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This paper proposes a general class of multivariate skew-elliptical distributions.
We extend earlier results on the so-called multivariate skew-normal distribution.
This family of distributions contains the multivariate normal, Student's t, exponen-
tial power, and Pearson type II, but with an extra parameter to regulate skewness.
We also obtain the moment generating functions and study some distributional
properties. Several examples are provided. � 2001 Academic Press
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1. INTRODUCTION

This article is devoted to modeling with a new class of continuous multi-
variate distributions that can simultaneously account for both skewness
and heavy tails. Interesting special cases are discussed in Kelker (1970),
Fang and Zhang (1990), Fang, Kotz and Ng (1990), Azzalini and
DallaValle (1996), and Azzalini and Capitanio (1999).

The general class of multidimensional distributions that we present here
will be useful to modeling multivariate random phenomena which have
heavier tails than the normal as well as having some skewness. Such a rich
class of distributions can be used to model multivariate regression
problems with skew-elliptical error structure.

To define formally the class of multivariate skew-elliptical distributions,
we first need to define the multivariate elliptical distributions. Here we use
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the notation XtElk (+, 7; ,) to indicate that X is a k-dimensional random
vector, elliptically distributed with location vector + # Rk and a k_k
(positive definite) dispersion matrix 7 and characteristic function (c.f.) ,.
When P(X=0)=0 and the density exist, this is given by

f (x | +, 7)=|7|&1�2 g(k)[(x&+)T 7&1(x&+)], (1.1)

for some density generator function g(k)(u), u�0, such that

|
�

0
u(k�2)&1g(k)(u) du=

1[k�2]
?k�2 (1.2)

which implies that g(k) is a spherical k-dimensional density. When the
density function of the elliptical distribution exists, we use the density
generator function g(k) and replace the characteristic function . in the
notation and use XtElk (+7; g(k)). A comprehensive review of the proper-
ties and characterizations of elliptical distributions can be found in Fang
et al. (1990). The term skew elliptical (SE) will refer to parametric class of
multivariate probability distributions came from the vector Y=[X |
X0>0], where XtElk (+, 0, ,1) and X0 tEl1(0, 1, ,2). The notation
YtSEk (+, 0, $; ,) means that Y is a k-dimensional skew-elliptical
distribution with location +, scale 0, characteristic function , and skewness
parameter $. When the density of Y exists, we write YtSEk (+, 0, $; g(k+1))
with the density function

fY(y)=2 fg(k)(y) Fgq(y)
(*T (y&+)), (1.3)

where fg(k)(.) is the p.d.f. of the form (1.1) with generator function g(k)(.)
and Fgq(y)

is the c.d.f. of a univariate elliptical distribution with gq(y) as the
generator function. The detail form will be clear in the next section. Notice
that *=0 corresponds to elliptical density given in (1.1). However, the
class of p.d.f. given by fg(k)(.) is not the complete class of all the elliptical
distributions, but a subclass, where fg(k)(.) is the marginal density for some
(k+1)-dimensional density.

The interest in density (1.3) comes from both theorical and applied direc-
tion. On the theoretical side it enjoys a number of formal properties which
resemble those of the elliptical distributions as given in Fang and Zhang
(1990). From the applied viewpoint, (1.3) is a unimodal empirical distribu-
tion with presence of skewness and possible heavy tail. Many regression
and calibration problem arise in practice which can be modeled using such
skewed distribution. Such a model can also be used for creating a skewed
link function in generalized linear models as described in Chen et al.
(1999).
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The format of the paper is organized as follows. In Section 2 we derive
multivariate skew elliptical distribution. Section 3 is devoted to specific
examples of skew-elliptical distributions. This section contains a general
class of skew-normal scale mixtures and skewed-Pearson type II distribu-
tions. Moment calculations for such distributions are presented in Section
4. Section 5 provides important properties which resemble those of the
elliptical distributions. The paper is conclued in Section 6 with brief discus-
sions.

2. MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS

Recently, Azzalini and Dalla Valle (1996) presented a general theory for
the multivariate version of skew-normal distribution. Their paper suggests
diferent methods to generate skew-normal distributions. In this paper
we extend their results to multivariate skew-elliptical distributions. We
consider here a conditioning method to form a new class of skew elliptical
distributions. Consider X=(X1 , X2 , ..., Xk)T a random vector. Let X*=
(X0 , XT)T be a (k+1)-dimensional random vector, such that X*t

Elk+1(+*, 7; ,), where +*=(0, +), +=(+1 , ..., +k)T, , is the characteristic
function, and the scale parameter matrix 7 has the form

7=\1
$

$T

0 +
with $=($1 , ..., $k)T. Here 0 is the scale matrix associated to the vector X.
We say that the random vector Y=[X | X0>0] has a skew-elliptical dis-
tribution and denote for YtSEk (+, 0, $; ,), where $ is the skewness
parameter. If the density of the random vector X* exists and P(X*=0)=0,
then the p.d.f. of Y will be of the form

fY(y)=2fg(k)(y) Fgq(y)
(*T (y&+)), (2.1)

where fg(k)(.) is the p.d.f. of Elk (+, 0; g(k)) and Fgq(z)
is the c.d.f. of

El(0, 1; gq(z)), with

*T=
$T0&1

(1&$T 0&1 $)1�2 , (2.2)

g(k)(u)=
2?k�2

1(k�2) |
�

0
g(k+1)(r2+u) rk&1dr, u�0, (2.3)

gq(y)(u)=
g(k+1)(u+q(y))

g(k)(q(y))
, (2.4)
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and q(y)=(y&+)T 0&1(y&+). In this case, we denote YtSEk(+, 0, $;
g(k+1)), where g(k+1) is the generator function as given in (2.3) with k
replaced by k+1. From (2.2) and the positive definiteness of the 7 matrix,
it follows that $ and 0 must satisfy the condition $T0&1$<1. However,
such a restriction is not severe in practical problems. Note that the class of
the generator functions given in (2.3) is smaller than the general class given
in (1.2). It is to be noted that Azzalini and Capitanio (1999) also obtained
a class of multivariate skew-elliptical distribution of the form similar to
(2.1). However, their approach was slightly different than ours.

To derive (2.1), we consider that the p.d.f. of Y is

fY(y) B P(X0>0 | y) fX(y).

Using the fact X*tEl(k+1)(+*, 7; gk+1) and the properties of the elliptical
distributions (see Fang and Zhang, 1990) we obtain

XtElk (+, 0; g(k))

and

X0 | ytEl($T0&1(y&+), 1&$T0&1$; gq(y)).

Observe that fX(y)= fg(k)(y). Now, considering Z0=(X0&$T0&1(y&+))�
(1&$T0&1$)1�2 and the symmetric property of the elliptical distribution, it
follows that

P(X0>0 | y)=P \Z0> &
($T0&1(y&+))
(1&$T0&1$)1�2 } y+=Fgq(y)

(*T (y&+)).

Using the relation between the elliptical generator function we can get an
alternative and convenient expression for the p.d.f of the skew-elliptical
distribution as

fY(y)=2 |0|&1�2 |
*T(y&+)

&�
g(k+1)(r2+(y&+)T 0&1(y&+)) dr. (2.5)

3. SPECIAL CASES

In this section we develop many examples of multivariate skew-elliptical
distributions as special cases.
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3.1. Skew Scale Mixture of Normal Distribution

The generator function for a (k+1)-variate scale mixture of normal is

g(k+1)(u)=|
�

0
(2?K('))&(k+1)�2 exp[&u�2K(')] dH('),

where ' is a mixing variable with c.d.f. H(') and K(') is a weight function.
Then, from (2.5), fY(y) is given as

2 |0| &1�2 |
*T(y&+)

&�
|

�

0
(2?K('))&(k+1)�2

_exp {&
(r2+(y&+)T 0&1(y&+))

2K(') = dH(') dr

=2 |
�

0
|0|&1�2(2?K('))&k�2

_exp {&
((y&+)T 0&1(y&+))

2K(') = 8 \*T (y&+)
K(')1�2 + dH(').

