula gives a very bad
bound. Recall that the number of fixed points in this case is the number of eigenvectors, that is,
n + 1. Let us apply the formula to the equations of the graph Γ = {(x, F(x))} and the diagonal
∆ = {(x, x)}. The points in the intersection satisfy the following equations,

yi F j (x) = y j Fi (x), xi y j = x j yi , 0 ≤ i, j ≤ n,

((x0 : . . . : xn), (y0 : . . . : yn)) ∈ Pn
× Pn .

The equations imply that the following matrices have rank one,
y0 · · · yn

F0(x) · · · Fn(x)


,


x0 · · · xn
y0 · · · yn


.

By abuse of notation, we denote the equations,

y = F(x), x = y, (x, y) ∈ Pn
× Pn .

Given that the equations have bidegree (1, 1), the m-Bézout number is the coefficient of αn+1
1

αn+1
2 in the polynomial (α1 + α2)

2n+2. It is the binomial


2n+2
n+1


≠ n + 1.
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Bernstein proved in [4] that the number of solutions of a sparse system equals the mixed
volume of the corresponding Newton polytopes. A sparse system is a collection of Laurent
polynomials,

fi =


(v1,...,vn)∈Ai

ci,v1,...,vn xv1
1 · · · xvn

n , 1 ≤ i ≤ n,

where Ai are fixed finite subsets of Zn . The convex hull Qi of Ai , Qi = conv(Ai ) ⊆ Rn , is
called the Newton polytope of fi . Consider the function

R(λ1, . . . , λn) := vol(λ1 Q1 + · · · + λn Qn), λi ≥ 0, 1 ≤ i ≤ n

where vol is the usual Euclidean volume in Rn and Q + Q′ denotes the Minkowski sum of
polytopes. It is a fact that R is a homogeneous polynomial and the coefficient of the monomial
λ1 · · · λn is called the mixed volume of Q1, . . . , Qn . The mixed volume (i.e the number of
solutions of a sparse system) is a very difficult number to compute; see [7, p. 363]. In some
situations, this is possible and in the general case, there are a lot of algorithms to compute
it. In our situation, we are working with a multihomogeneous polynomial system, and using
Bernstein’s theorem, in [18], the author gives a recursive formula to compute this number. In
fact, it is proved that, under some hypothesis, if the system is over R and the functions are
generic, then all the solutions are reals. Here, we present a different and more direct method
using intersection theory.

Let us make an introduction to intersection theory. The germ of intersection theory is the
Fundamental Theorem of Algebra. It implies that given a generic homogeneous polynomial in
two variables F of degree d, the set of zeros {x ∈ P1, F(x) = 0} has d points. Generalizing this
result, Bézout’s theorem says that given two generic homogeneous polynomials in three variables
of degrees d and e, the set of zeros {x ∈ P2, F1(x) = F2(x) = 0} consists of de points. In Pr

the situation is similar, if F1, . . . , Fr are generic homogeneous polynomials of degree d1, . . . , dr
respectively, the set {x ∈ Pr , F1(x) = · · · = Fr (x) = 0} has d1d2 . . . dr points.

To formalize these ideas, let us introduce the Chow ring of Pr , [12, proof of Proposition 8.4]

A(Pr ) = Z[α]/(αr+1).

Every variety X ⊆ Pr has a class, [X ] ∈ A(Pr ). The intersection of two generic varieties
X ∩ Y corresponds to the product of the classes [X ] · [Y ] = [X ∩ Y ]. Two different varieties
may correspond to the same class, for example, every hypersurface of degree d corresponds to
the same class, dα, where α is the class of a hyperplane. For example, αr corresponds to the
intersection of r generic hyperplanes, i.e. a point. The product

(d1α) · (d2α) · · · (drα) = d1 · · · drα
r

corresponds to the intersection of r generic hypersurfaces of degree d1, . . . , dr respectively. We
get d1 · · · dr points in the intersection as mentioned. The class of a variety of codimension c is a
homogeneous polynomial of degree c in Z[α]/(αr+1).

The Chow ring is very useful to solve problems in enumerative geometry. For example, to
count the number of fixed points of a generic map F : Pr

→ Pr , the procedure is the following.
Let A(Pr

× Pr ) be the Chow ring of Pr
× Pr , defined as A(Pr

× Pr ) = Z[a, α]/(ar+1, αr+1),
[12, Example 8.4.2]. Let [∆] ∈ A(Pr

× Pr ) be the class of the diagonal, ∆ = {(x, x)}, and let
[Γ ] ∈ A(Pr

× Pr ) be the class of the graph of F,Γ = {(x, F(x))}. Given that

dim ∆ + dim Γ = dim(Pr
× Pr ),
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the product [∆] · [Γ ] is a multiple of the class of a point, darαr , [12, Section 8.3]. The coefficient
d is the number of fixed points of F .

The Chow ring of a product of projective spaces, [12, Example 8.3.7], is

A(Pn1 × · · · × Pnk ) = A(Pn1) ⊗Z · · · ⊗Z A(Pnk )

= Z[α1, . . . , αk]/(α
n1+1
1 , . . . , α

nk+1
k ).

Note that in A(Pn1 × · · · × Pnk ) there is only one class of a point, α
n1
1 · · · α

nk
k , so there is a well

defined map called degree. The degree of a class is the coefficient of α
n1
1 · · · α

nk
k . It may be zero

(or negative).
The last thing to mention is that every map F : Pn1 × · · · × Pnk → Pm1 × · · · × Pml induces

a morphism of rings, [12, Proposition 8.3(a)],

F⋆
: A(Pm1 × · · · × Pml ) → A(Pn1 × · · · × Pnk ), F⋆([X ]) = [F−1(X)].

For a more extensive treatment of intersection theory, see [15, Section A], [12].
Let us use the previous introduction. First, we will compute the number of fixed points of

a generic map F : Pr
→ Pr of degree d . Then we will adapt the proof to a generic map

F : Pn
× Pm

× Ps
→ Pn

× Pm
× Ps .

