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Extending previous results of Oh–Zumbrun and Johnson–Zumbrun,
we show that spectral stability implies linearized and nonlinear
stability of spatially periodic traveling wave solutions of viscous
systems of conservation laws for systems of generic type, removing
a restrictive assumption that wave speed be constant to first
order along the manifold of nearby periodic solutions. Key to
our analysis is a nonlinear cancellation estimate observed by
Johnson and Zumbrun, along with a detailed understanding of
the Whitham averaged system. The latter motivates a careful
analysis of the Bloch perturbation expansion near zero frequency
and suggests factoring out an appropriate translational modulation
of the underlying wave, allowing us to derive the sharpened
low-frequency estimates needed to close the nonlinear iteration
arguments.
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1. Introduction

Nonclassical viscous conservation laws arising in multiphase fluid and solid mechanics exhibit a
rich variety of traveling wave phenomena, including homoclinic (pulse-type) and periodic solutions
along with the standard heteroclinic (shock, or front-type) solutions [5,1,29,22,23]. Here, we investi-
gate stability of spatially periodic traveling waves: specifically, sufficient conditions for stability of the
wave.

In previous work [21,13], we showed that strong spectral stability in the sense of Schneider [26,
25,27] implies linearized and nonlinear L1 ∩ H K → L∞ stability in all dimensions d � 1. However, as
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pointed out in [22,28], the conditions of Schneider are nongeneric in the conservation law setting, imply-
ing the restrictive condition that wave speed be constant to first order along the manifold of nearby
periodic solutions. Indeed, it was shown in [23] that failure of this condition implies a degradation
in the decay rates of the Green function of the linearized equations about the periodic wave, sug-
gesting that nonlinear stability would be unlikely in the general (nonstationary wave speed) case in
dimension d = 1.

In this paper, we show that these difficulties are only apparent, and that, somewhat surpris-
ingly, spectral stability implies nonlinear stability even if this additional condition on wave speeds
is dropped. More precisely, we show that small L1 ∩ Hs perturbations of a planar periodic solution
u(x, t) ≡ ū(x1) (without loss of generality taken stationary) converge at Gaussian rate in L p , p � 2, to
a modulation

ū
(
x1 − ψ(x, t)

)
(1.1)

of the unperturbed wave, where x = (x1, x̃), x̃ = (x2, . . . , xd), and ψ is a scalar function whose x-
and t-gradients decay at Gaussian rate in all L p , p � 2, but which itself decays more slowly by a
factor t1/2; in particular, ψ is merely bounded in L∞ for dimension d = 1.

In proving this result, we make crucial use of the tools developed in [21,13], in particular, a key
nonlinear cancellation argument of [13]. Our methods derive further inspiration from the rich liter-
ature concerning the nonlinear stability of shock waves of viscous conservation laws to which we
connect by remarks throughout this paper: see [1,5,29,6,7,30,17,32,9,18,31,33,19]. However, we em-
phasize that the analysis presented is completely self-contained, and the reader may follow or ignore
these references as desired. In particular, while having an understanding of these references may as-
sist in making our analysis more transparent it is by no means necessary even to be familiar with the
said references.

Similarly, we point out that the main motivation for our treatment of the generic case considered
here is a detailed understanding of the Whitham averaged system studied in [28,20,14,15] corre-
sponding to the underlying periodic wave. In particular, the key new observation making possible
the treatment of the generic case is a rescaling of the Bloch perturbation expansion about frequency
ξ = 0, motivated by relations to the Whitham averaged system; see Section 2. Throughout the text,
we will make several further remarks concerning the connection to the Whitham system. However, as
with the shock stability literature mentioned above, our analysis can be completely understood with-
out any reference at all to the underlying Whitham averaged system and hence readers may ignore
these remarks as desired.

It was shown in [28,20] that the low-frequency dispersion relation near zero of the linearized op-
erator about a periodic solution ū agrees to first order with that of the linearization about a constant
state of the Whitham averaged system

∂t M +
∑

j

∂x j F j = 0,

∂t(ΩN) + ∇x(Ω S) = 0, (1.2)

formally governing slowly modulated solutions

u(x, t) = ūa(εx,εt)(Ψ (x, t)
) + O (ε), ε → 0 (1.3)

presumed to describe large spatio-temporal behavior x, t � 1, where ūa(·) as in (1.8) parametrizes
the set of nearby periodic solutions, M ∈ R

n denotes the average over one period, F j the average
of an associated flux, Ω = |∇xΨ | ∈ R

1 the frequency, S = −Ψt/|∇xΨ | ∈ R
1 the speed s, and N =

∇xΨ/|∇xΨ | ∈ R
d the normal ν associated with nearby periodic waves, with an additional constraint

curl(ΩN) = curl(∇xΨ ) ≡ 0. (1.4)
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As noted in [28,20], this implies both that the eigenvalues λ j(ξ) bifurcating from λ = 0 at ξ = 0 are
C1 along rays through the origin, and that weak hyperbolicity (reality of characteristics of (1.2)–(1.4))
is necessary for spectral or linearized stability.

As noted in [15], there is a deeper analogy between the low-frequency linearized dispersion re-
lation and the Whitham averaged system at the structural level, suggesting a useful rescaling of the
low-frequency perturbation problem described in Section 2. It is this intuition that motivates our
derivation of sharp low-frequency estimates crucial to the analysis of nonlinear stability. With these
estimates in place, the rest of the argument goes exactly as in [13,21].

1.1. Equations and assumptions

Throughout this paper, we consider a parabolic system of conservation laws of the form

ut +
∑

j

f j(u)x j = 
xu, (1.5)

where u ∈ U (open) ∈ R
n , f j ∈ R

n , x ∈ R
d , d � 1, t ∈ R

+ . Such equations are known to exhibit a variety
of traveling wave phenomena, including heteroclinic/homoclinic solutions as well as spatially periodic
solutions; see [1,22,5,29] for examples of solutions of each type for the van der Waals equations of
phase-transitional elasticity and for a class of quadratic-flux equations modeling local behavior of
multi-phase flow in oil recovery.

We assume the existence of an X-periodic traveling wave solution of (1.5) of the form

u = ū(x · ν − st), (1.6)

with ν ∈ Sd−1. Clearly, any such solution must satisfy the traveling wave ODE

ū′′ =
(∑

j

ν j f j(ū)

)′
− sū′,

with boundary conditions ū(0) = ū(X) =: u0. Integrating once, we obtain a first-order profile equation

ū′ =
∑

j

ν j f j(ū) − sū − q, (1.7)

where (u0,q, s, ν, X) ≡ const. Without loss of generality, we take ν = e1 and s = 0, so that ū = ū(x1)

represents a stationary solution depending only on x1.
In order to ensure the existence of periodic solutions of (1.7), we follow [28,20,21] and make the

following natural assumptions:

(H1) f j ∈ C K+1, K � [d/2] + 4.
(H2) The map H : R × U × R × Sd−1 × R

n → R
n taking (X; w, s, ν,q) �→ u(X; w, s, ν,q) − w is full

rank at ( X̄; ū(0),0, e1, q̄), where u(·;·) is the solution operator of (1.7).

By the Implicit Function Theorem, conditions (H1)–(H2) imply that the set of periodic solutions in
the vicinity of ū form a smooth (n + d + 1)-dimensional manifold{

ūa(x · ν(a) − α − s(a)t
)}

, (1.8)

with α ∈ R corresponding to translation and a ∈ R
n+d . With these assumptions in hand, we now

begin our study of the stability of a given periodic solution of (1.7).
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1.1.1. Linearized equations
As with any nonlinear stability analysis, we begin by considering the linearization of (1.5) about the

fixed periodic standing wave solution ū depending only on the variable x1. Without loss of generality,
we assume that ū is 1-periodic, i.e. that ū(x1 + 1) = ū(x1) for all x1 ∈ R. Considering nearby solutions
of the form

ū(x) + εv(x, t) + O
(
ε2),

where |ε| � 1 and v(·, t) ∈ L2(R), corresponding to spatially localized perturbations, we see that v
satisfies the linear equation

vt = Lv := 
x v −
∑(

A j v
)

x j
, (1.9)

where coefficients A j := D f j(ū) are now periodic functions of x1. As the underlying solution ū de-
pends only on x1, Eq. (1.9) is clearly autonomous in the transverse coordinate x̃ = (x2, . . . , xd). Taking
the Fourier transform in x̃ then, we obtain

v̂t = Lξ̃ v̂ = v̂x1,x1 − (
A1 v̂

)
x1

− i
∑
j =1

A jξ j v̂ −
∑
j =1

ξ2
j v̂, (1.10)

where ξ̃ = (ξ2, . . . , ξd) is the transverse frequency vector. Seeking solutions of the form v̂(x1, ξ̃ , t) =
eλt v̂(x1, ξ̃ ), it is clear that the stability of ū requires a detailed analysis of the spectrum of the
operator L ξ̃ . A particularly useful way to characterize the spectrum of L ξ̃ is to perform a Bloch de-
composition of the corresponding spectral problem; a procedure which we now describe in detail.