Thus,

fY(y)=2 |
�

0
,k (y; +, K(') 0) 8 \*T (y&+)

K(')1�2 + dH('), (3.1)

where ,k (y; +, K(') 0) is the p.d.f. of Nk (+, K(') 0) and 8 is the c.d.f. of
the standard normal distribution.

One particular case of this distribution is the skew-normal distribution,
for which H is degenerate, with K(')=1. In this case the density is given
as

2,k (y; +, 0) 8(*T (y&+)).

This result was obtained in Azzalini and Dalla Valle (1996). Therefore,
if g(k+1)(.) is a scale mixture of normal, it follows from (3.1) that fY(.) is
again a scale mixture of the skew-normal distribution.

The next examples are special cases of the skew-scale mixture of normal.

Example 3.1.1. Skew finite mixture of normal. The generator function
of the finite mixture of normal is

g(k+1)(u)= �
n

i=1

pi (2?K('i))&(k+1)�2 exp[&u�2K('i)],
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with 0�pi�1 and �n
i=1 p i=1. Then, the distribution H is a discrete

measure on ['1 , '2 , ..., 'n] with probabilities p1 , p2 , ..., pn , respectively.
The density of the skew finite mixture of normal is given as

fY(y)=2 �
n

i=1

pi,k (y; +, K('i) 0) 8 \*T (y&+)
K('i)

1�2 +
which is again a finite mixture of the skew-normal distribution. In this case,
we often take K('i)=1, i=1, 2, ..., n, for simplicity.

Example 3.1.2. Skew logistic distribution. The generator function of
the logistic distribution is

g(k+1)(u)=
exp[&u]

1+exp[&u]
, u>0.

As pointed out by Choy (1995), the logistic distribution is a special case of
the scale mixture of normal, when K(')=4'2 and ' follows an asymptotic
Kolmogorov distribution with density

f (')=8 �
�

k=1

(&1)k+1 k2' exp[&2k2'2].

However, this density is not computationally attractive. Recently, Chen
and Dey (1998) present an alternative way to work with this density.

Example 3.1.3. Skew stable distribution. A skew stable distribution can
be obtained as a scale mixture of skew-normal as given in (3.1) with
K(')=2' and the mixture distribution dH(')=SP(:, 1), where the p.d.f. of
the positive stable distribution S P(:, 1) in the polar form is given by

hSP(' | :, 1)=
:

1&:
'&(:�(1&:)+1) |

1

0
s(u) exp {&

s(u)
':�1&:= du, (3.2)

for 0<:<1 with

s(u)={sin(:?u)
sin(?u) =

:�(1&:)

{sin[(1&a) ?u]
sin(?u) = .

See Samorodnitsky and Taqqu (1994) for more details on the positive
stable distribution. Note that when :=1, we get a skew Cauchy distribu-
tion. Clearly the skew-normal distribution can also be obtained from the
skew stable by taking : � 1.
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Example 3.1.4. Skew Exponential Power distribution. A skew exponential
power distribution can also be obtained as scale mixture of skew normal as
given in (3.1) by choosing K(')=1�(2c0') and h(')=(1�') (k+1)�2 hSP(' | :, 1)
where hSP(' | :, 1) is given in (3.2), and c0 is defined as

c0=
1[3�2:]
1 [1�2:]

and 1�2<:<1.

The parameter : is called the kurtosis parameter. See Andrews and
Mallows (1974) and Choy (1995) for further references on the symmetric
exponential power family of distributions. Again skew-normal and skew-
double exponential distributions can be obtained by taking :=1 and
:=1�2, respectively.

3.2. Skew t Distribution

Recall that the t-distribution is a special case of scale mixture of normal
distribution. To develop the skew t distribution, we can again use (3.1) by
considering K(')=1�' with H as the c.d.f. of a gamma distribution, i.e.,
'tG(&�2, &�2), where 'tG(a, b) means that ' has the p.d.f. f (')=
ba exp[&b']�1[a], a>0, b>0. However, we will study this case
separately, since in this case we have a nice analytic expression for the den-
sity function. A particular case of the skew t distribution is the skew
Cauchy distribution, when &=1. Also when & � �, we get skew-normal
distribution as the limiting case.