Proposition 8. The number of fixed points of a generic map F : Pr
→ Pr of degree d is

1 + d + · · · + dr .

Proof. The following proof is standard in intersection theory. The fixed points of a map F :

Pr
→ Pr may be computed in A(Pr

× Pr ) as the degree of the product of the class of the graph
of F, [Γ ], and the class of the diagonal, [∆]. First, let us find out the class of the diagonal,

[∆] ∈ Ar (Pr
× Pr ) = Z[a, α]/(ar+1, αr+1).

Being of codimension r , the class is a homogeneous polynomial of degree r ,

[∆] = t0α
r
+ t1aαr−1

+ · · · + tr−1ar−1α + tr ar , ti ∈ Z.

Here, a represents a class of a hyperplane in Pr and ai represents the intersection of i of these
generic hyperplanes, in other words, ai is a generic linear space of dimension r − i inside Pr .
Same for α and α j . Viewed in Pr

×Pr , ai is the class of U ×Pr , where U is a generic linear space
of dimension r − i , and α j is the class of Pr

× V, α j
= [Pr

× V ], where dim V = r − j . The
class aiα j , represents a product of general linear spaces U × V ⊆ Pr

×Pr , where dim U = r − i
and dim V = r − j .

The class of the diagonal is determined by the coefficients t0, . . . , tr . Note that ti = [∆] ·

ar−iαi . Then we need to count the number of points in (U × V ) ∩ ∆,

(U × V ) ∩ ∆ ∼= U ∩ V = {p} H⇒

t0 = · · · = tr = 1 H⇒ [∆] =

r
i=0

aiαr−i .

Now, let us compute the class of the graph of a map, Γ = {(x, F(x))} ⊆ Pr
× Pr ,

[Γ ] ∈ Ar (Pr
× Pr ) = Z[a, α]/(ar+1, αr+1),

it is also a homogeneous polynomial of degree r ,

[Γ ] = τ0α
r
+ τ1aαr−1

+ · · · + τr−1ar−1α + τr ar , τi ∈ Z.
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Again, we have τi = [Γ ] · ar−iαi , so we need to count the points in Γ ∩ (U × V ), where
dim U = i and dim V = r − i ,

Γ ∩ (U × V ) ∼= {x ∈ U | F(x) ∈ V } = U ∩ F−1(V ) ⊆ Pr .

If F is formed by homogeneous polynomials of degree d , the pull-back of a hyperplane is a
hypersurface of degree d, then

[U ∩ F−1(V )] = αi .F⋆(αr−i ) = αi .F⋆(α)r−i
= αi (dα)r−i

= dr−iαr .

Then U ∩ F−1(V ) has dr−i points, i.e. τi = dr−i ,

[Γ ] = drαr
+ dr−1aαr−1

+ · · · + dar−1α + ar
H⇒

[∆] · [Γ ] =


r

i=0

aiαr−i


r

j=0

dr− j a jαr− j



=

r
i, j=0

dr− j ai+ jα2r−(i+ j)
=

r
j=0

dr− j
= 1 + d + · · · + dr .

Given that a constant map has one fixed point, we use the convention d0
= 1 for d = 0. �

Let us adapt the previous calculation to Pn
× Pm

× Ps .

Theorem 9. The number of fixed points of a map F = (F1, F2, F3) : Pn
× Pm

× Ps
→

Pn
× Pm

× Ps is the coefficient of αnβmγ s in the following polynomial in Z[α, β, γ ],

n
i=0

m
j=0

s
k=0

(d1α + d2β + d3γ )n−i (e1α + e2β + e3γ )m− j

× ( f1α + f2β + f3γ )s−kαiβ jγ k,

where (d1, d2, d3), (e1, e2, e3) and ( f1, f2, f3) are the multidegrees of F1, F2 and F3
respectively.

For a generic map F : Pn1 × · · · × Pnk → Pn1 × · · · × Pnk the result is similar.

Proof. The class of the diagonal ∆ = {(x, y, z, x, y, z)} ∈ Pn
× Pm

× Ps
× Pn

× Pm
× Ps , is a

homogeneous polynomial of degree n + m + s,

[∆] ∈ A(Pn
× Pm

× Ps
× Pn

× Pm
× Ps)

= Z[α, β, γ, a, b, c]/(αn+1, βm+1, γ s+1, an+1, bm+1, cs+1).

Instead of doing the same computation as before, let

π1,4 : Pn
× Pm

× Ps
× Pn

× Pm
× Ps

→ Pn
× Pn,

be the projection in the first and the fourth factor (same for π2,5 and π3,6) and let ∆n ⊆ Pn
× Pn

be the diagonal of Pn (same for ∆m and ∆s). Then we have

[∆] = π⋆
1,3([∆n]) · π⋆

2,5([∆m]) · π⋆
3,6([∆s]) =

n
i=0

m
j=0

s
k=0

aiαn−i b jβm− j ckγ s−k .
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The class of Γ = {(x, y, z, F(x, y, z))} ⊆ Pn
× Pm

× Ps
× Pn

× Pm
× Ps is a homogeneous

polynomial of degree n + m + s,

[Γ ] =


i+ j+k+i ′+ j ′+k′=n+m+s

τi jki ′ j ′k′aiαi ′b jβ j ′ckγ k′

, τi jki ′ j ′k′ ∈ Z H⇒

deg([∆] · [Γ ]) =

n
i=0

m
j=0

s
k=0

τi jki jk,

where deg is the coefficient of anαnbmβmcsγ s , the number of points in the intersection ∆ ∩ Γ .
Note that the integer τi jki jk may be computed as the degree of [Γ ] · an−iαi bm− jβ j cs−kγ k , it is
the number of points in

Γ ∩ (U1 × U2 × U3 × V1 × V2 × V3),

U1, V1 ⊆ Pn, U2, V2 ⊆ Pm, U3, V3 ⊆ Ps,

dim U1 + dim V1 = n, dim U2 + dim V2 = m, dim U3 + dim V3 = s H⇒

Γ ∩ (U1 × U2 × U3 × V1 × V2 × V3)

∼= (U1 × U2 × U3) ∩ F−1(V1 × V2 × V3) ⊆ Pn
× Pm

× Ps .