1.1.2. Bloch–Fourier decomposition and stability conditions
As coefficients of L ξ̃ are 1-periodic, Floquet theory implies the L2 spectrum is purely continuous

and corresponds to the union of the L∞ eigenvalues corresponding to considering the linearized op-
erator with boundary conditions v(x + T ) = eiκ v(x) for all x ∈ R, where κ ∈ [−π,π ] is referred to
as the Floquet exponent and is uniquely defined mod 2π . In particular, μ ∈ σ(L ξ̃ ) if and only if the
spatially periodic spectral problem L ξ̃ v̂ = λv̂ admits a bounded eigenfunction of the form

w(x1, ξ, λ) := eiξ1x1 q(x1, ξ1, ξ̃ , λ), (1.11)

where ξ = (ξ1, ξ̃ ) ∈ R
d and q is a 1-periodic function of x1. Substituting the ansatz (1.11) into the

spectral problem

Lξ̃ w = λw

motivates the use of the Fourier–Bloch decomposition of the spectral problem. To this end, we follow
[4,26,25,27] and define the family of operators

Lξ = e−iξ1x1 Lξ̃ eiξ1x1 (1.12)

operating on the class of L2 periodic functions on [0,1]; the (L2) spectrum of L ξ̃ is equal to the
union of the spectra of all Lξ with ξ1 real with associated eigenfunctions given by (1.11) where q is a
1-periodic eigenfunction of Lξ . By continuity in ξ of the spectrum, and discreteness of the spectrum
of the elliptic operators Lξ on the compact domain [0,1], we have that the spectra of Lξ may be
described as the union of countably many continuous surfaces λ j(ξ).
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Continuing this functional setup, we recall that any function u ∈ L2(Rd) admits the Bloch–Fourier
representation

u(x) =
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·xû(ξ, x1)dξ1 dξ̃ , (1.13)

where û(ξ, x1) := ∑
k e2π ikx1 ˆ̂u(ξ1 + 2πk, ξ̃ ) are periodic functions of period X = 1. Notice here we

are deviating from conventional notation as û corresponds to the Bloch–Fourier transform while ˆ̂u
corresponds to the Fourier transform of u in the full variable x. By Parseval’s identity, the Bloch–
Fourier transform u(x) → û(ξ, x1) is an isometry in L2(Rd), i.e.

‖u‖L2(x) =
π∫

−π

∫
Rd−1

1∫
0

∣∣û(ξ1, ξ, x1)
∣∣2

dx1 dξ̃ dξ1 =: ‖û‖L2(ξ ;L2(x1)), (1.14)

where L2(x1) is taken on [0,1] and L2(ξ) on [−π,π ] × R
d−1. Moreover, the Bloch–Fourier transform

diagonalizes the periodic-coefficient operator L, yielding the inverse Bloch–Fourier transform representa-
tion

eLt u0 =
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·xeLξ t û0(ξ, x1)dξ1 dξ̃ (1.15)

relating behavior of the linearized system to that of the diagonal operators Lξ .
We now discuss the spectral stability of the underlying solution ū(x1). To begin, notice by the

translation invariance of (1.5) the function ū′(x) is a 1-periodic solution of the differential equation
Lv = 0. Hence, it follows that λ = 0 is a 1-periodic eigenvalue of the linear operator L0. Moreover, due
to the divergence form of the governing equation (1.5) along with the linearized existence theory and
assumption (H2), the zero eigenspace of L0 is at least (n + 1)-dimensional, see [28]. In our analysis,
we will assume these considerations account for all 1-periodic null-directions of L0. More precisely,
following [21], we assume along with (H1)–(H2) the following strong spectral stability conditions:

(D1) σ(Lξ ) ⊂ {Reλ < 0} for ξ = 0.
(D2) Reσ(Lξ ) � −θ |ξ |2, θ > 0, for ξ ∈ R

d and |ξ | sufficiently small.
(D3′) λ = 0 is an eigenvalue of L0 of multiplicity exactly n + 1.

As shown in [20] using Evans function methods, (H1)–(H2) and (D1)–(D3′) imply that there exist
n + 1 smooth eigenvalues

λ j(ξ) = −ia j(ξ) + o
(|ξ |) (1.16)

of Lξ bifurcating from λ = 0 at ξ = 0, where −ia j are homogeneous degree one functions; for an
alternative, more direct proof, see Lemma 2.1 below.3 Moreover, as in [21], we make the further
nondegeneracy hypothesis:

(H3) The functions a j(ξ) in (1.16) are distinct.

3 Note: the Evans function is not used anywhere in this paper.
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The functions a j may be seen to be the characteristics associated with the Whitham averaged
system (1.2)–(1.4) linearized about the values of M , S , N , Ω associated with the background wave ū;
see [20,21]. Thus, (D1) implies weak hyperbolicity of (1.2)–(1.4) (reality of a j), while (H3) corresponds
to strict hyperbolicity.

Remark 1.1. Condition (D3′) is a weakened version of the condition (D3) of [21,13] that λ = 0 be a
semisimple eigenvalue of L0 of minimal multiplicity n + 1, which implies [22,23,28] the special prop-
erty that wave speed be stationary at ū along the manifold of nearby periodic solutions. The stronger
conditions (D1)–(D3) are exactly the spectral assumptions of [26,25,27] introduced by Schneider in
the reaction–diffusion case. Conditions (D1)–(D3) (resp. (D1)–(D3′)) correspond to “dissipativity” of
the large-time behavior of the linearized system [26,25,27].

Remark 1.2. The periodic solutions discussed in [22] of the van der Waals equations of phase-
transitional elasticity in Lagrangian coordinates were of “quasi-Hamiltonian” type, satisfying (D3).
However, as pointed out by Serre [28], considered as solutions of the same equations written in Eu-
lerian coordinates, these traveling waves have variable wave speeds, satisfying the generic condition
(D3′) but not (D3). Note that the Lagrangian formulation is not available in multi-dimensions, so that
this generic situation is indeed the more relevant for the physical application to phase-transitional
flow.

1.2. Main result

With these preliminaries, we can now state our main result.

Theorem 1.3. Let ū(x1) be a periodic standing wave solution of (1.5) and let ũ(x, t) be any solution of (1.5)
such that ‖ũ− ū‖L1(Rd)∩H K (Rd)|t=0 is sufficiently small. Then assuming (H1)–(H3) and (D1)–(D3′), there exists

a constant C > 0 and a function ψ(·, t) ∈ W K ,∞(Rd) such that for all t � 0, p � 2, and d � 1 we have the
estimates

∥∥ũ − ū(· − ψ)
∥∥

L p(Rd)
(t) � C(1 + t)−

d
2 (1−1/p)‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0,∥∥ũ − ū(· − ψ)

∥∥
H K (Rd)

(t) � C(1 + t)−
d
4 ‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0,∥∥(ψt,ψx)(·, t)

∥∥
L p(Rd)

(t) � C(1 + t)−
d
2 (1−1/p)‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0,∥∥(ψt,ψx)(·, t)

∥∥
H K (Rd)

� C(1 + t)−
d
4 ‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0. (1.17)

Moreover, assuming further that p = ∞ and d = 1, or p > 2 and d = 2, or p � 2 and d � 3, we have the
estimates

‖ũ − ū‖L p(Rd)(t),
∥∥ψ(·, t)

∥∥
L p(Rd)

� C(1 + t)−
d
2 (1−1/p)+ 1

2 ‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0 (1.18)

for all t � 0. In particular, ū is nonlinearly bounded L1 ∩ H K → L∞ stable for d � 1, nonlinearly asymptotically
L1 ∩ H K → L∞ stable for d � 2, and nonlinearly asymptotically L1 ∩ H K → H K stable for d � 3 with estimate

‖ũ − ū‖H K (Rd)(t),
∥∥ψ(·, t)

∥∥
H K (Rd)

� C(1 + t)−
d
4 + 1

2 ‖ũ − ū‖L1(Rd)∩H K (Rd)|t=0 (1.19)

for all t � 0.
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Remark 1.4. In Theorem 1.3, derivatives in x ∈ R
d for d � 2 refer to total derivatives. Moreover, unless

specified by an appropriate index, throughout this paper derivatives in spatial variable x will always
refer to the total derivative of the function.

Remark 1.5. Although L1 ∩ H K → Hk asymptotic stability for d � 3 does not follow directly from (1.18),
the nonlinear damping estimate in Proposition 4.6 shows that L2 decay implies H K decay, from which
the estimate (1.19) clearly follows.

In dimension one, Theorem 1.3 asserts only bounded L1 ∩ H K → L∞ stability, a very weak notion
of stability. Moreover, the bounds (1.17)–(1.18) agree for dimension d = 1 with those obtained in [13]
in the stationary wave speed case that (D3) holds in place of (D3′), but for higher dimensions are
weaker by roughly a factor of t1/2.

Remark 1.6. In dimension d = 1, it is straightforward to show that the results of Theorem 1.3 extend
to all 1 � p � ∞ using the pointwise techniques of [23]; see Remark 3.8.

1.3. Discussion and open problems

The proof of Theorem 1.3 largely completes the line of investigation carried out in [23,28,20,21,
13], showing that spectral stability implies linear and nonlinear stability of planar spatially periodic
traveling waves. The corresponding spectral stability problem has been studied analytically in [22,28,
20], yielding various necessary conditions, and by a numerical Evans function investigation in [22].
An interesting direction for further study would be more systematic numerical investigation along the
lines of [10,3,12,11,2] in the viscous shock wave case. A second interesting open problem would be
to extend the results for planar waves to the case of solutions with multiple periods, as considered in
the reaction–diffusion setting in [26,25,27].

The key to the nonlinear analysis in critical dimensions d = 1,2, as in [13,26,25,27], is to subtract
out a slower-decaying part of the solution described by an appropriate modulation equation and show
that the residual decays sufficiently rapidly to close a nonlinear iteration. However, we should note
that the modulated approximation ū(x1 − ψ(x, t)) in (1.1) is not the full ansatz ūa(Ψ (x, t)) suggested
by (1.3), but only the translational part not involving perturbations a in the profile. (See [20] for a
derivation of (1.2)–(1.4).) That is, we don’t need to separate out all variations along the manifold of
periodic solutions, but only the special variations connected with translation invariance.

This can be understood heuristically by the observation that (1.2) indicates that variables a and
∇xΨ are roughly comparable, which would suggest, by the diffusive behavior4 |Ψ | � |∇xΨ |, that a
is negligible with respect to Ψ . Indeed, this heuristic argument translates rigorously to our ultimate
computation of linearized behavior leading to the final result; see Section 2 and Remark 2.3. In this
respect, the connection to the Whitham system is somewhat clearer in the generic case considered
here than in the quasi-Hamiltonian case treated previously in [23,21,13].5

It would be interesting to better understand the connection between the Whitham averaged sys-
tem (or suitable higher-order correction) and behavior at the nonlinear level, as explored at the linear
level in [20,21,14,15]. As discussed further in [20], another interesting problem would be to try to
rigorously justify the WKB expansion for the related vanishing viscosity problem, in the spirit of [6,7].

