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2Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, Carthage University, 7021 Jarzouna,
Tunisia

3Department of Research in Sciences of Life and Materials, Faculty of Sciences of Bizerte, Carthage University, Tunisia
ARTICLE INFO

Article history:
Received 15 May 2016
Received in revised form 16 Jun 2016
Accepted 21 Jun 2016
Available online 29 Jun 2016

Keywords:
Nanoparticles
Semiconductors
Antioxidant activity
Antibacterial activity
Antifungal activity
ABSTRACT

Objectives: To evaluate the contributions of the some quantum dots in different bio-
logical uses in order to valorizes such nanomaterials for further applications.
Methods: Zinc sulfide ZnS nanoparticles were synthesized in aqueous medium at pH
constant, the obtained nanoparticles has been characterized by X-ray diffraction (XRD),
transmission electron microscopy (TEM) and Fourier Transform Infra-red (FTIR) spec-
troscopies. Zinc sulfide nanoparticles were screened for their antibacterial and antifungal
profiling and tested for antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH),
hydroxyl radical (OH�) and hydrogen peroxide (H2O2) scavenging activity, ferric
reducing power (FRP) assay and ferrous ion chelating (FIC) methods.
Results: The sizes of the crystallites were estimated to 3 nm using the Debye-Scherrer
formula based on the XRD data. The shape was identified to be quasi-spherical with
agglomerated particles. The obtained ZnS quantum dots present an antioxidant activity
especially in oxido-reduction power, and can be used for species profiling either for
bacteria and fungus.
Conclusion: It was found that ZnS nanoparticles showed relatively higher antioxidant
activities and antibacterial with an antifungal behavior which proves that this nano-
materials can react at the interface with the life entities.
1. Introduction

Synthesis of nanoparticles has been given a great attention in
synthesis engineering and phase combination design. Among
various classes of nanoparticles, semiconductor nanomaterials
have emerged as important materials with promising applica-
tions such as in nanotechnology and biology applications [1–6].
For instance, many methods have been used to synthesize ZnS
nanostructures for specific use in biological detection and
tagging molecules [7]. Therefore, ZnS nanoparticles are
characterized by their attractive proprieties which participate
for restricted area of application especially pharmaceutics uses
[8,9]. Various engineered nanoparticles have become important
tools in biomedical research in addition to the optical use in
live-cell imaging and in vivo diagnostic imaging [10–22].
Despite advantages of nanoparticles, the toxicity has been
thoroughly examined, it was revealed that it is mainly
attributed to the toxic effects of metals leaching from the
nanoparticles or derived from their intrinsic properties such as
size and roughness of the surface.

In this context, the present study was focused on the
contribution of ZnS nanoparticles in biological uses, for that,
nanoparticles has been synthesized and structurally character-
ized before been used in the in vitro evaluation of their anti-
oxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH),
hydroxyl radical (OH�) scavenging activity, ferric reducing po-
wer (FRP) assay and ferrous ion chelating (FIC). The study has
been reinforced by screening in vivo tests for inactivation
profiling with bacteria and fungus selected species.

2. Material and methods

2.1. Synthesis of ZnS nanoparticles

ZnS nanoparticles were prepared in aqueous medium
regarding the protocol using equimolar (25 mL, 0.5 M) mixture
of zinc acetate and thioacetamide under continuous magnetic
cle under the CC BY-NC-ND license (http://
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stirring. The mixture was then heated for 3 h at 85 �C. After
cooling to room temperature, the powder was collected by
centrifugation, washed several times with absolute ethanol and
dried for 12 h at 60 �C.

2.2. Structural characterization

The structure of the crystalline phase of the as-synthesized
powders was characterized by X-ray diffraction (XRD) on a
BRUKER D8 ADVANCE diffractometer using Cu Ka
radiation.

FTIR spectrum has been performed by a Nicolet UR 200 FT-
IR spectrometer with ATR mode the spectrum has been recorded
over the 400–4000 cm−1 range. The particles morphology study
was carried out using FEI Tecnai G2 Transmission Electron
Microscope (TEM) operating at 200 kV. Spectrophotometry
analyses were performed using an UV spectrophotometer
(6005).

2.3. Antioxidant evaluation

Antioxidant activities has been revealed in vitro tests for
DPPH Radical Scavenging Activity [23], Hydroxyl Radical
Scavenging Activity [24,25], Hydrogen peroxide scavenging
activity [26] and Reducing Power Assay [27] either Ferrous ion
chelating ability (FIC) [28], the details of the experiment has
been performed as mention by Lahbib et al. [29] with all
details for statistic calculation of IC50 (the concentration of
test product required for 50% of inhibition).