Let us consider here the generalized version of Student's t distribution.
This generalized version can be obtained by considering a new parameter
{>0, such that 'tG(&�2, {�2). To get the usual version of the multivariate
t, it is enough to consider {=& (see Arellano-Valle and Bolfarine, 1995). In
this case, the generator function is given as

g&, {(u)=C(&, {)[{+u]&(&+k+1)�2,

where

C(&, {)=
1[(&+k+1)�2] {&�2

1[&�2] ?(k+1)�2 .

It follows from (2.5) that

fY(y)=2 |0| &1�2 |
*T(y&+)

&�

_C(&, {)[{+r2+(y&+)T 0&1(y&+)]&(&+k+1)�2 dr.
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Considering {*={+(y&+)T 0&1(y&+), &*=&+k, and

C*(&, {)=
1[(&+k+1)�2]({+(y&+)T 0&1 (y&+)) (&+k)�2

1[(&+k)�2] ?1�2

=
1 [(&*+1)�2]({*)&*�2

1[&*�2] ?1�2 ,

we obtain that fY(y) equals

2 |0|&1�2 {&�2[{+(y&+)T 0&1(y&+)]&(&+k)�2 1[(&+k)�2]
1[&�2] ?k2

_|
*T(y&+)

&�
C*(&, {)[{*+r2]&(&*+1)�2 dr.

So, the p.d.f. of the multivariate skew t is

fY(y)=2f&, {(y; +, 0) F&*, {*(*T (y&+)),

where f&, {( . ; +, 0) is the p.d.f. of a k-variate generalized Student's t dis-
tribution with location and scale parameters + and 0, respectively, and
F&*, {*(.) is the c.d.f. of an univariate standard generalized t distribution.

3.3. Skewed Pearson Type II Distribution

The usual density function of the Pearson type II distribution (see Fang
et al., 1990) has the following generator function

g(k+1)(u)=
1[m+1+(k+1)�2]

1[m+1] ?(k+1)�2 (1&u)m, 0<u<1, m>&1.

We are considering here a generalized version of the Pearson type II
distribution with an additional parameter r>0. The generator function for
this is (3.2)

g(k+1)(u)=
1[m+1+(k+1)�2]

1[m+1] ?(k+1)�2 s&(m+(k+1)�2) (s&u)m,

0<u<s, m>&1, s>0.

106 BRANCO AND DEY



Using (2.2) and (3.2) we obtain that fY(y) equals

2 |0|&1�2 |
*T(y&+)

&- s

1[m+1+(k+1)�2]
1[m+1] ? (k+1)�2

_s&(m+(k+1)�2) [s&(r2+(y&+)T 0&1(y&+))]m dr

=2 |0|&1�2 1[m+1+(k+1)�2] s&(m+1�2+k�2)

1 [m+1+1�2] ?k�2 (s&(y&+)T 0&1(y&+))&(m+1�2)

_Fm, s*(*T(y&+)),

where s*=s&(y&+)T 0(y&+).
Then, considering m*=m+1�2, it follows that

fY(y)=2 fm*, s(y; +, 0) Fm, s*(*T(y&+)),

where fm*, s( . , +, 0) is the p.d.f. of the k-variate generalized Pearson type II
distribution with location and scale parameters + and 0, respectively, and
Fm, s* is the c.d.f. of the standard univariate generalized Pearson II.

4. MOMENTS OF THE SKEW-ELLIPTICAL DISTRIBUTION

4.1. Moment Generating Function

In this section we derive a general expression for the moment generating
function(mgf) for skew scale mixture of normal distribution. Without loss
of generality we consider here +=0, i.e., ZtSEk (0, 0, $; g(k+1)), where
g(k+1) is the generator function for a (k+1)-variate scale mixture of
normal distribution.

Considering Eq. (3.1) and t # Rk, we have

M(t)=E[exp[tTZ]]

=2 |0|&1�2 |
R k |

�

0
(2?K('))&k�2 exp[&[(zT0&1z)�2K(')&tTz]]

_8 \ *Tz
K(')1�2+ dH(') dz.