2. Spectral preparation

As a starting point in our analysis, we analyze under assumptions (H1)–(H3), (D1), and (D3′) the
structure of the null-space of the operator Lξ for 0 < |ξ | � 1. By (D3′), the generalized null-space

4 As evidenced by the heat equation.
5 In the degenerate case that the stronger condition (D3) holds, i.e., wave speed is stationary at ū, the situation is somewhat

more complicated, and these relations break down; see [13] for further discussion.
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corresponding to ξ = 0 consists of n + 1 functions. The next lemma describes the way in which these
eigenfunctions of L0 bifurcate in ξ .

Lemma 2.1. Assuming (H1)–(H3), (D1), and (D3′), the eigenvalues λ j(ξ/|ξ |, |ξ |) of Lξ are analytic functions
of ξ/|ξ | and |ξ |. Suppose further that 0 is a non-semisimple eigenvalue of L0 , i.e., (D3′) holds, but not (D3).
Then the Jordan structure of the zero eigenspace of L0 consists of an n-dimensional kernel and a single Jordan
chain of height 2. In particular, ū′ spans the right eigendirection lying at the base of the Jordan chain while the
left kernel of L0 coincides with the n-dimensional subspace of constant functions. Moreover, for |ξ | sufficiently
small, there exist right and left eigenfunctions q j(ξ/|ξ |, |ξ |, ·) and q̃ j(ξ/|ξ |, |ξ |, ·) of Lξ associated with λ j of

form q j = ∑n+1
k=1 β j,k vk and q̃ j = ∑n+1

k=1 β̃ j,k ṽk , where {v j} and {ṽ j} are dual bases of the total eigenspace
of Lξ associated with sufficiently small eigenvalues, analytic in ω = ξ/|ξ | and |ξ |, with ṽ j(ω;0) constant
for j = n and vn(ω;0) ≡ ū′(·); β̃ j,1, . . . , β̃ j,n−1, |ξ |−1β̃ j,n, β̃ j,n+1 and β j,1, . . . , β j,n−1, |ξ |β j,n, β j,n+1 are
analytic in ξ/|ξ |, |ξ |; and 〈q̃ j,qk〉 = δk

j .

Remark 2.2. Notice that the results of Lemma 2.1 are somewhat unexpected in the general case that
λ = 0 is a non-semisimple eigenvalue of L0. Indeed, it is well known that eigenvalues bifurcating
from a non-trivial Jordan block typically do so in a nonanalytic fashion. The fact that analyticity
prevails in our situation is a consequence of the very special structure of the left and right generalized
null-spaces of the unperturbed operator L0, and the special forms of the equations considered. See
Section 2.1 for further discussion/motivation.

Proof of Lemma 2.1. Recall that Lξ as an elliptic second-order operator on bounded domain has spec-
trum consisting of isolated eigenvalues of finite multiplicity. Expanding

Lξ = L0 + |ξ |L1
ξ/|ξ | + |ξ |2L2

ξ/|ξ | (2.1)

for each fixed angle ξ̂ := ξ/|ξ |, consider the continuous family of spectral perturbation problems in
|ξ | indexed by angle ω = ξ/|ξ | about the eigenvalue λ = 0 of L0.

Because 0 is an isolated eigenvalue of L0, the associated total right and left eigenprojections P0 and
P̃0 perturb analytically in both ω and |ξ |, giving projection Pξ and P̃ξ [16]. These yield in standard
fashion (for example, by projecting appropriately chosen fixed subspaces) locally analytic right and
left bases {v j} and {ṽ j} of the associated total eigenspaces given by the range of Pξ , P̃ξ .

Defining V = (v1, . . . , vn+1) and Ṽ = (ṽ1, . . . , ṽn+1)
∗ , ∗ denoting the matrix adjoint, we may con-

vert the infinite-dimensional perturbation problem (2.1) near |ξ | = 0 into the (n + 1) × (n + 1) matrix
perturbation problem

Mξ = M0 + |ξ |M1 + |ξ |2M2 + O
(|ξ |3), (2.2)

where Mξ (ω, |ξ |) := 〈Ṽ ∗
ξ , Lξ V ξ 〉 and 〈·,·〉 refers to the L2(x1) inner product on [0, X]. That is, the

eigenvalues λ j(ξ) lying near 0 of Lξ coincide with the eigenvalues of Mξ , and the associated right
and left eigenfunctions of Lξ are

f j = V w j and f̃ j = w̃ j Ṽ ∗, (2.3)

respectively, where w j and w̃ j are the associated right and left eigenvectors of Mξ .
Case (i). If λ = 0 is a semisimple eigenvalue of L0, then M0 = 0, and (2.2) reduces to the simpler

perturbation problem M̌ξ := |ξ |−1Mξ = M1 + |ξ |M2 studied in [21,13], which λ j(ξ) = |ξ |λ̌ j(ξ), λ̌ j(ξ)

denoting the eigenvalues of M̌ξ . Since the λ̌ j are continuous, the λ j are differentiable at |ξ | = 0 in the
parameter |ξ | as asserted in the introduction. Moreover, by (H3), the eigenvalues λ̌ j(0) of M1 = M̌0
are distinct, and so they perturb analytically in ω, |ξ |, as do the associated right and left eigenvectors.
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Case (ii). Hereafter, assume that λ = 0 is a non-semisimple eigenvalue of L0, so that M0 is
nilpotent but nonzero, possessing a non-trivial associated Jordan chain. By translation invariance6

of (1.5) in the variable x1, we have L0ū′(x1) = 0 so that ū′ is in the right kernel of L0. More-
over, as the n-dimensional subspace of constant functions by direct computation lie in the kernel of
L∗

0 = (∂2
x1

+ A∗
1∂x1 ), where A1(x1) := df 1(ū(x1)), we have that the (n + 1)-dimensional zero eigenspace

of L0 consists precisely of an n-dimensional kernel and a single Jordan chain of height two.
Now, recall the assumption (H2) that H : R × U × R × Sd−1 × R

n → R
n taking (X;a, s, ν,q) �→

u(X;a, s, ν,q) − a is full rank at ( X̄; ū(0),0, e1, q̄), where u(·;·) is the solution operator of pro-
file ODE (1.7). The fact that ker L0 is n-dimensional implies that the restriction Ȟ taking (w,q) �→
u(X; w, s, ν,q) − w for fixed (X, ν, s) is also full rank, i.e., H is full rank with respect to the spe-
cific parameters (X, s, ν). Applying the Implicit Function Theorem and counting dimensions, we find
that the set of periodic solutions, i.e., the inverse image of zero under map H local to ū is a smooth
(n + d + 1)-dimensional manifold {ūa(x · ν(a) − α − s(a)t)}, with α ∈ R, a ∈ R

n+d . Moreover, d + 1
dimensions may be parametrized by (X, s, ν), or without loss of generality (a1, . . . ,ad+1) = (X, s, ν).

Fixing (X, ν) and (ad+2, . . . ,an+d+1), and varying s, we find by differentiation of (1.7) that f∗ :=
−∂sū satisfies7 the generalized eigenfunction equation

L0 f∗ = ū′.

Thus, ū′ spans the eigendirection lying at the base of the Jordan chain, with the generalized zero-
eigenfunction of L0 corresponding to variations in speed along the manifold of periodic solutions
about ū. Without loss of generality, therefore, we may take the functions ṽ1, . . . , ṽn−1 and ṽn+1 to be
constant at |ξ | = 0, i.e., depending only on ω = ξ/|ξ | and not x1, and vn ≡ ū′ at |ξ | = 0 independent
of ω.

Recalling from [13] the fact that

〈
c, L1ū′〉 = 〈

c,

(
ω1(2∂x1 − A1) −

∑
j =1

ω j A j

)
ū′

〉
=

〈
c,ω1∂

2
x1

ū −
∑
j =1

ω j∂x1 f j(ū)

〉
≡ 0

for any constant function c, where again 〈·,·〉 denotes L2(x1) inner product on the interval x1 ∈ [0, X],
and A j := df j(ū(·)), we find under this normalization that (2.2) has the special structure

M0 =
(0(n−1)×(n−1) 0n−1 0n−1

0 0 1
0 0 0

)
, M1 =

(∗ 0n−1 ∗
∗ ∗ ∗
∗ 0 ∗

)
. (2.4)

Now, rescaling (2.2) as

M̌ξ := |ξ |−1 S(ξ)Mξ S(ξ)−1, (2.5)

where

S :=
( In−1 0 0

0 |ξ | 0
0 0 1

)
, (2.6)

we obtain

M̌ξ = M̌0 + |ξ |M̌1 + O
(|ξ |2), (2.7)

6 Alternatively, this may be seen by differentiating the profile equation (1.7) with respect to x1.
7 Note that function f∗ is X-periodic, and hence in the domain of L0 since we have fixed the period X .
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where M̌ j = M̌ j(ω) like the original M j are analytic matrix-valued functions of ω, and the eigenvalues
m j(ξ) = m j(ω; |ξ |) of M̂ξ are |ξ |−1λ j(ξ).

As the eigenvalues m j of M̌ξ are continuous, the eigenvalues λ j(ξ) = |ξ |m j are differentiable at
|ξ | = 0 as asserted in the introduction. Moreover, by (H3), the eigenvalues λ̌ j(0) of M̌0 are distinct,
and so they perturb analytically in ω, |ξ |, as do the associated right and left eigenvectors z j and z̃ j .
Undoing the rescaling (2.5), and recalling (2.3), we obtain the result. �
Remark 2.3. Note that the nth coordinate of vectors w ∈ C

n+1 in the perturbation problem (2.2)
corresponds as the coefficient of ū′ to variations Ψ in displacement. Thus, rescaling (2.5) amounts to
substituting for Ψ the variable |ξ |Ψ ∼ Ψx of the Whitham averaged system (1.2).