2.4. Biolog phenotype microarray tests

2.4.1. Biolog phenotype microarray technology
The phenotype analysis was carried out by using a new tool,

Phenotype Micro Arrays (PMs). Biolog's Phenotype Micro
Array technology (Biolog, USA) offers a unique way to identify
product and to infer a mode of action by which the novel in-
hibitor prevents microbial growth [30]. The assays are pre-filled
and dried in 96-well microplates that can monitor chemical
sensitivities. Cell response in each assay well is determined by
the amount of color development produced by the reduction of a
tetrazolium compound (a redox indicator) during cell respiration
[31]. To identify the method of action of compounds on Gram
negative and Gram positive bacteria, PMs were employed to
screen various sources of carbon, nitrogen, sulfur and
phosphorous. The methods were done according to the PM
procedure for Enterococcus coli (E. coli) and other Gram
negative bacteria and the PM procedure for Bacillus subtilis
(B. subtilis) and other Gram positive bacteria provided by
Biolog Inc., USA. All the fluids, PMs, and instruments were
purchased from Biolog Inc., USA. Kinetic data were analyzed
with OmniLog PM software (Biolog, USA). The results were
expressed by the differences of the treated bacterial cells from
untreated bacterial cells (control group).

2.4.2. PMs of ZnS with bacteria
E. coli (ATCC 8739), Enterococcus faecalis (E. faecalis, Ec

P07) and B. subtilis was grown overnight at 37 �C on nutrient
agar plates. In order to prepare the bacteria cell suspension,
colonies were harvested from the surface of an agar plate with a
sterile cotton wool swab and suspended in 16 mL of Inoculating
Tryptic Soy Broth (TSB), in a 20 mL sterile capped glass tube.
The cell density must be equaled to 80%–85% transmittance on
a Biolog turbidimeter. The TSB with Biolog Redox Dye Mix
was also prepared. Later, 250 mL/well were added to PM plates
in details 100 mL/well from bacteria suspension, 130 mL/well of
TSB with Biolog Redox Dye Mix correspondent and 20 mL/well
of ZnS solution (at different concentration from 0.001 to 0.1 mg/
mL). All the plates were incubated at 37 �C in the OmniLog
plate, results were recorded after 48 h for all PM plates.

2.4.3. PMs of ZnS with fungus
Alternaria alternate (A. alternate) and Fusarium solani

(F. solani) were grown on nutrient agar plates overnight at
37 �C. In order to prepare the fungi cell suspension, colonies
were harvested from the surface of an agar plate with a sterile
cotton wool swab and suspended in 16 mL of Inoculating Malt
extract in a 20 mL sterile capped glass tube. The cell density
must be equaled to 62% transmittance on a Biolog turbidimeter.
The ME with Biolog Redox Dye Mix F was also prepared.
Later, 250 mL/well using Biolog multichannel pipette were
added to PM plates in detail, 20 mL/well fungi cell suspension,
210 mL/well ME with Biolog Redox Dye Mix F and finally
20 mL/well ZnS was added respecting the concentrations tested.
All the plates were incubated at 37 �C in the OmniLog plate
incubator and reader and were monitored for any color change of
the wells. Readings were recorded for 48 h for all PM plates.

2.5. Bacterial inactivation study

E. coli samples stain E. coli K12 (Deutsche Sammlung von
Mikroorganismen und ZellkulturenFig GmbH (DSMZ)
ATCC237 16, Braunschweig, Germany) were used for the ZnS
antibacterial activity like described by Petronella [32]. The
polyester fabrics were sterilized by autoclaving at 121 �C for
2 h. Three independent assays were performed for the
sputtered textile sample. The solar simulated light source has
been done by a solar simulator (Heraeus, Hannau, Germany)
with a light emission between 200 and 800 nm provided for a
100 W Xe-light resembling to the solar spectrum with a light
intensity of 50 mW/cm2.

3. Results

3.1. Structural characterizations

3.1.1. XRD profile of synthesized ZnS
The wide angle XRD patterns of ZnS nanocrystals exhibit the

(111), (220), and (311) planes as given in Figure 1, that shows
the cubic zinc blend phase according to pdf sheet JCPDS. no 05-
0566. The broadness of the peaks is due to the small size of the
crystals. No diffraction peaks from impurities was detected in
the sample. To better explore the XRD profile, the diameter of
ZnS particles have been estimated using Debye-Scherrer for-
mula [33]:

L= 0:9l=b cos q (1)

Where b is the full width at half maximum (FWHM) of the
diffraction peak in radians, q is Bragg's diffraction angle and l is
the wavelength for the Ka1 component of the copper radiation
employed (1.5418 Å). The average size of the ZnS crystallites
was found to be around 3 nm.



Figure 1. XRD patterns of ZnS particle.
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3.1.2. TEM micrograph
TEM image of the ZnS particles is given in Figure 2, which

shows almost a spherical aggregates constituted by nanometer-
sized crystals. The aggregation observed is probably due to
SeS bridges that can be formed between sulfide particles [34].
Figure 2. TEM images of ZnS nanoparticles for 3 h at 85 �C.