Let us use the fact that F is equal to (F1, F2, F3) : Pn
× Pm

× Ps
→ Pn

× Pm
× Ps ,

F1 : Pn
× Pm

× Ps
→ Pn, F2 : Pn

× Pm
× Ps

→ Pm,

F3 : Pn
× Pm

× Ps
→ Ps

where (d1, d2, d3), (e1, e2, e3) and ( f1, f2, f3) are the multidegrees of F1, F2 and F3 respec-
tively. Then

F−1(V1 × V2 × V3) = F−1
1 (V1) ∩ F−1

2 (V2) ∩ F−1
3 (V3).

Thus, the class of the intersection that defines τi jki jk in the Chow ring A(Pn
× Pm

× Ps), is

τi jki jk = αiβ jγ k F⋆(αn−iβm− jγ s−k) = αiβ jγ k F⋆
1 (αn−i )F⋆

2 (βm− j )F⋆
3 (γ s−k)

= αiβ jγ k(d1α + d2β + d3γ )n−i (e1α + e2β + e3γ )m− j

× ( f1α + f2β + f3γ )s−k . �

Example 10. Let us apply the previous formula to ∇ℓ where ℓ : S2
× S2

× S2
→ R is a generic

trilinear form. The multidegrees of ∂ℓ/∂x, ∂ℓ/∂y and ∂ℓ/∂z are (0, 1, 1), (1, 0, 1) and (1, 1, 0)

respectively. Then the number of fixed points of this map (over C) is equal to 37. According
to [17, 3], the number of singular values of ℓ is 37.

Example 11. Let us apply the formula to count the number of eigenvectors of a generic linear
map L : Rn+1

→ Rn+1. The map L induces a map Pn
→ Pn of degree 1. Then

n
i=0

αn−iαi
=

n
i=0

αn
= (n + 1)αn .

The map Pn
→ Pn has n + 1 fixed points over C, that is, L has n + 1 eigenvectors over C.

Example 12. Finally, let us apply the formula to find the number of singular values of a generic
linear map L : Rn+1

→ Rm+1. The map L induces a bilinear form ℓ : Rn+1
× Rm+1

→ R and
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the bidegrees of ∂ℓ/∂x and ∂ℓ/∂y are (0, 1) and (1, 0) respectively (assume n ≥ m).
n

i=0

m
j=0

βn−iαm− jαiβ j
=

n
i=0

m
j=0

βn−i+ jαm− j+i .

The coefficient of αnβm , appears when i − j = n − m,

i = n − m + j H⇒

m
j=0

βn−(n−m+ j)+ jαm− j+(n−m+ j)
= (m + 1)αnβm .

Then ∇ℓ : Pn
×Pm

→ Pn
×Pm has m + 1 fixed points. That is L has m + 1 singular values over

C. We used the variational definition of singular values; see [17]. In the case n < m we can use
the fact that the number of non-zero singular values of L and L t

: Rm+1
→ Rn+1 is the same.

4. Theory for a bilinear form

In this section we present a method to find the maximum of a bilinear form, ℓ, over a product
of spheres, Sn

× Sm . This case is very special and the method presented here does not work for
a general multilinear form.

The key point of this method is the fact that the partial derivatives of ℓ =


ai j xi y j are linear,

∂ℓ

∂xi
(x, y) = ℓ(ei , y),

∂ℓ

∂y j
(x, y) = ℓ(x, e j ), (x, y) ∈ Rn+1

× Rm+1,

0 ≤ i ≤ n, 0 ≤ j ≤ m,

where {e0, . . . , en} is the standard basis of Rn+1. Same for {e0, . . . , em} ⊆ Rm+1. The map ∇ℓ

induces a linear map L : Pn+m+1
→ Pn+m+1. Let (x0 : . . . : xn : y0 : . . . : ym) be a point in

Pn+m+1. Then

L(x0 : . . . : xn : y0 : . . . : ym) = (ℓ(e0, y) : . . . : ℓ(en, y) : ℓ(x, e0) : . . . : ℓ(x, em)) .

This map is well-defined. Let λ ∈ R, λ ≠ 0,

L(λx0 : . . . : λxn : λy0 : . . . : λym)

= (ℓ(e0, λy) : . . . : ℓ(en, λy) : ℓ(λx, e0) : . . . : ℓ(λx, em))

= (λℓ(e0, y) : . . . : λℓ(en, y) : λℓ(x, e0) : . . . : λℓ(x, em))

= L(x0 : . . . : xn : y0 : . . . : ym).

Theorem 13. Let p = (x, y) ∈ Sn
× Sm be an absolute maximum of ℓ. Then

lim
r→∞

Lr (q) = [p]

for a generic q ∈ Pn+m+1.

Proof. Let A ∈ Rn+m+2×n+m+2 be a matrix representing the linear map L . Given that L is
linear, the differential of L at any point, q, is equal to L ,

d Lq = L , ∀q ∈ Pn+m+1.

In particular, the matrix A, also represents the differential of L at p,

A = d L p.
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Let {v0, . . . , vn+m+1} be a basis of Rn+m+2 formed by eigenvectors of A. Let λi be the eigenvalue
of vi , 0 ≤ i ≤ n + m + 1. By Remark 3 we know that p is an eigenvector of A with eigenvalue
ℓ(p). In particular, if the magnitude of λ0 is maximum, then |λ0| = |ℓ(p)| and [p] = [v0].

Let z ∈ Rn+m+2 be a vector representing q such that z = a0v0+· · ·+an+m+1vn+m+1, a0 ≠ 0.
Then

Lr (q) =


Ar

·

n+m+1
i=0

aivi


=


a0λ

r
0v0 +

n+m+1
i=1

aiλ
r
i vi



=


a0v0 +

n+m+1
i=1

ai
λr

i

λr
0
vi


→ [a0v0] = p. �

In the proof of the previous theorem, we saw that the iterations of a linear map in the pro-
jective space converge to an eigenvector with eigenvalue of maximum magnitude. In partic-
ular, given a square matrix A ∈ Rn+1×n+1 and a generic vector w ∈ Rn+1, the sequence
{[w], [Aw], [A2w] · · ·} ⊆ Pn , converges to a point [v]. The vector v satisfies Av = λv, where
|λ| is the spectral radius of A.