2.1. Motivation/connection with the Whitham averaged equations

While not necessary for the understanding of the above analysis, it may be helpful to mention
that the motivation for the preceding perturbation result comes from consideration of the relation
between the Whitham (WKB) equations (1.2) and the Bloch expansion at ξ = 0. See for example the
much more detailed study of [15] in the context of generalized KdV equations.

As a model for this relation in the simplest, one-dimensional case d = 1, consider a linear constant-
coefficient system of PDE’s of the form(

y1
y2

)
t
+

(
α ∗
0 β

)(
y1
y2

)
x
=

(
θ1 0
γ θ2

)(
y1
y2

)
xx

+
(

0 1
0 0

)(
y1
y2

)
, (2.8)

where α, β , θ1, and θ2 are constants, with Fourier symbol corresponding to the general matrix per-
turbation problem

M(ξ) =
(

0 1
0 0

)
+ iξ

(
α ∗
0 β

)
− ξ2

(
θ1 ∗
γ θ2

)
+ O

(|ξ |3) (2.9)

for |ξ | � 1, associated with analytic bifurcation of eigenvalues of a 2 × 2 Jordan block. Problem (2.9)
models behavior of the key Jordan block in (2.4) associated with the translational mode and displace-
ment ψ as described in Remark 2.2, while (2.8) is a realization of the corresponding Fourier symbol
modeling expected low-frequency behavior of the linearized equations about the wave.

What then is the analogy to the Whitham system (1.2), and how can we see the correspondence
between analytic bifurcation of eigenvalues of M(ξ) and hyperbolic structure of (1.2)?

The answer comes from going beyond comparison of eigenvalues to consideration of the structure
of eigenprojections. Specifically, “balancing” by rescaling M(ξ) by the matrix T (ξ) = diag(iξ,1) yields
the equivalent system

M̃(ξ) = (iξ)−1T (ξ)M(ξ)T (ξ)−1 = iξ

(
α 1
γ β

)
− ξ2

(
θ1 0
0 θ2

)
+ O

(|ξ |3)
(generically) not involving a Jordan block, from which one may easily analyze spectrum of M(ξ)

bifurcating from the ξ = 0 state. In particular, one directly observes analyticity of the bifurcating

eigenvalues so long as the eigenvalues of
(

α 1
γ β

)
are simple.

Performing an analogous change of coordinates on (2.8), noting that multiplication by iξ corre-
sponds to differentiation in x, we obtain(

y1,x

y2

)
+

(
α 1
γ β

)(
y1,x

y2

)
=

(
θ1 0
0 θ2

)(
y1,x

y2

)
, (2.10)
t x xx
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which to first order is of hyperbolic form. Indeed, this can be recognized as analogous to the Whitham
averaged system, with variable y1,x corresponding to frequency Ω = ψx and y2 corresponding to
remaining variables M; see again Remark 2.2.

While the computations in this small example may seem trivial, they form the core of the pre-
ceding proof, which in turn is the foundation for all of our analysis to follow. Note that we do not in
the end need a detailed description of the Whitham system in our analysis, but only the basic structure/scaling
that it suggests in the spectral problem.

3. Linear estimates

Next, we use Lemma 2.1 along with the spectral stability assumption (D2) to obtain various point-
wise (in time) bounds on the solution operator eLt corresponding to the linearized problem (1.9). Our
strategy is to treat the high- and low-frequency parts of the full solution operator S(t) separately
since, as is typical, the low-frequency analysis is considerably more delicate than the corresponding
high-frequency analysis.

To this end, notice by standard spectral perturbation theory [16], the total eigenprojection P (ξ)

onto the eigenspace of Lξ associated with the eigenvalues λ j(ξ), j = 1, . . . ,n + 1, described in the
previous section is well defined and analytic in ξ for ξ sufficiently small, since these (by discreteness
of the spectra of Lξ ) are separated at ξ = 0 from the rest of the spectrum of L0. Moreover, by as-
sumption (D2) there exists an ε > 0 such that �λ j(ξ) � −θ |ξ |2 for 0 < |ξ | < 2ε. With this choice ε,
we introduce a smooth cutoff function φ(ξ) that is identically one for |ξ | � ε and identically zero for
|ξ | � 2ε. Moreover, we split the solution operator S(t) := eLt into a low-frequency part

S I (t)u0 :=
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·xφ(ξ)P (ξ)eLξ t û0(ξ, x1)dξ1 dξ̃ (3.1)

and the associated high-frequency part

SII(t)u0 :=
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·x(I − φ(ξ)P (ξ)
)
eLξ t û0(ξ, x1)dξ1 dξ̃ , (3.2)

by which one may readily check that S(t) = (S I (t) + SII(t)). As the low-frequency analysis is more
delicate, we begin by obtaining L2 → L p bounds on the operator SII(t).

3.1. High-frequency bounds

Using the fact that Lξ is a sectorial operator, and the spectral separation of λ j(ξ) from the remain-
ing spectra of Lξ , standard semi-group theory [8,24] implies the exponential decay bounds∥∥eLξ t(I − φ(ξ)P (ξ)

)
f
∥∥

L2([0,X]) � Ce−θt‖ f ‖L2([0,X]),∥∥eLξ t(I − φ(ξ)P (ξ)
)
∂m

x1
f
∥∥

L2([0,X]) � Ct− m
2 e−θt‖ f ‖L2([0,X]),∥∥∂m

x1
eLξ t(I − φ(ξ)P (ξ)

)
f
∥∥

L2([0,X]) � Ct− m
2 e−θt‖ f ‖L2([0,X]) (3.3)

for θ , C > 0, and 0 � m � K (K as in (H1)). Together with (1.14), these give immediately the following
estimates.

Proposition 3.1. (See [21, Proposition 6.1].) Under assumptions (H1)–(H3) and (D1)–(D2), for some θ , C > 0,
and all t > 0, 2 � p � ∞, 0 � l � K + 1, 0 � m � K ,
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∥∥∂ l
x SII(t) f

∥∥
L2(x),

∥∥SII(t)∂ l
x f

∥∥
L2(x) � Ct− l

2 e−θt‖ f ‖L2(x),∥∥∂m
x SII(t) f

∥∥
L p(x),

∥∥SII(t)∂m
x f

∥∥
L p(x) � Ct− d

2 ( 1
2 − 1

p )− m
2 e−θt‖ f ‖L2(x), (3.4)

where, again, derivatives in x ∈ R
d refer to total derivatives.

Remark 3.2. Notice since Proposition 3.1 concerns only the high-frequency solution operator SII , nei-
ther of the assumptions (D3′) or (D3) concerning the structure of the null-space of L0 are necessary
here.

Proof of Proposition 3.1. Using (1.14) and (3.3), the triangle inequality immediately implies the bound

∥∥∂ l
x SII(t) f

∥∥
L2(Rd)

�
π∫

−π

∫
Rd−1

∥∥∂ l
x

(
1 − φ(ξ)P (ξ)

)
eLξ t f̂ (ξ, ·)∥∥L2(x;[0,1]) dξ̃ dξ1

� Ct−l/2e−θt

π∫
−π

∫
Rd−1

∥∥ f̂ (ξ, ·)∥∥L2(x;[0,1]) dξ̃ dξ1

� Ct−l/2e−θt‖ f ‖L2(Rd),

which yields the first result.
Next, we prove the second inequality for derivatives in x1 with p = ∞ and m = 0. To this end,

notice that by applying (1.14) in x1 and the Hausdorff–Young inequality ‖h‖L∞(Rd−1) � ‖ĥ‖L1(Rd−1) in

the transverse coordinate x̃, where here ĥ denotes the standard Fourier transform in x̃, we have

∥∥SII(t) f
∥∥

L∞(x̃;L2(x1))
� Ct− d−1

4 e−θt‖ f ‖L2(Rd)

and ∥∥∂x1 SII(t) f
∥∥

L∞(x̃;L2(x1))
� Ct− d−1

4 − 1
2 e−θt‖ f ‖L2(Rd).

Thus, we have by Sobolev embedding

∥∥SII(t) f
∥∥

L∞(Rd)
� C

(∥∥SII(t) f
∥∥

L∞(x̃;L2(x1))
· ∥∥∂x1 SII(t) f

∥∥
L∞(x̃;L2(x1))

)1/2

� Ct−d/4e−θt‖ f ‖L2(Rd)

as claimed. Therefore, the result for derivatives in x1 with m = 0 and general 2 � p � ∞ follows by
L p-interpolation. A similar argument applies for 1 � m � K .

Finally, the second inequality for derivatives in x̃ with m = 0 follows from the inverse Fourier
transform, Eq. (3.2), and the large |ξ | bound

∥∥eLξ t f
∥∥

L2(x1)
� e−θ |ξ̃ |2t‖ f ‖L2(x1), |ξ | sufficiently large,

which easily follows from Parseval’s identity and the fact that Lξ is a relatively compact perturbation
of ∂2

x − |ξ |2. Thus, by the above estimate we have
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∥∥eLt∂x̃ f
∥∥

L2(x) � C
∥∥eLξ t |ξ̃ | f̂

∥∥
L2(x1,ξ)

� C sup
ξ

(
e−θ |ξ̃ |2t |ξ |)‖ f̂ ‖L2(x1,ξ)

� Ct−1/2e−θt‖ f ‖L2(x).

L∞ bounds follow by Hausdorff–Young inequality and Sobolev embedding as in the previous case,
whence the result for m = 0 and 2 � p � ∞ follows by L p-interpolation. A similar argument applies
for 1 � m � K . �
3.2. Low-frequency bounds

As noted above, analysis of the solution operator at low-frequency is considerably more compli-
cated than the (almost trivial) high-frequency bounds outlined above. To aid in our analysis then, we
denote by

G I (x, t; y) := S I (t)δy(x) (3.5)

the Green kernel associated with S I , and[
G I

ξ (x1, t; y1)
] := φ(ξ)P (ξ)eLξ t[δy1(x1)

]
(3.6)

the corresponding kernel appearing within the Bloch–Fourier representation of G I , where the brackets
on [Gξ ] and [δy] denote the periodic extensions of these functions onto the whole line. Our first step
is to provide a useful representation for G I which incorporates the spectral assumptions (D1)–(D3′).
Using Lemma 2.1 then, we have the following descriptions of G I and [G I

ξ ], in terms of the spectral
expansion of Lξ near |ξ | = 0.