Using

zT0&1z&2K(') tTz=(z&K(') 0t)T 0&1(z&K(') 0t)&K(')2 tT 0t,
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the moment generating function M(t) can be expresed as

2 |
�

0
exp {(tT0t) K(')

2 = |
R k

|0|&1�2 (2?K('))&k�2

_exp {&
(z&K(') 0t)T 0&1(z&K(') 0t)

2K(') =
_8 \ *Tz

K(')1�2+ dz dH(')

=2 |
�

0
exp {(tT0t) K(')

2 = E _80 \*T(z*+K(') 0t)
K(')1�2 +& dH('),

where z*=z&K(') 0t and 80 is the c.d.f. of the N(0, K(') 0).
Now, using Proposition 4 (in Azzalini and Dalla Valle, 1996, p. 719), it

follows that the mgf of the skew scale mixture of normal is

MSMN(t)=2 |
�

0
exp {(tTK(')1�2 0K(')1�2 t)

2 =
_80 _ *T0K(') t

(1+*T 0*�K('))1�2& dH(')

=|
�

0
MSN(K(')1�2 t) dH('), (4.1)

where MSMN(.) is the moment generating function for the skew scale
mixture of normal distribution and MSN(.) is the moment generating
function for skew-normal distribution.

4.2. Mean Vector and Covariance Matrix

We have the following expressions for the mean, variance, and
covariance of a univariate skew-normal distribution,

ESN[Z]=\2
?+

1�2

$, VSN[Z]=1&
2$2

?
and

CovSN[Zi , Zj]=wij&
2
?

$ i$j , (4.2)

where wij is the (i, j )th element of the matrix 0.
Using the moment generating function given in (4.1) and differentiating

it with respect to t, we have

M $SMN (t)=|
�

0
M $SN(tK(')1�2) K(')1�2 dH(').
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Thus,

M $SMN(0)=|
�

0
M $SN(0) K(')1�2 dH(')=|

�

0 \2
?+

1�2

$K(') dH('),

that is, the mean of the univariate scale mixture of normal distribution is

ESMN[Z]=\2
?+

1�2

$E[K(')1�2].

The existence of this expectation depends on the existence of E[K(')1�2],
where this last expression is obtained by considering the mixture measure
H. We can do the similar calculation to obtain the second derivative as

M "SMN(t)=|
�

0
M "SN (tK(')1�2) K(') dH(').

Thus,

M "SMN(0)=|
�

0
K(') dH('), since M "SN(0)=1.

It follows that the existence of the second moment for the skew scale
mixture of normal distribution depends on the existence of E[K(')]. Then,
if E[K(')]<�,

VSMN[Z]=E[K(')]&
2$2

?
E[K(')1�2].

It follows from (4.2) that E[ZiZj]=wij . Using this fact and the moment
generating function given in (4.1), we have

ESMN[Z iZj]=|
�

0
ESN[Zi Zj] K(') dH(')=|

�

0
w ijK(') dH(').

Therefore, if E[K(')]<�, we have

CovSMN[Z i , Z j]=wij E[K(')]&
2
?

$i$j E2[K(')1�2].

In general, if we consider the mean vector m and the covariance matrix
M for the skew-scale mixture of normal, we have

m=\2
?+

1�2

E[K(')1�2] $
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and

M=E[K(')] 0&
2E2[K(')1�2]

?
$T$.

Example 4.1. The skew t distribution has K(')=1�' with 'tG(&�2; &�2).
If &>1 then E[K(')1�2]<� and

E[K(')1�2]=
1[(&&1)�2]&- &

1[&�2] - 2
.

Thus,

EST[Z]=
$1[(&&1)�2]

1[&�2] � &
?

.

If &>2 then E [1�']<� and E[1�']= &
&&2 , so that

VST[Z]=
&

&&2
&

$2&
? _1((&&1)�2)

1(&�2) &
2

.

5. PROPERTIES OF THE SKEW-ELLIPTICAL DISTRIBUTIONS

First we present two corollaries, given in Fang and Zhang (1990, p. 65),
in the form of propositions that will help us to prove the following results
concerning properties of the skew-elliptical distributions. The notation
X=

d Y means that X and Y have the same distribution.