The rate of convergence of this method is linear.

Remark 14. Based on Theorem 13, let us give an algorithm to find the absolute maximum of a
generic bilinear form,

ℓ : Rn+1
× Rm+1

−→ R.

Let ∇ℓ = (∂ℓ/∂x, ∂ℓ/∂y) be the gradient of ℓ and let q = (x, y) be a vector such that
x ∈ Rn+1, x ≠ 0 and y ∈ Rm+1, y ≠ 0.

Input: A bilinear form ℓ : Rn+1
× Rm+1

→ R.
Output: The absolute maximum (x, y) ∈ Sn

× Sm .
1. Let q = q/∥q∥ and aux = (1, 0, . . . , 0).
2. While |⟨q, aux⟩| is different from 1, do

2.1 aux = q
2.2 q = ∇ℓ(q)

2.3 q = q/∥q∥

3. Let x = (q0, . . . , qn), y = (qn+1, . . . , qn+m+1).
4. Return (x/∥x∥, y/∥y∥).

The iterations stop when the points in the projective space are equal, in other words, when the
cosine of the angle between q and aux is 1 or −1 (when they are aligned). Given that the absolute
maximum is attractive (see Theorem 13), the program ends. The maximum value is |ℓ(x, y)|.

Remark 15. We may adapt the previous algorithm to a multilinear form, but in the multilinear
case, in general, the absolute maximum is not an attractive fixed point. For example, the trilinear
form ℓ : R2

× R2
× R2

→ R,

ℓ(x, y, z) = 6x0 y0z0 + 3x1 y0z0 − 6x0 y1z0 + 16x1 y1z0 − 14x0 y0z1

− 15x1 y0z1 − 11x0 y1z1 + 8x1 y1z1,

induces a map P5
→ P5 of degree 2 without attractive fixed points. Even more, the 4-multilinear

form ℓ : R2
× R2

× R2
× R2

→ R,

ℓ(x, y, z, t) = 4x0 y0z0t0 + 6x1 y0z0t0 + x0 y1z0t0 − 6x1 y0z1t0t0 − 5x0 y0z1t0
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+ 7x1 y1z0t0 − 5x0 y1z1t0 + 2x0 y0z0t1 − 3x1 y0z0t1 − 7x0 y1z0t1
+ 9x1 y1z0t1 − 9x0 y0z1t1 − 9x1 y0z1t1 − 6x0 y1z1t1 + 8x1 y1z1t1,

induces a map P7
→ P7 of degree 3 with two attractive fixed points. One is the absolute

maximum.

5. Presentation of the general algorithm

In this section, we present an algorithm to find the maximum of a multilinear form over a
product of spheres. First, we reduce the problem to solve a system of multilinear equations. In
the first part of the section, we present an algorithm to find the absolute maximum of a multilinear
form. In the second, we give an algorithm to find the point where the maximum occurs.

Proposition 16. Let ℓ : Rn+1
× Rm+1

× Rs+1
→ R be a generic trilinear form. There exists a

bijection between classes of extreme points of ℓ and solutions of the following system of trilinear
equations in Pn

× Pm
× Ps ,ℓ(x j ei − xi e j , y, z) = 0, 0 ≤ i < j ≤ n,

ℓ(x, y j ei − yi e j , z) = 0, 0 ≤ i < j ≤ m,

ℓ(x, y, z j ei − zi e j ) = 0, 0 ≤ i < j ≤ s.

The vector ek satisfies (ek)l = 0 if l ≠ k and (ek)k = 1.
In the multilinear case, we obtain a similar result, a system of multilinear equations.

Proof. From Proposition 6, we know that every class of an extreme point of ℓ, is a fixed point of
∇ℓ : Pn

× Pm
× Ps

→ Pn
× Pm

× Ps . If ℓ is a generic trilinear form, we know that the number
of fixed points is finite (see Section 3).

A fixed point of ∇ℓ, ([x], [y], [z]), satisfies∂ℓ/∂x(x, y, z) = 2αx
∂ℓ/∂y(x, y, z) = 2βy
∂ℓ/∂z(x, y, z) = 2λz

where α, β and λ are three non-zero real numbers. In Pn
× Pm

× Ps , the equations arex j∂ℓ/∂xi (x, y, z) = xi∂ℓ/∂x j (x, y, z), 0 ≤ i < j ≤ n,

y j∂ℓ/∂yi (x, y, z) = yi∂ℓ/∂y j (x, y, z), 0 ≤ i < j ≤ m,

z j∂ℓ/∂zi (x, y, z) = zi∂ℓ/∂z j (x, y, z), 0 ≤ i < j ≤ s.

The result follows from the equalities,

∂ℓ/∂xi (x, y, z) = ℓ(ei , y, z), ∂ℓ/∂y j (x, y, z) = ℓ(x, e j , z),

∂ℓ/∂zk(x, y, z) = ℓ(x, y, ek). �

Let us present the algorithm to find the absolute maximum of a generic multilinear form. The
algorithm is based on Eigenvalue Theorem. Let us recall it. Consider a system of polynomial
equations with finitely many solutions in Cn ,

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0
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where f1, . . . , fm are polynomials in C[x1, . . . , xn]. The quotient ring,

A = C[x1, . . . , xn]/⟨ f1, . . . , fm⟩,

is a finite-dimensional vector space, [10, Theorem 2.1.2]. The dimension of A is the number of
solutions of the system.

Every polynomial f ∈ C[x1, . . . , xn], determines a linear map M : A → A,

M(g) = f g, g ∈ C[x1, . . . , xn],

where g denotes the class of the polynomial g in the quotient ring A. The matrix of M is called
the multiplication matrix assigned to the polynomial f .