Proposition 3.3. (See [21, Proposition 6.2].) Under assumptions (H1)–(H3) and (D1)–(D3′),

[
G I

ξ (x1, t; y1)
] = φ(ξ)

n+1∑
j=1

eλ j(ξ)tq j(ξ, x1)q̃ j(ξ, y1)
∗,

G I (x, t; y) =
(

1

2π

)d ∫
Rd

eiξ ·(x−y)
[
G I

ξ (x1, t; y1)
]

dξ

=
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)

n+1∑
j=1

eλ j(ξ)tq j(ξ, x1)q̃ j(ξ, y1)
∗ dξ, (3.7)

where ∗ denotes matrix adjoint, or complex conjugate transpose, q j(ξ, ·) and q̃ j(ξ, ·) are right and left eigen-
functions of Lξ associated with eigenvalues λ j(ξ) defined in (1.16), normalized so that 〈q̃ j,q j〉 ≡ 1.

Proof. Relation (3.7)(i) is immediate from the spectral decomposition of elliptic operators on finite
domains, and the fact that λ j are distinct for |ξ | > 0 sufficiently small, by (H3). Substituting (3.5) into
(3.1) and computing

δ̂y(ξ, x1) =
∑

e2π ikx1 δ̂y(ξ + 2πke1) =
∑

e2π ikx1 e−iξ ·y−2π iky1 = e−iξ ·y[δy1(x1)
]
, (3.8)
k k
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where the second and third equalities follow from the fact that the Fourier transform (either contin-
uous or discrete) of the delta-function is unity, we obtain

G I (x, t; y) =
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·xφP (ξ)eLξ t δ̂y(ξ, x1)dξ

=
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·(x−y)φP (ξ)eLξ t[δy1(x1)
]

dξ,

yielding (3.7)(ii) by (3.6) and the fact that φ is supported on [−π,π ]. �
We now state our main result for this section, which utilizes the spectral representation of G I and

[G I
ξ ] described in Proposition 3.3 to factor the low-frequency Green kernel into a leading order piece

(corresponding to translations) plus a faster decaying residual. Underlying this decomposition is the
fundamental relation

G(x, t; y) =
(

1

2π

)d π∫
−π

∫
Rd−1

eiξ ·(x−y)
[
Gξ (x1, t; y1)

]
dξ, (3.9)

which serves as the crux of the low-frequency analysis in the present context as well as that of [23,
13].

Proposition 3.4. Under assumptions (H1)–(H3) and (D1)–(D3′), the low-frequency Green function G I (x, t; y)

of (3.5) can be decomposed as G I = E + G̃ I with

E = ū′(x)e(x, t; y), (3.10)

where, for some C > 0, all t > 0,

sup
y

∥∥G̃ I (·, t, ; y)
∥∥

L p(x) � C(1 + t)−
d
2 (1− 1

p )
,

sup
y

∥∥∂r
y G̃ I (·, t, ; y)

∥∥
L p(x), sup

y

∥∥∂r
t G̃ I (·, t, ; y)

∥∥
L p(x) � C(1 + t)−

d
2 (1− 1

p )− 1
2 (3.11)

for p � 2, 1 � r � 2. Moreover, for p � 2, 0 � j, l, j + l � K , 1 � r � 2 we have

sup
y

∥∥∂
j

x ∂ l
t∂

r
ye(·, t, ; y)

∥∥
L p(x) � C(1 + t)−

d
2 (1− 1

p )− ( j+l)
2 − 1

2 (3.12)

and similarly, for 0 � j, l, j + l � K ,

sup
y

∥∥∂̃
j

x ∂ l
te(·, t, ; y)

∥∥
L p(x) � C(1 + t)−

d
2 (1− 1

p )− ( j+l)
2 (3.13)

provided that p � 2 and j + l � 1 or d � 3, or p = ∞ and d � 1. Moreover, e(x, t; y) ≡ 0 for t � 1.

Remark 3.5. In Proposition 3.4, and throughout the remainder of the paper, derivatives in y ∈ R
d refer

to total derivatives, just as with the variable x ∈ R
d .
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Proof of Proposition 3.4. In the degenerate case (D3) that 0 is a semisimple eigenvalue of L0, these
estimates have been established in [21, Proposition 6.3] and [13, Proposition 2.4, Lemma 2.7., Corol-
lary 3.1]. Without loss of generality, therefore, we hereafter assume that 0 is a non-semisimple eigen-
value of L0, i.e. that (D3′) holds but (D3) does not, with the consequences described in Lemma 2.1. In
particular, recalling that

G I (x, t; y) =
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)

n+1∑
j=1

eλ j(ξ)tq j(ξ, x1)q̃ j(ξ, y1)
∗ dξ

=
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)

n+1∑
j,k,l=1

eλ j(ξ)tβ j,k vk(ξ, x1)β̃ j,l ṽl(ξ, y1)
∗ dξ, (3.14)

the fact that β j,n = O (|ξ |−1) suggests the k = n terms (corresponding to translation) dominate the
low-frequency Green kernel. With this motivation, we define

ẽ(x, t; y) =
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)
∑

j,l

eλ j(ξ)tβ j,nβ̃ j,l ṽl(ξ, y1)
∗ dξ (3.15)

so that

G I (x, t; y) − ū′(x1)ẽ(x, t; y)

=
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)
∑

j,k =n,l

eλ j(ξ)tβ j,kβ̃ j,l vk(ξ, x1)ṽl(ξ, y1)
∗ dξ

+
(

1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)
∑

j,l

eλ j(ξ)tβ j,nβ̃ j,l
(

vn(ξ, x1) − ū′(x1)
)

ṽl(ξ, y1)
∗ dξ, (3.16)

where, by analyticity of vn , vn(ξ, x1) − ū′(x1) = O (|ξ |), and so, by Lemma 2.1,

β j,nβ̃ j,l
(

vn(ξ, x1) − ū′(x1)
)

ṽl(ξ, y1)
∗ = O (1) (3.17)

and

β j,kβ̃ j,l vk(ξ, x1)ṽl(ξ, y1)
∗ = O (1) for k = n. (3.18)

Further more, note that ṽl is identically constant unless l = n, in which case β̃ jl = O (|ξ |) by
Lemma 2.1; hence

∂y1

(
β j,nβ̃ j,l

(
vn(ξ, x1) − ū′(x1)

)
ṽl(ξ, y1)

∗) = O
(|ξ |) (3.19)

and

∂y1

(
β j,kβ̃ j,l vk(ξ, x1)ṽl(ξ, y1)

∗) = O
(|ξ |) for k = n. (3.20)
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From representation (3.16), bounds (3.17)–(3.18), and assumption (D2), we obtain by the triangle
inequality

∥∥G̃1(·, t; ·)∥∥L∞(x,y)
= ∥∥G I − ū′ẽ

∥∥
L∞(x,y)

� C
∥∥e−θ |ξ |2tφ(ξ)

∥∥
L1(ξ)

� C(1 + t)−
d
2 . (3.21)

Derivative bounds follow similarly, since x1-derivatives falling on v jk are harmless, whereas, by (3.19)–
(3.20), y1- or t-derivatives falling on ṽ jl or on eiξ ·(x−y) bring down a factor of |ξ | improving the decay
rate by factor (1 + t)−1/2. (Note that |ξ | is bounded because of the cutoff function φ, so there is no
singularity at t = 0.)

To obtain the corresponding bounds for p = 2, we note that (3.14) may be viewed itself as a Bloch–
Fourier decomposition with respect to variable z := x − y, with y appearing as a parameter. Recalling
(1.14), we may thus estimate

sup
y

∥∥G I (·, t; y) − ū′ẽ(·, t; y)
∥∥

L2(x)

� C
∑

j,k =n,l

sup
y

∥∥φ(ξ)eλ j(ξ)t vk(·, z1)ṽ∗
l (·, y1)ṽl(·, y1)

∗∥∥
L2(ξ ;L2(z1∈[0,X]))

+ C
∑

j,l

sup
y

∥∥∥∥φ(ξ)eλ j(ξ)t
(

vn(·, x1) − ū′(x1)

| · |
)

ṽl(·, y1)
∗
∥∥∥∥

L2(ξ ;L2(z1∈[0,X]))

� C
∑

j,k =n,l

sup
y

∥∥φ(ξ)e−θ |ξ |2t
∥∥

L2(ξ)
sup

ξ

∥∥vk(·, z1)
∥∥

L2(0,X)

∥∥ṽl(·, y1)
∗∥∥

L∞(0,X)

+ C
∑

j,l

sup
y

∥∥φ(ξ)e−θ |ξ |2t
∥∥

L2(ξ)
sup

ξ

∥∥∥∥(
vn(ξ, x1) − ū′(x1)

|ξ |
)∥∥∥∥

L2(0,X)

∥∥ṽl(·, y1)
∗∥∥

L∞(0,X)

� C(1 + t)−
d
4 , (3.22)

where we have used in a crucial way the boundedness of ṽl in L∞ ,8 and also the boundedness of(
vn(ξ, x1) − ū′(x1)

|ξ |
)

∼ ∂|ξ |vn(ω; r)

in L2, where 0 < r < |ξ |. Derivative bounds follow similarly as above, noting that y- or t-derivatives
bring down a factor |ξ |, while x-derivatives are harmless, to obtain an additional factor of (1 + t)−1/2

decay. Finally, bounds for 2 � p � ∞ follow by L p-interpolation.
Defining

e(x, t; y) := χ(t)ẽ(x, t; y), (3.23)

where χ is a smooth cutoff function such that χ(t) ≡ 1 for t � 2 and χ(t) ≡ 0 for t � 1, and setting
G̃ I := G I − ū′(x1)e(x, t; y), we readily obtain the estimates (3.11).