Proposition 5.1. XtElk (+, 7, g) if and only if

X =
d

++RAT u(k),

where R�0 is a random variable independent of u(k), R is one to one with
the generator function g, A is a k x n matrix such that ATA=7, and u(k) is
a uniform distribution on the unit sphere in Rk. This is called stochastic
representation for X, where R is the radial variable.

Proposition 5.2. Assume X=
d

++RATu(k)
tEln(+, 7, g). Then

(X&+)T 7&1(X&+) =
d R2.
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Now we will state two similar propositions for the skew-elliptical
distribution.

Proposition 5.3. If YtSE(+, 0, $; g) then (Y&+)T 0&1(Y&+) has
the same distribution as R2, where R is the radial variable in the stochastic
representation of X.

Proof. An alternative and equivalent form to define the skew-elliptical
Y is

Y={(X&+)
&(X&+)

if X0>0
if X0<0,

where X0 is defined in Section 2.
Using this definition it is easy to see that

(Y&+)T 0&1(Y&+)=(X&+)T 0&1(X&+).

Now, using Proposition 5.2, the proof is complete.

Proposition 5.4. Let C be a non-singular matrix with dimension k and
b is a k_1 vector and Y

*
=b+CY where YtSEk (+, 0, $; g). Then

Y
*

tSEk (+
*

, 0
*

, $
*

; g),

with +
*

=b+C+, 0
*

=CT0C, and $
*

=C$.

Proof. Since C is non-singular, Y=C&1(Y
*

&b). Using the jacobian
method

fY( y)=2fg(k)(C&1(y
*

&b)) Fgq (C&1
(y*&b))

(*T C&1(y
*

&b)) |C| &1.

However,

|C|&1 fg(k)(C&1(y&b))

=|C|&1 |0| &1�2 g(k)[(C&1(y&b)&+)T 0&1C&1(y&b)&+]

=|CT0C| &1�2 g(k)[(y&+
*

)T (CT0C)&1 (y&+
*

)],

and the last expression is a p.d.f. of Elk (+
*

, 0
*

; g (k)).
After some algebraic manipulations, we can see that

Fgq (C&1
(y&b))

(*TC&1(y&b))=Fgq*(y
*

)(**
T(y

*
&+

*
),

where *
*
T=$

*
T 0

*
�(1&$

*
T 0

*
)&1 $

*
)1�2 and q

*
( y

*
)=(y

*
&+

*
)T 0

*
&1

(y
*

&+
*

).
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In the next proposition, we obtain the marginal distribution of the skew-
elliptical distribution. For that we consider the partitions

Y=\YA

YB + , X=\XA

XB + , +=\+A

+B+ ,

0=\011

021

012

022+ and 7=\
1

$A

$B

$T
A

011

021

$T
B

012

022 + ,

where $A , YA , XA , and +A ($B , YB , XB and +B) are vectors with the first m
(the last k&m) elements of the $, Y, X, and +, respectively. Further 011

is a m_m matrix, 012=0T
21 is a m_(k&m) matrix, and 022 is a

(k&m)_(k&m) matrix.

Proposition 5.5. If YtSEk (+, 0, $; ,) then YA tSEm(+A , 011 , $A ; ,).

Proof. Using properties of the elliptical distributions, it follows that

XA tEl(+A , 011 ; ,) and (X0 , XA)tElm+1(+*A , 711 , ,),

with

+*A=\ 0
+A+ and 711=\ 1

$A

$T
A

011+ .

The proof follows using the definition of a skew-elliptical distribution
and YA=[XA |X0>0].

6. CONCLUSION

This article has presented a new class of multivariate skew-elliptical
distributions which include several unimodal elliptical and spherical dis-
tributions. By introducing a skewness parameter, the new distribution
brings additional flexibility of modeling skewed data. Proposed classes of
distributions are useful in regression and calibration problems when the
corresponding error distribution exhibits presence of skewness. The results
obtained in this paper extend many properties of the elliptical and spherical
distributions in a nontrivial way.
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