Theorem (Eigenvalue Theorem). The eigenvalues of M are { f (p1), . . . , f (pr )}, where {p1,

. . . , pr } are the solutions of the system of polynomial equations. See [10, Theorem 2.1.4] for a
proof.

The algorithm in Appendix, first generates the following system of polynomial equations,
ℓ(x j ei − xi e j , y, z) = 0, 0 ≤ i < j ≤ n,

ℓ(x, y j ei − yi e j , z) = 0, 0 ≤ i < j ≤ m,

ℓ(x, y, z j ei − zi e j ) = 0, 0 ≤ i < j ≤ s,
∥x∥

2
= 1, ∥y∥

2
= 1, ∥z∥2

= 1,

where the vector ek satisfies (ek)l = 0, if l ≠ k, and (ek)k = 1. Then, computes the real
eigenvalues, {λ0, . . . , λr }, of the multiplication matrix assigned to ℓ. Finally, it returns λi such
that |λi | ≥ |λ j | for all 0 ≤ j ≤ r . This number is the maximum of ℓ over Sn

× Sm
× Ss .

For the algorithm and an implementation in Maple, see Appendix.
Now, let us give an algorithm to find the point (x, y, z) ∈ Sn

× Sm
× Ss such that |ℓ(x, y, z)|

is maximum. We need to use the following result (same notation as Eigenvalue Theorem),

Theorem. Let x = α1x1 + · · · + αn xn be a generic linear form and let M be its multiplication
matrix. Assume that B = {1, x1, . . . , xn, . . .} is a finite basis of A formed by monomials.
Then the eigenvectors of M determine all the solutions of the system of polynomial equations.
Specifically, if v = (v0, . . . , vn, . . .) is an eigenvector of M such that v0 = 1, then (v1, . . . , vn)

is a solution of the system of polynomial equations. Even more, every solution is of this form.
See [10, Section 2.1.3] for a proof.

Note that the theorem requires that the variables {x1, . . . , xn} are elements of the basis B. It
could be the case that some variables are missing from B. For example, if x1, . . . , xi ∈ B, and
xi+1, . . . , xn ∉ B, then every missing variable, say x j , is a linear combination of {x1, . . . , xi },

x j = a j1x1 + · · · + a j i xi , i + 1 ≤ j ≤ n.

If v = (1, v1, v2 . . .) is an eigenvector of M , the j-coordinate of the solution corresponding to v,
is a j1v1 + · · · + a j ivi . See [10, Section 2.1.3].

Let us call the affine system to the following system of polynomial equations,
ℓ(x j ei − xi e j , y, z) = 0, 0 ≤ i < j ≤ n,

ℓ(x, y j ei − yi e j , z) = 0, 0 ≤ i < j ≤ m,

ℓ(x, y, z j ei − zi e j ) = 0, 0 ≤ i < j ≤ s,
x0 = 1, y0 = 1, z0 = 1.
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The vector ek satisfies (ek)l = 0 if l ≠ k and (ek)k = 1. The solutions of this system
determine classes of extreme points of ℓ. The genericity of ℓ implies that all the extreme points
of ℓ, (x, y, z), satisfy x0 ≠ 0, y0 ≠ 0, z0 ≠ 0. Then all the classes of extreme points appear as
the solutions of the affine system. Even more, the cardinal of the basis B of the affine system is
equal to the number of classes of extreme points.

Theorem 17. Assume that ℓ : Rn+1
× Rm+1

× Rs+1
→ R is a generic trilinear form and that

2n, 2m, 2s ≤ n + m + s; see Remark 7. Then the basis B of the affine system contains all the
variables.

In the multilinear case, we obtain a similar result.

Proof. Given that the equations in Proposition 16 are multilinear, the quotient ring, A, is multi-
graded. Let us denote A(d1,d2,d3) the multidegree part (d1, d2, d3), where d1, d2, d3 ≥ 0. The
hypothesis 2n, 2m, 2s ≤ n + m + s, implies that the following set is empty,

(x, y, z) ∈ Pn
× Pm

× Ps
 ∂ℓ

∂x
(x, y, z) = 0 or

∂ℓ

∂y
(x, y, z) = 0

or
∂ℓ

∂z
(x, y, z) = 0


= ∅.

Then the equations {∂ℓ/∂xi }
n
i=0 are linearly independent. Same for {∂ℓ/∂y j }

m
j=0 and {∂ℓ/

∂zk}
s
k=0. In the quotient ring, A, the partial derivatives are proportional to the variables, thus,

the variables are linearly independent too. For example, a basis for the multidegree part (0, 0, 0)
is {1}, and a basis for the multidegree part (1, 0, 0) is {x0, . . . , xn}. Even more, a basis for

A(1,0,0) ⊕ A(0,1,0) ⊕ A(0,0,1)

is {x0, . . . , xn, y0, . . . , ym, z0, . . . , zs}.
Let us add the equations x0 = y0 = z0 = 1 to the system of polynomial equations. The

equations are not multilinear, so the corresponding quotient ring is not multi-graded,A = A/⟨x0 − 1, y0 − 1, z0 − 1⟩.

Notice that the variables {x1, . . . , xn, y1, . . . , ym, z1, . . . , zs} are linearly independent in A.
This implies that the basis B of A, formed by monomials, contains all the variables.

n
i=1

αi xi +

m
j=1

β j y j +

s
k=1

λk zk = 0 ∈ A, αi , β j , λk ∈ C H⇒

n
i=1

αi xi +

m
j=1

β j y j +

s
k=1

λk zk = P ∈ A, P ∈ ⟨x0 − 1, y0 − 1, z0 − 1⟩,

where P is a polynomial combination of x0 − 1, y0 − 1 and z0 − 1.
Denote P(d1,d2,d3) as the multidegree part (d1, d2, d3) of P . Given that A is multi-graded, we

get the following equalities in A,

P = P(1,0,0) + P(0,1,0) + P(0,0,1),

n
i=1

αi xi = P(1,0,0),

m
j=1

β j yi = P(0,1,0),

s
k=1

λk zk = P(0,0,1).
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Using the fact that the variables {x0, . . . , xn} are linearly independent in A, we find that x0 is not a
variable in P . Same for y0 and z0. Given that P is a polynomial combination of x0 −1, y0 −1 and
z0 − 1, it must be 0. Then α1 = · · · = αn = 0, β1 = · · · = βm = 0 and λ1 = · · · = λs = 0. �

Remark 18. Let us give the algorithm to find the point (x, y, z) ∈ Sn
× Sm

× Ss such that
|ℓ(x, y, z)| is maximum.