8 This is clear for ξ = 0, since v j are linear combinations of genuine and generalized eigenfunctions, which are solutions of
the homogeneous or inhomogeneous eigenvalue ODE. More generally, note that resolvent of Lξ − γ gains one derivative, hence
the total eigenprojection, as a contour integral of the resolvent, does too—now, use the one-dimensional Sobolev inequality for
periodic boundary conditions to bound the L∞ difference from the mean by the (bounded) H1 norm, then bound the mean by
the L1 norm, which is controlled by the L2 norm.
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Finally, recalling, by Lemma 2.1, that ṽl ≡ const for l = n while β̃ j,n = O (|ξ |), we have

∂y1

(
β j,nβ̃ j,l ṽl(ξ, y1)

∗) = o
(|ξ |).

Bounds (3.12) thus follow from (3.15) by the argument used to prove (3.11), together with the obser-
vation that x- or t-derivatives bring down factors of |ξ |. Bounds (3.13) follow similarly for j + l � 1,
in which case the integrand on the right-hand side of (3.15) (now differentiated in x and/or t) is
Lebesgue integrable. They follow likewise for p = ∞, d � 2 and j + l � 0.

In the critical case d = 1, p = ∞, and j = l = 0, (2.1) becomes a simpler one-parameter perturba-
tion in ξ , and eigenvalues become analytic in ξ and not just (|ξ |,ω). Without loss of generality taking
t � 1, expanding

λ j(ξ) = −iξa j − b jξ
2 + O

(|ξ |3)
and setting λ̌ j(ξ) := −iξa j − b jξ

2, we may write ẽ(x, y; y) in (3.15) as

(
1

2π

)d ∫
Rd

eiξ ·(x−y)

n+1∑
j=1, l =n

β̌ j,n(0)β̃ j,l(0)ṽl(0, y)∗ξ−1eλ̌ j(ξ)t dξ

=
(

1

2π

)d

P.V.
∫
Rd

eiξ ·(x−y)
n+1∑

j=1, l =n

β̌ j,n(0)β̃ j,l(0)ṽl(0, y)∗ξ−1eλ̌ j(ξ)t dξ

=
n+1∑

j=1, l =n

β̌ j,n(0)β̃ j,l(0)ṽl(0, y)∗
(

1

2π

)d

P.V.
∫
Rd

eiξ ·(x−y)ξ−1eλ̌ j(ξ)t dξ, (3.24)

where β̌ j,n(0) := lim|ξ |→0(|ξ |β j,n(ξ)), plus a negligible error term

(
1

2π

)d ∫
Rd

eiξ ·(x−y)φ(ξ)O
(
e−θ |ξ |2t)dξ,

for which the integrand is Lebesgue integrable, hence, by the previous argument, obeys the bound for
j + l = 1.

By (D2), we have a j real and �b j > 0. Moreover, the operator L, since real-valued, has spectrum
with complex conjugate symmetry, hence b j is real as well. Observing that the principal value integral(

1

2π

)
P.V.

∫
R

eiξ ·(x−y)ξ−1eλ̌ j(ξ)t dξ

(convergent, by the alternating series test) is an antiderivative in x of the inverse Fourier transform

(
1

2π

)∫
R

eiξ ·(x−y)eλ̌ j(ξ)t dξ = e−(x−y−a jt)
2/4b jt√

4πb jt
,

a Gaussian, we find that the principal part (3.24) is a sum of error-functions, hence bounded in L∞
as claimed. This verifies bound (3.13) in the final case d = 1, j = l = 0, completing the proof. �



1230 M.A. Johnson, K. Zumbrun / J. Differential Equations 249 (2010) 1213–1240
Remark 3.6. Underlying Proposition 3.4 are the estimates ‖u‖L∞(x) � ‖û‖L1(ξ ;L∞(0,X)) and ‖u‖L2(x) �
‖û‖L2(ξ ;L2(0,X)) , both instances of the generalized Hausdorff–Young inequality9

‖u‖L p(x) � ‖û‖Lq(ξ,L p(0,X)) for q � 2 � p and
1

p
+ 1

q
= 1. (3.25)

3.3. Final linearized estimates

Finally, we combine the high- and low-frequency estimates from the previous sections in order to
obtain estimates on the full Green kernel G(x, t; y). In particular, we obtain a decomposition of the
Green kernel G analogous to that given in Proposition 3.4 on the low-frequency Green kernel G I .

Corollary 3.7. Under assumptions (H1)–(H3), (D1)–(D3′), the Green function G(x, t; y) of (1.9) decomposes
as G = E + G̃ ,

E = ū′(x)e(x, t; y), (3.26)

where, for some C > 0, all t > 0, 1 � q � 2 � p � ∞, 0 � j,k, l, j + l � K , and 1 � r � 2 we have the
estimates ∥∥∥∥∥

+∞∫
−∞

G̃(·, t; y) f (y)dy

∥∥∥∥∥
L p(x)

� C(1 + t)−
d
2 (1/q−1/2)t− d

2 (1/2−1/p)‖ f ‖Lq∩L2 ,

∥∥∥∥∥
+∞∫

−∞
∂r

y G̃(·, t; y) f (y)dy

∥∥∥∥∥
L p(x)

� C(1 + t)−
d
2 (1/q−1/2)− 1

2 + r
2 t− d

2 (1/2−1/p)− r
2 ‖ f ‖Lq∩L2 ,

∥∥∥∥∥
+∞∫

−∞
∂r

t G̃(·, t; y) f (y)dy

∥∥∥∥∥
L p(x)

� C(1 + t)−
d
2 (1/q−1/2)− 1

2 +rt− d
2 (1/2−1/p)−r‖ f ‖Lq∩L2 , (3.27)

∥∥∥∥∥
+∞∫

−∞
∂

j
x ∂k

t e(·, t; y) f (y)dy

∥∥∥∥∥
L p

� (1 + t)−
d
2 (1/q−1/p)− ( j+k)

2 + 1
2 ‖ f ‖Lq ,

∥∥∥∥∥
+∞∫

−∞
∂

j
x ∂k

t ∂r
ye(·, t; y) f (y)dy

∥∥∥∥∥
L p

� (1 + t)−
d
2 (1/q−1/p)− ( j+k)

2 ‖ f ‖Lq . (3.28)

Moreover, e(x, t; y) ≡ 0 for t � 1.

Proof. We prove only the bounds (3.27) here, as the corresponding proofs of (3.28) follow analo-
gously. To begin, we consider the special case q = 1. From (3.11) and the triangle inequality we obtain∥∥∥∥∫

Rd

G̃ I (·, t; y) f (y)dy

∥∥∥∥
L p(x)

�
∫
Rd

sup
y

∥∥G̃ I (·, t; y)
∥∥

L p

∣∣ f (y)
∣∣dy � C(1 + t)−

d
2 (1−1/p)‖ f ‖L1

9 Estimate 3.25 follows from the extremal cases p = 2 and ∞ by Thorin’s proof of the Riesz–Thorin Interpolation Theorem
adapted to the mixed norm ‖ · ‖Lq(ξ ;Lp (0,X)); see Appendix A.
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and similarly for y- and t-derivative estimates, which, together with (3.4), yield (3.27) by considering
0 � t � 1 and t � 1 separately.

In the case q = 2, we see from (3.17)–(3.18) and the analyticity of v j , ṽ j on the variable ξ , we
have boundedness from L2([0, X]) → L2([0, X]) of the projection-type operators

f → β j,nβ̃ j,l
(

vn(ξ, x1) − ū′(x1)
)〈ṽl, f 〉 (3.29)

and

f → β j,kβ̃ j,l vk(ξ, x1)〈ṽl, f 〉 for k = n, (3.30)

uniformly with respect to ξ , from which we obtain by (3.16), (3.23), and (1.14) the bound

∥∥∥∥∥
+∞∫

−∞
G̃ I (x, t; y) f (y)dy

∥∥∥∥∥
L2(x)

� C‖ f ‖L2(x) (3.31)

for all t � 0, yielding together with (3.4) the result (3.27) for p = 2, r = 1. Similarly, by boundedness
of ṽ j , v j , ū′ in all L p[0, X], we have

∥∥eλ j(ξ)tβ j,nβ̃ j,l
(

vn(ξ, x1) − ū′(x1)
)〈ṽl, f̂ 〉∥∥L∞(x1)

� Ce−θ |ξ |2t
∥∥ f̂ (ξ, ·)∥∥L2(x1)

,∥∥eλ j(ξ)tβ j,kβ̃ j,l vk(ξ, x1)〈ṽl, f̂ 〉∥∥L∞(x1)
� Ce−θ |ξ |2t

∥∥ f̂ (ξ, ·)∥∥L2(x1)
for k = n,

C, θ > 0, yielding by definitions (3.16), (3.23) the bound

∥∥∥∥∥
+∞∫

−∞
G̃ I (x, t; y) f (y)dy

∥∥∥∥∥
L∞(x)

�
(

1

2π

)d π∫
−π

∫
Rd−1

Cφ(ξ)e−θ |ξ |2t
∥∥ f̂ (ξ, ·)∥∥L2(x1)

dξ1 dξ̃

� C
∥∥φ(ξ)e−θ |ξ |2t

∥∥
L2(ξ)

‖ f̂ ‖L2(ξ,x1)

= C(1 + t)−
d
4 ‖ f ‖L2([0,X]), (3.32)

hence giving the result for p = ∞, r = 0. The result for r = 0 and general 2 � p � ∞ then follows by
L p-interpolation between p = 2 and p = ∞. Derivative bounds 1 � r � 2 follow by similar arguments,
using (3.19)–(3.20). Bounds (3.28) follow similarly.

Finally, using Riesz–Thorin interpolation between the cases q = 1 and q = 2 yields the bounds
asserted in the general case 1 � q � 2, 2 � p � ∞. �
Remark 3.8. The bounds on G̃ , et , ex may be recognized as the standard diffusive bounds satisfied for
the heat equation [30]. For dimension d = 1, it may be shown using pointwise techniques as in [23]
that the bounds of Corollary 3.7 extend to all 1 � q � p � ∞.

We note a striking analogy between the Green function decomposition of Corollary 3.7 and that
of [17,32] in the viscous shock case; compare [30, Proposition 3.3].
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4. Nonlinear stability in dimension one

With the bounds of Corollary 3.7, nonlinear stability follows by exactly the same argument as
in [13], included here for completeness. We carry out the nonlinear stability analysis only in the most
difficult, one-dimensional, case. The extension to the multi-dimensional case is straightforward [13,
21]. (Recall that the nonlinear iteration is easier to close in multi-dimensions, since the linearized
behavior is faster decaying [21,13,26,25,27].) Hereafter, take x ∈ R

1, dropping the indices on f j and
x j and writing ut + f (u)x = uxx .

4.1. Nonlinear perturbation equations

Given a solution ũ(x, t) of (1.5), define the nonlinear perturbation variable

v = u − ū = ũ
(
x + ψ(x, t)

) − ū(x), (4.1)

where

u(x, t) := ũ
(
x + ψ(x, t)

)
(4.2)

and ψ : R × R → R is to be chosen later.

Lemma 4.1. For v, u as in (4.1), (4.2),

ut + f (u)x − uxx = (∂t − L)ū′(x1)ψ(x, t) + ∂x R + (
∂t + ∂2

x

)
S, (4.3)

where

R := vψt + vψxx + (ūx + vx)
ψ2

x

1 + ψx
= O

(
|v|(|ψt | + |ψxx|

) +
( |ūx| + |vx|

1 − |ψx|
)

|ψx|2
)

and

S := −vψx = O
(|v||ψx|

)
.

Proof. To begin, notice from the definition of u in (4.2) we have by a straightforward computation

ut(x, t) = ũx
(
x + ψ(x, t), t

)
ψt(x, t) + ũt(x + ψ, t),

f
(
u(x, t)

)
x = df

(
ũ
(
x + ψ(x, t), t

))
ũx(x + ψ, t) · (1 + ψx(x, t)

)
and

uxx(x, t) = (
ũx

(
x + ψ(x, t), t

) · (1 + ψx(x, t)
))

x

= ũxx
(
x + ψ(x, t), t

) · (1 + ψx(x, t)
) + (

ũx
(
x + ψ(x, t), t

) · ψx(x, t)
)

x.

Using the fact that ũt + df (ũ)ũx − ũxx = 0, it follows that

ut + f (u)x − uxx = ũxψt + df (ũ)ũxψx − ũxxψx − (ũxψx)x

= ũxψt − ũtψx − (ũxψx)x, (4.4)
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where it is understood that derivatives of ũ appearing on the right-hand side are evaluated at (x +
ψ(x, t), t). Moreover, by another direct calculation, using the fact that L(ū′(x)) = 0 by translation
invariance, we have

(∂t − L)ū′(x)ψ = ūxψt − ūtψx − (ūxψx)x.

Subtracting, and using the facts that, by differentiation of (ū + v)(x, t) = ũ(x + ψ, t),

ūx + vx = ũx(1 + ψx),

ūt + vt = ũt + ũxψt, (4.5)

so that

ũx − ūx − vx = −(ūx + vx)
ψx

1 + ψx
,

ũt − ūt − vt = −(ūx + vx)
ψt

1 + ψx
, (4.6)

we obtain

ut + f (u)x − uxx = (∂t − L)ū′(x)ψ + vxψt − vtψx − (vxψx)x +
(

(ūx + vx)
ψ2

x

1 + ψx

)
x
,

yielding (4.3) by vxψt − vtψx = (vψt)x − (vψx)t and (vxψx)x = (vψx)xx − (vψxx)x . �
Corollary 4.2. The nonlinear residual v defined in (4.1) satisfies

(∂t − L)v = (∂t − L)ū′(x1)ψ − Q x + Rx + (
∂t + ∂2

x

)
S, (4.7)

where

Q := f
(
ũ
(
x + ψ(x, t), t

)) − f
(
ū(x)

) − df
(
ū(x)

)
v = O

(|v|2), (4.8)

R := vψt + vψxx + (ūx + vx)
ψ2

x

1 + ψx
, (4.9)

and

S := −vψx = O
(|v||ψx|

)
. (4.10)

Proof. Straightforward Taylor expansion comparing (4.3) and ūt + f (ū)x − ūxx = 0. �
Remark 4.3. In the case ψ(x, t) = ψ(t), the term (∂t − L)ū′(x1)ψ(t) reduces to the term ψ̇(t)ū′(x1)

appearing in the shock wave case [33,32,30,19,18]. The fact that the shift function ψ must be chosen
to be x-dependent is a reflection of the periodic boundary conditions imposed by the problem. Indeed,
in the shock wave case the exponential decay of ū′(x1) allows one to consider the simplified case of
an x-independent phase shift. In the periodic case considered here, however, one must proceed with
more care.
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4.2. Cancellation estimate

Our strategy in writing (4.7) is motivated by the following basic cancellation principle.

Proposition 4.4. (See [9, Lemma 5.5].) For any f (y, s) ∈ L p ∩ C2 with f (y,0) ≡ 0, there holds

t∫
0

∫
G(x, t − s; y)(∂s − L y) f (y, s)dy ds = f (x, t). (4.11)

Proof. Integrating the left-hand side by parts, we obtain

∫
G(x,0; y) f (y, t)dy −

∫
G(x, t; y) f (y,0)dy +

t∫
0

∫
(∂t − L y)

∗G(x, t − s; y) f (y, s)dy ds.

(4.12)

Noting that, by duality,

(∂t − L y)
∗G(x, t − s; y) = δ(x − y)δ(t − s),

δ(·) here denoting the Dirac delta-distribution, we find that the third term on the right-hand side
vanishes in (4.12), while, because G(x,0; y) = δ(x − y), the first term is simply f (x, t). The second
term vanishes by f (y,0) ≡ 0. �
Remark 4.5. Proposition 4.4 amounts, by the principle of linear superposition, to the evident state-
ment that the solution of (∂t − L)v = (∂t − L) f with v|t=0 = 0 is v ≡ f .

4.3. Nonlinear damping estimate

The following technical result is a key ingredient in our forthcoming nonlinear stability analysis.
Recalling that ψ(x, t) = 0 for 0 � t � 1, we may apply Duhamel’s principle to (4.7) and use Proposi-
tion 4.4 to obtain the (implicit) integral representation

v(x, t) =
∞∫

−∞
G(x, t; y)v0(y)dy

+
t∫

0

∞∫
−∞

G(x, t − s; y)(−Q y + R y + St + S yy)(y, s)dy ds + ψ(x, t)ū′(x) (4.13)

of the nonlinear residual v defined in (4.1). In particular, the loss of derivatives in (4.13) presents
a formidable problem and requires delicate analysis in order to close any type of nonlinear iteration
scheme. The next proposition is an adaptation of the methods of [18,31], which allows derivatives lost
in the linearized level to be regained at the nonlinear level. While not strictly necessary in the present,
strictly parabolic case, this is a convenience which allows the analysis to go through in straightforward
fashion (for partially parabolic systems, it appears to be essential [19,18,31,32]).
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Proposition 4.6. Let v(·,0) ∈ H K (K as in (H1)), and suppose that for 0 � t � T , the H K norm of v(·, t) and
the H K norms of ψt(·, t) and ψx(·, t) remain bounded by a sufficiently small constant. There are then constants
θ1,2 > 0 so that, for all 0 � t � T ,

∥∥v(·, t)
∥∥2

H K � Ce−θ1t
∥∥v(·,0)

∥∥2
H K + C

t∫
0

e−θ2(t−s)(∥∥v(·, s)
∥∥2

L2 + ∥∥(ψt,ψx)(·, s)
∥∥2

H K

)
ds. (4.14)

Proof. Subtracting from Eq. (4.4) for u the equation for ū, we may write the nonlinear perturbation
equation as

vt + (
df (ū)v

)
x − vxx = Q (v)x + ũxψt − ũtψx − (ũxψx)x, (4.15)

where it is understood that derivatives of ũ appearing on the right-hand side are evaluated at (x +
ψ(x, t), t). Using (4.6) to replace ũx and ũt respectively by ūx + vx − (ūx + vx)

ψx
1+ψx

and ūt + vt − (ūx +
vx)

ψt
1+ψx

, and moving the resulting vtψx term to the left-hand side of (4.15), we obtain

(1 + ψx)vt − vxx = −(
df (ū)v

)
x + Q (v)x + ūxψt

− (
(ūx + vx)ψx

)
x +

(
(ūx + vx)

ψ2
x

1 + ψx

)
x
. (4.16)

Taking the L2 inner product in x of
∑K

j=0
∂

2 j
x v

1+ψx
against (4.16), integrating by parts, and rearranging

the resulting terms, we arrive at the inequality

∂t
∥∥v(·, t)

∥∥2
H K � −θ

∥∥∂ K+1
x v(·, t)

∥∥2
L2 + C

(∥∥v(·, t)
∥∥2

H K + ∥∥(ψt,ψx)(·, t)
∥∥2

H K

)
,

for some θ > 0, C > 0, so long as ‖ũ(·, t)‖H K remains bounded, and ‖v(·, t)‖H K and ‖(ψt ,ψx)(·, t)‖H K

remain sufficiently small. Using the Sobolev interpolation ‖v(·, t)‖2
H K � ‖∂ K+1

x v(·, t)‖2
L2 + C̃‖v(·, t)‖2

L2

for C̃ > 0 sufficiently large, we obtain

∂t
∥∥v(·, t)

∥∥2
H K � −θ̃

∥∥v(·, t)
∥∥2

H K + C
(∥∥v(·, t)

∥∥2
L2 + ∥∥(ψt,ψx)(·, t)

∥∥2
H K

)
from which (4.14) follows by Gronwall’s inequality. �
4.4. Integral representation/ψ-evolution scheme

Recalling the Duhamel representation (4.13) of the perturbation v we follow [33,32,19,17] and
defining ψ implicitly as