We choose to work with Gröbner bases because they are implemented in most computer
algebra systems (Maple, Macaulay2, Singular). In [2], the authors proposed an algorithm without
the need to use Gröbner bases. See also [10, 2.3.1].

Input: A generic trilinear form ℓ : Rn+1
× Rm+1

× Rs+1
→ R,

where 2n + 2m + 2s ≤ n + m + s.
Output: The absolute maximum (x, y, z) ∈ Sn

× Sm
× Ss .

1. Compute the system of trilinear equations of Proposition 16.
2. Add the equationsx0 = y0 = z0 = 1.
3. Compute a Gröbner basis for the resulting system, I .
4. Find a basisB of C[x1, . . . , xn, y1, . . . , ym, z1, . . . , zs]/I .
5. Compute the multiplication matrix of x1.
6. Compute the eigenvectors of the multiplication matrix.
7. For each eigenvector v, do

7.1 Normalize v such that v = (1, v1, . . .).
7.2 Let x = (x1, . . . , xn) be such that xi = vσi where
σi is the coordinate of xi in B, 1 ≤ i ≤ n.

7.3 Same for y and z.
7.4 Normalize the points, x = x/∥x∥, y = y/∥y∥, z = z/∥z∥.
7.5 Evaluate ℓ at (x, y, z) if the coordinates are real.
7.6 Save the maximum.

8. Return the maximum, (x, y, z).

In Step 5 of the algorithm we used the linear form x1 as a generic linear form. This fact is not
restrictive. Given that the trilinear form is generic, we may suppose that the first coordinates
of the classes of extreme points of ℓ are all different. In other words, the eigenvalues of
the multiplication matrix of x1 have multiplicity one. See [10, Section 2.1.3]. We added the
hypothesis 2n, 2m, 2s ≤ n + m + s to imply that B contains all the variables. The reader may
adapt the algorithm to the general case.

For a multilinear form, the algorithm is similar.

6. Applications and examples

Let us start with some applications. First, we give applications of the iterative algorithm to
find the maximum of a bilinear form. Then, we give applications of the general algorithm.

Remark 19. Given a real matrix A, its first singular value (the 2-norm) is given by

max
∥x∥=∥y∥=1

x t Ay.

In other words, it is the maximum over a product of spheres of the bilinear form (x, y) → x t Ay.
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An interesting aspect of Theorem 13 is that we can find the first singular vectors and the first
singular value, |ℓ(x, y)|, of ℓ without using the spectral radius formula. Recall that the 2-norm
of a matrix A is computed using the spectral radius formula,

∥A∥2 =


lim

k→+∞
∥(AAt )k∥

1
k .

Example 20. Let A ∈ R4×3 be the matrix

A =


3 2 32
2 1 36

−3 25 2
0 −1 1

 .

Then with the algorithm in Remark 14, we get that the 2-norm is 48.46054603. Computing the
spectral radius of AAt , we get the same number 48.46054603.

Example 21. An interesting example is to apply the algorithm to a bilinear form over S1
× S0.

Note that the domain is a cylinder in R3, so we can draw the whole situation. Take, for example,
the bilinear form

ℓ : R2
× R −→ R, ℓ(x, y) = 4x0 y + 2x1 y.

The maximum of ℓ over S1
× S0 is the 2-norm of the vector (4, 2), that is,

∥(4, 2)∥ =
√

20 ∼= 4.472135954.

Let us compute this using the algorithm in Remark 14. First of all, note that the gradient of ℓ

determines a vector field over the cylinder, and the iteration follows the arrow. Over the ending
point of the iteration, the flow is orthogonal to the surface. This means that we have reached an
extreme,

max
∥x∥=|y|=1

ℓ(x, y) ∼= 4.472135953.

Let us give now some applications of the general algorithm; see Appendix.

Remark 22. The first interesting application of the algorithm in Appendix is to the theory of
entanglement. It is of interest to find the maximum of the form ⟨ρ, −⟩ over the space of separable
states. The matrix ρ is called a state if it is Hermitian, ρ ≥ 0 and tr(ρ) = 1. It is easy to see that
the space of states is a convex set and is generated by the matrices of the form vvĎ where v is a
column vector of norm one in a finite dimensional vector space H, v ∈ H, ∥v∥ = 1. The general
theory says that when we work with two particles, we need to consider the space of states over
the tensor product H = H1 ⊗ H2. In this situation, a state is called separable if it is a convex
combination of the form


aivi ⊗ wi , where vi is a state of H1 and wi a state of H2. Let us

call Sep(H) the convex space of separable states. It is true that the space of separable states is
a convex set generated by the matrices of the form xxĎ ⊗ yyĎ, where x ∈ H1, y ∈ H2 and
∥x∥ = ∥y∥ = 1. Then

max
Sep(H)

⟨ρ, −⟩ = max
∥x∥=∥y∥=1

⟨ρ, xxĎ ⊗ yyĎ⟩.
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Note that the form is not bilinear in x nor in y. Rewriting the state ρ in the form ρ =


λiρiρ
Ď
i

with ⟨ρi , ρ j ⟩ = 0, ∥ρi∥ = 1, and using the equality ⟨ρi , x ⊗ y⟩
2

= ⟨ρiρ
Ď
i , xxĎ ⊗ yyĎ⟩, we get

max
Sep(H)

⟨ρ, −⟩ = max
∥x∥=∥y∥=1


λi ⟨ρi , x ⊗ y⟩ρi

2
.

The resulting map
√

λi ⟨ρi , x ⊗ y⟩ρi is bilinear in x and in y and our algorithm is capable of
maximizing it. See the next example.

Example 23. Let ρ be following state in R4
= R2

⊗ R2,
0.242894940524649938 −0.123994312358229969 −0.0712215842649899789 0.219784373378769966

−0.123994312358229969 0.0888784895376599772 0.111143109132249979 −0.0627261109839499926
−0.0712215842649899789 0.111143109132249979 0.361255602168969903 0.0603142605185699871

0.219784373378769966 −0.0627261109839499926 0.0603142605185699871 0.306970967813849916

 .

We choose to work over the real numbers to make the exposition clearer, but all the results can
be adapted to work with Hermitian matrices instead of symmetric matrices. Using the Cholesky
algorithm and making a singular value decomposition, we have ρ =


λiρiρ

Ď
i ,

λ1 = 0.5435016101, λ2 = 0.4146107959,

λ3 = 0.04113792919, λ4 = 0.0007496649711, λ1 + λ2 + λ3 + λ4 = 1.

ρ1 =


−0.656481390369177854
0.326643787198963642
0.245965753592146592

−0.633906040705653040

 , ρ2 =


−0.0253829550629408562
−0.209402292907094082
−0.881013881627254691
−0.423463015737623016



ρ3 =


−0.444223726945872255
0.546710519336902400

−0.399219012690601172
0.586853532298337144

 , ρ4 =


−0.609141338368644146
−0.741998735885678107
0.0627659808038323054
0.272846362424434330

 .

Applying the algorithm in Appendix to the trilinear form

ℓ(x, y, z) =


λi ⟨ρi , x ⊗ y⟩⟨ρi , z⟩, (x, y, z) ∈ S1

× S1
× S3,

we get that the maximum is 0.7228016991. Finally,

max
Sep(H)

⟨ρ, −⟩ = max
∥x∥=∥y∥=1


λi ⟨ρi , x ⊗ y⟩ρi

2
= max

∥x∥=∥y∥=∥z∥=1
|ℓ(x, y, z)|2

∼= 0.72280169912 ∼= 0.5224422962.

Note that if ρ is separable, then ⟨ρ, ρ⟩ ≤ maxSep(H)⟨ρ, −⟩. This is not the case, but for example,
the following state is not separable (it is called entangled state),

φ =


0.168106937369559950 −0.190509527669719958 −0.200004375511779936 −0.0690454833860399825

−0.190509527669719958 0.257651665981429912 0.267759084652009926 0.0985801483325399742
−0.200004375511779936 0.267759084652009926 0.320790216378169901 0.194053687463299957
−0.0690454833860399825 0.0985801483325399742 0.194053687463299957 0.253451180300149959

 .

We have ⟨φ, φ⟩ ∼= 0.6620536187 ≰ 0.4862909489 ∼= maxSep(H)⟨φ, −⟩.

Remark 24. Our final application is the ability to find numerically a closest rank-one tensor of a
given tensor. In [9], the authors considered the problem of finding the best rank-r approximation
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of a given tensor. They proved that for r > 1 the problem is ill-posed, but when r = 1, the
problem has a solution, [9, 4.5]. Here we find the solution. Let us prove that a computation of
the absolute maximum of ℓ over a product of spheres gives the closest rank-one multilinear form
to ℓ. A rank-one multilinear form is a product of linear forms, ℓ1 · · · ℓs , where ℓi : Rni +1

→

R, 1 ≤ i ≤ s. We choose to do this remark about multilinear forms, but dually, the same is true
for tensors.

For simplicity, we do the proof for a trilinear form. The proof is similar in the multilinear case.
Consider the affine Segre map (it is not an isometry)

Rn+1
× Rm+1

× Rs+1
−→ Rn+1

⊗ Rm+1
⊗ Rs+1, (x, y, z) −→ x ⊗ y ⊗ z.

Using the usual inner product in the tensor product, we identify

Rn+1
⊗ Rm+1

⊗ Rs+1 ∼= (Rn+1
⊗ Rm+1

⊗ Rs+1)∨,

x ⊗ y ⊗ z −→ ⟨x ⊗ y ⊗ z, −⟩, ⟨x ⊗ y ⊗ z, a ⊗ b ⊗ c⟩ = ⟨x, a⟩⟨y, b⟩⟨z, c⟩.

We can identify the following three different notations

ℓ(x, y, z) = ℓ(x ⊗ y ⊗ z) = ⟨ℓ, x ⊗ y ⊗ z⟩.

The first equality identifies a trilinear form with a linear map ℓ : Rn+1
⊗Rm+1

⊗Rs+1
→ R. The

second equality identifies, under the isometry (Rn+1
⊗Rm+1

⊗Rs+1)∨ ∼= Rn+1
⊗Rm+1

⊗Rs+1,
the linear form ℓ with the tensor ℓ ∈ Rn+1

⊗ Rm+1
⊗ Rs+1.

Let S be the immersion of Sn
× Sm

× Ss under the Segre map,

S = {⟨x ⊗ y ⊗ z, −⟩: ∥x∥ = ∥y∥ = ∥z∥ = 1} ⊆ (Rn+1
⊗ Rm+1

⊗ Rs+1)∨.

Then, for all φ = ⟨x ⊗ y ⊗ z, −⟩ ∈ S, we have

∥ℓ − φ∥
2

=


∥ℓ∥2

+ ∥φ∥
2
− 2⟨ℓ, φ⟩


= ∥ℓ∥2

+ 1 − 2ℓ(x, y, z).

In other words, a local maximum of ℓ is a local minimum of the distance function, ∥ℓ − φ∥.
Let B be the image, under the Segre map, of a product of balls,

B = {⟨x ⊗ y ⊗ z, −⟩: ∥x∥, ∥y∥, ∥z∥ ≤ 1} ⊆ (Rn+1
⊗ Rm+1

⊗ Rs+1)∨.

Note that the elements of B are rank-one multilinear forms. It is easy to see that B is compact and
convex, so the distance from ℓ to B is achieved in S (the border). In other words, a closest rank-
one multilinear form to ℓ is an element of S. Summing up, a computation with the algorithm
in Remark 18 of the absolute maximum of ℓ, gives a rank one multilinear form such that the
distance to ℓ is minimum. Note that there can be more than one closest rank-one approximation.
Every closest rank-one multilinear form, determines an absolute maximum and vice versa.