ψ(x, t) = −
∞∫

−∞
e(x, t; y)u0(y)dy

−
t∫

0

+∞∫
−∞

e(x, t − s; y)(−Q y + R y + St + S yy)(y, s)dy ds, (4.17)

where e is defined as in (3.26). Substituting in (4.13) the decomposition G = ū′(x)e + G̃ of Corol-
lary 3.7, we obtain the (implicit) integral representation



1236 M.A. Johnson, K. Zumbrun / J. Differential Equations 249 (2010) 1213–1240
v(x, t) =
∞∫

−∞
G̃(x, t; y)v0(y)dy

+
t∫

0

∞∫
−∞

G̃(x, t − s; y)(−Q y + R y + St + S yy)(y, s)dy ds, (4.18)

for the nonlinear residual v and, differentiating (4.17) with respect to x and t , and recalling that
e(x, s; y) ≡ 0 for s � 1,

∂
j

t ∂k
x ψ(x, t) = −

∞∫
−∞

∂
j

t ∂k
x e(x, t; y)u0(y)dy

−
t∫

0

+∞∫
−∞

∂
j

t ∂k
x e(x, t − s; y)(−Q y + R y + St + S yy)(y, s)dy ds. (4.19)

Eqs. (4.18), (4.19) together form a complete system in the variables (v, ∂
j

t ψ,∂k
x ψ), 0 � j � 1, 0 �

k � K , from the solution of which we may afterward recover the shift ψ via (4.17). From the original
differential equation (4.7) together with (4.19), we readily obtain short-time existence and continuity
with respect to t of solutions (v,ψt ,ψx) ∈ H K by a standard contraction-mapping argument based
on (4.14), (4.17), and (3.28).

4.5. Nonlinear iteration

Associated with the solution (u,ψt ,ψx) of integral system (4.18)–(4.19), define

ζ(t) := sup
0�s�t

∥∥(v,ψt ,ψx)(·, s)
∥∥

H K (1 + s)1/4. (4.20)

By short-time H K existence theory, ‖(v,ψt ,ψx)‖H K is continuous so long as it remains small, hence
ζ is a continuous function of t so long as it remains small. We now use the linearized estimates of
Section 3 to prove that if ζ is initially small then it must remain so.

Lemma 4.7. For all t � 0 for which ζ(t) is finite, some C > 0, and E0 := ‖v(·,0)‖L1∩H K ,

ζ(t) � C
(

E0 + ζ(t)2). (4.21)

Proof. By (4.9)–(4.10) and definition (4.20),

∥∥(Q , R, S)(·, t)
∥∥

L1∩L2 �
∥∥(v, vx,ψt,ψx)(·, t)

∥∥2
L1 + ∥∥(v, vx,ψt,ψx)(·, t)

∥∥2
L2

� Cζ(t)2(1 + t)−
1
2 , (4.22)

so long as |ψx| � ‖ψx‖H K � ζ(t) remains small, and likewise (using the equation to bound
t-derivatives in terms of x-derivatives of up to two orders)

∥∥(
∂t + ∂2

x

)
S(·, t)

∥∥
1 2 �

∥∥(v,ψx)(·, t)
∥∥2

1,1 + ∥∥(v,ψx)(·, t)
∥∥2

2 � Cζ(t)2(1 + t)−
1
2 . (4.23)
L ∩L W H
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Applying Corollary 3.7 with q = 1, d = 1 to representations (4.18)–(4.19), we obtain for any 2 �
p < ∞10

∥∥v(·, t)
∥∥

L p(x) � C(1 + t)−
1
2 (1−1/p)E0

+ Cζ(t)2

t∫
0

(1 + t − s)−
1
4 (t − s)−

1
2 (1/2−1/p)− 1

2 (1 + s)−
1
2 ds

� C
(

E0 + ζ(t)2)(1 + t)−
1
2 (1−1/p) (4.24)

and

∥∥(ψt,ψx)(·, t)
∥∥

W K ,p � C(1 + t)−
1
2 (1−1/p)E0 + Cζ(t)2

t∫
0

(1 + t − s)−
1
2 (1−1/p)−1/2(1 + s)−

1
2 ds

� C
(

E0 + ζ(t)2)(1 + t)−
1
2 (1−1/p). (4.25)

Now, by the nonlinear damping estimate given in Proposition 4.6 the size of v in H K (Rd) can be
controlled by its size in L2 together with H K estimates on the shift function ψ . In particular, we have
that for some positive constants θ1 and θ2

∥∥v(·, t)
∥∥2

H K (Rd)
� Ce−θ1t E2

0 + C
(

E0 + ζ(t)2)2
t∫

0

e−θ2(t−s)(1 + s)−1/2

� Ce−θ1t E2
0 + C

(
E0 + ζ(t)2)2

(1 + t)−1/2

� C
(

E0 + ζ(t)
)2

(1 + t)−1/2.

Combining with (4.25) in the case p = 2 and recalling the definition of ζ(t) completes the proof. �
Proof of Theorem 1.3. Recalling that ζ(t) is continuous so long as it remains small, it follows by (4.7)
and continuous induction that η(t) � 2Cη0 for t � 0, if η0 < 1/4C , yielding by (4.20) the result (1.17)
for p = 2. Similarly, using (4.24)–(4.25), we obtain (1.17) for 2 � p � p∗ for any p∗ < ∞, with uniform
constant C . Taking p∗ > 4 and estimating

‖Q ‖L2 ,‖R‖L2 ,‖S‖L2(t) �
∥∥(v,ψt,ψx)

∥∥2
L4 � C E0(1 + t)−

3
4

in place of the weaker (4.22), then applying Corollary 3.7 with q = 2, d = 1, we obtain finally (1.17)
for 2 � p � ∞, by a computation similar to (4.24)–(4.25); we omit the details of this final bootstrap
argument.

Finally, notice that by (4.1) we have

ũ(x, t) − ū(x) = v
(
x − ψ(x, t), t

) + (
ū
(
x − ψ(x, t)

) − ū(x)
)

and hence the size of ũ(x, t)− ū(x) in L p or H K is controlled by the corresponding size of the function
(v + ψ)(x, t) in the respective norm. Therefore, using (4.24) along with the estimate

10 Notice the following bounds in the case p = ∞ do not necessarily hold due to a term of size log(1 + t) appearing from
integrating over [ t

2 , t].
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∥∥ψ(t)
∥∥

L p � C E0(1 + t)
1

2p + Cζ(t)2

t∫
0

(1 + t − s)−
1
2 (1−1/p)(1 + s)−

1
2 ds

� C(1 + t)
1

2p
(

E0 + ζ(t)2), (4.26)

which follows by (3.28) with q = d = 1 for 1 � p � ∞, we obtain the estimate (1.18). This yields
stability for ‖u − ū‖L1∩H K |t=0 sufficiently small, as described in the final line of the theorem. �
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Appendix A. Riesz–Thorin interpolation in Bloch norms

For functions h(ξ, x1), periodic in x1 with period X , define the Bloch norm ‖ · ‖p,q by∥∥h(ξ, x)
∥∥

p,q := ‖h‖Lq(ξ ;L p(0,X)), (A.1)

and B p,q to be the space of x1-periodic functions with finite Bloch norm. Then, we have the following
generalization of the Riesz–Thorin Interpolation Theorem.

Proposition A.1. Let T be a linear operator that is bounded from B p0,q0 to Lr0 with norm N0 and from B p1,q1

to Lr1 with norm N1 , where p0,q0, r0 are between 1 and ∞, and let(
1

p
,

1

q
,

1

r

)
= θ

(
1

p1
,

1

q1
,

1

r1

)
+ (1 − θ)

(
1

p0
,

1

q0
,

1

r0

)
(A.2)

for 0 � θ � 1. Then, T is bounded from B p,q to Lr with norm N � Nθ
0 N1−θ

1 .

Proof. For simplicity, take r < ∞; the case r = ∞ may be treated by a slight modification. Without
loss of generality, take h(ξ, x1) = φ(ξ) f (ξ, x1), where ‖ f (ξ, ·)‖Lp(0,X) ≡ 1, and ‖φ‖Lq = 1. By duality, it
is sufficient to show that

∫ |T h|(x)|g|(x)dx � Nθ
0 N1−θ

1 for all g such that ‖g‖Lr′ = 1, where 1
r + 1

r′ = 1.
Accordingly, define the analytic function

F (z) :=
∫

(T hz)(x)gz(x)dx, (A.3)

where

hz := | f |p(z)/p(
f /| f |)|φ|q(z)/q(φ/|φ|), gz := |g|r′(z)/r′(

g/|g|), (A.4)

with (
1

p
,

1

q
,

1

r
,

1

r′

)
(z) := z

(
1

p1
,

1

q1
,

1

r1
,

1

r′
1

)
+ (1 − z)

(
1

p0
,

1

q0
,

1

r0
,

1

r′
0

)
. (A.5)

Evidently, ‖hz‖p(z),q(z) = ‖h‖p(z)
p,q ≡ 1, ‖gz‖r′(z) = ‖g‖r′(z)

r′ ≡ 1, by assumption. Thus, for �z = 0,∣∣F (z)
∣∣ � ‖T h‖r0‖g‖r′ � N0‖h‖p0,q0‖g‖r′ = N0
0 0
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and, for �z = 1, ∣∣F (z)
∣∣ � ‖T h‖r1‖g‖r′

1
� N1‖h‖p1,q1‖g‖r′

1
= N1.

By the Three Lines Theorem, therefore, |F (z)| � Nθ
0 N1−θ

1 for �z = θ with 0 � θ � 1. Observing that
hθ = h, gθ = g by (p,q, r)(θ) = (p,q, r), we obtain the result. �
Corollary A.2 (Generalized Hausdorff–Young inequality).

‖u‖L p(x) � ‖û‖Lq(ξ,L p(0,X)) for q � 2 � p and
1

p
+ 1

q
= 1. (A.6)

Proof. The extremal cases p = 2 and p = ∞ follow respectively by Parseval’s identity and the tri-
angle inequality, whence the result follows by Proposition A.1, with T defined as the Bloch–Fourier
transform, r = p, and without loss of generality 2 < r < ∞. �
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