Example 25. Let ℓ : R2
× R2

× R2
× R2

−→ R be the multilinear form

ℓ(x, y, z, t) = 4x0 y0z0t0 + 6x1 y0z0t0 + x0 y1z0t0 + 7x1 y1z0t0 − 5x0 y0z1t0
− 6x1 y0z1t0 − 5x0 y1z1t0 + 2x0 y0z0t1 − 3x1 y0z0t1
− 7x0 y1z0t1 + 9x1 y1z0t1
− 9x0 y0z1t1 − 9x1 y0z1t1 − 6x0 y1z1t1 + 8x1 y1z1t1.
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Using the algorithm in Remark 18, we get that the closest rank one multilinear form is

ℓ1(x)ℓ2(y)ℓ3(z)ℓ4(t),

ℓ1(x) = 0.4799354720x0 − 0.8773037918x1

ℓ2(y) = 0.2732019392y0 − 0.9619567040y1

ℓ3(z) = 0.7563638894z0 + 0.6541511043z1

ℓ4(t) = 0.3260948315t0 + 0.9453370622t1.

The value of the absolute maximum of ℓ is 16.71262553.

Example 26. Let v ∈ R2
⊗ R3 be the following tensor

v = 4x0 ⊗ y0 − 9x1 ⊗ y0 + 2x0 ⊗ y1 + x1 ⊗ y1 − 5x0 ⊗ y2 − 7x1 ⊗ y2.

Using the algorithm in Remark 18 we get that the closest rank one tensor is

(0.01162554952x0 + 0.9999324213x1) ⊗ (−0.7821828869y0

+ 0.08939199251y1 − 0.6166027924y2).

In this case, we can check this result. The first singular vectors of the matrix 4 −9
2 1

−5 −7

 ,

are

(0.01162554952, 0.99993242102),

(−0.7821828866, 0.08939199251, −0.6166027924).

Acknowledgments

The author was fully supported by CONICET, Argentina. The author would like to thank
Federico Holik for very fruitful discussions and for presenting him with this subject. Thanks are
also due to the reviewer for his detailed and useful suggestions.

Appendix. A general algorithm for a multilinear form

Let us give the algorithm to find the maximum value of a generic multilinear map over a
product of spheres,

ℓ : Rn1 × · · · × Rnr → Rnr+1 , g max
∥x1∥=···=∥xr ∥=1

∥ℓ(x1, . . . , xr )∥.

Recall from Section 2, that we may assume that ℓ is a multilinear form,ℓ : Rn1 × · · · × Rnr × Rnr+1 → R, max
∥x1∥=···=∥xr+1∥=1

|ℓ(x1, . . . , xr+1)|.

The following is a pseudocode in the trilinear case.
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Input: A generic trilinear form ℓ : Rn+1
× Rm+1

× Rs+1
→ R.

Output: The maximum value |ℓ(x, y, z)|, where (x, y, z) ∈ Sn
× Sm

× Ss .
1. Compute the system of trilinear equations of Proposition 16.
2. Add the polynomial equations ∥x∥

2
= ∥y∥

2
= ∥z∥2

= 1.
3. Compute a Gröbner basis for the resulting system, I .
4. Find a basis B of C[x0, . . . , xn, y0, . . . , ym, z0, . . . , zs]/I .
5. Compute the multiplication matrix of ℓ.
6. Return the magnitude of the maximum real eigenvalue.

Let us give an implementation of the algorithm in Maple. The code computes the maximum
of a trilinear form over Sn−1

× Sm−1
× Ss−1. The reader may change the values of n, m and s

and the trilinear form, to get different examples.

> restart;with(Groebner):with(linalg):

> n:=2:m:=2:s:=2:

> L:=6*x[1]*y[1]*z[1]+3*x[2]*y[1]*z[1]-6*x[1]*y[2]*z[1]+16*x[2]*y[2]*z[1]-

14*x[1]*y[1]*z[2]-15*x[2]*y[1]*z[2]-11*x[1]*y[2]*z[2]+8*x[2]*y[2]*z[2];

> #Step 1 and 2

> J:={add(x[i]^2,i=1..n)-1,add(y[j]^2,j=1..m)-1,add(z[k]^2,k=1..s)-1,

seq(seq(x[i]*diff(L,x[j])-x[j]*diff(L,x[i]),j=1..i-1),i=1..n),

seq(seq(y[i]*diff(L,y[j])-y[j]*diff(L,y[i]),j=1..i-1),i=1..m),

seq(seq(z[i]*diff(L,z[j])-z[j]*diff(L,z[i]),j=1..i-1),i=1..s)}:

> #Step 3

> G:=Basis(J,’tord’):

> #Step 4

> ns,rv:=NormalSet(G, tord):

> #Step 5

> mulMat:=evalm(evalf(MultiplicationMatrix(L,ns,rv,G,tord))):

> #Step 6

> max(op(map(abs,map(Re,{eigenvalues(mulMat)}))));

The following is a table that shows the time, in seconds, used to compute the maximum. In
the first column appears different values of (n, m, s), in the second, the time used to compute the
Steps 1 through 4, and in the third, the total time of the algorithm. We ran a Maple 11 session on
a 2.1 GHz CPU, with 2 GB of memory. We used the previous code to find the maximum value
of a generic trilinear form over Sn−1

× Sm−1
× Ss−1,

(n, m, s) Steps 1–4 Total time
(2, 2, 2) 0.03 0.33
(2, 2, 3) 0.05 0.79
(2, 2, 4) 0.09 0.99
(2, 2, 5) 0.14 1.20
(2, 3, 3) 0.31 7.13
(2, 3, 4) 0.89 30.03
(3, 3, 3) 5.06 397.28

Note that the computation of the multiplication matrix using Gröbner bases requires most of
the time. A method to compute the multiplication matrix of ℓ without the need to use Gröbner
bases is required.
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