Figure 4. FT-IR spectra of ZnS nanoparticles.
3.2. Raman spectra

The Raman spectrum recorded in the frequency range 200–
450 cm−1 display strong peaks at ~265 and 347 cm−1 the details
are given in Figure 3. Brafman and Mitra [35] have reported
Raman spectra of bulk hexagonal and cubic phases of ZnS,
they observed TO and LO zone center phonons of cubic ZnS
crystals at 276 and 351 cm−1, respectively, and the E2 modes
of wurtzite ZnS at 72 and 286 cm−1. The absence of peaks at
72 and 286 cm−1 in the Raman spectra in case of ZnS samples
confirmed the cubic crystalline system of the compound.
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Figure 3. Raman spectra of ZnS nanoparticle.
3.3. Infrared manifestation of the ZnS

Infrared spectrum of synthesized ZnS nanoparticles is given
in Figure 4. It shows different characteristic peaks, the broad
absorption band centered at 3200 cm−1 can be attributed to
OeH stretching mode of H2O adsorbed on the surface of the
particles. The two bands observed at 1560 and 1428 cm−1 are
due to the asymmetrical and symmetrical stretching of the zinc
carboxylate (COO−) respectively [36]. The peak situated around
1037 cm−1 may be attributed to SeO stretching and the one that
appearing at 678 cm−1 is characteristic of the ZnS stretching
vibration [37].
3.4. Biological phenotypage analysis

The investigation of microorganisms profiling of the syn-
thesized nanomaterial regarding three bacteria strain and tow
species of fungus present a results given in Table 1 which
showed a high antibacterial activity compared to absolute
ethanol with an IC50 at around 0.001 mg/mL both for E. faecalis
and B. subtilis, whereas, E. coli has been more resistant to the
effect of ZnS nanoparticles with an IC 50 at 0.7 36 mg/mL. The
antifungal activity compared with absolute ethanol has been
evaluated to an IC50 at around 0.01 mg/mL for the tow tested
species A. alternate and F. solani.

The resistance behavior of E. coli has been revealed in this
test and explains that at the condition of the experiment, these
bacteria can grow normally, as the ZnS optic proprieties can be
induced and manipulated when the particles absorb a sufficient
light energy, a test of inhibition after exposition of the treated
bacteria to the solar like light has been carried out. A preliminary
exploration of emission propriety of the ZnS in biological
application can be used in order to look for the bacterial inac-
tivation consequences under ordinary light that can be done in
quotidian life; Figure 5 shows the results the simulated solar
light of 50 mW/cm2 was applied to the exposed E. coli by ZnS
nanoparticles. ZnS did not induce bacterial inactivation in a
short period of time but after 240 min of treatment lead the
inactivation. In evidence mention that ZnS can be used for
antiseptic uses under solar light.

3.5. Antioxidant proprieties of ZnS

In order to estimate the effect of ZnS nanoparticles on anti-
oxidant system, in vitro tests have been carried respecting



Table 1

Antibacterial and antifungal activities of ZnS nanoparticles.

E. coli (ATCC 8739) E. faecalis (Ec P07) B. subtilis A. alternata F. solani

Ethanol 95% (%) 11.33 61.02 45.51 37.22 35.90
ZnS (IC50 mg/mL) 0.736 ± 0.070 0.0 010 ± 0.000 0.0 012 ± 0.0001 0.009 ± 0.0 006 0.012 ± 0.001

Figure 5. E. coli inactivation by ZnS under solar-like light 50 mW/cm2.
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different level in the above mentioned system, results are sum-
marized in Figure 6. ZnS nanoparticles show a DPPH radical
scavenging activity with an IC50 at 6.61 ± 0.31 mg/mL which is
more than 10 times compared to ascorbic acid (IC50:
0.0396 ± 0.002 mg/mL), which can be explained by a limited
power of the ZnS phase to cede a requested proton to reduce the
DPPH. Regarding the FTIR profile of the nanomaterials the
particles do not contain protons at the surface it is only water
molecule that gain the surface.
Figure 6. Antioxidant activity.
In case of test for a possible ability to collect proton from the
reaction medium, ZnS particle has an OH� radical scavenging
activity near to the AA, IC50 (ZnS) was at 0.017 ± 0.0001 mg/
mL compared to ascorbic acid (IC50: 0.006 ± 0.00001 mg/mL)
which can be considered as a propriety of the present compound
and show the existence of probable sites that collect hydroxyl.

Hydrogen peroxide test present a higher scavenging activity
of ZnS with IC50 at 0.0084 ± 0.0009 mg/mL which allow it
usage in this restricted test however the value for the standard
compound the AA present an IC50: 0.06 ± 0.00001 mg/mL.

The behavior of the ZnS synthesized nanoparticles has been
tested for its capacity to cede either to collect electron from the
oxydoreduction reaction carried by iron, results show that ZnS
particle showed a good reducing power with IC50 at
0.026 ± 0.0001 mg/mL compared to ascorbic acid (IC50:
0.0035 ± 0.00004 mg/mL). This is a synonym of the ability to
cede an electron for the reactional medium when it is required.
The oxidation power has been evaluated to be at high level of
ferrous ion chelating ability with IC50 at 0.028 ± 0.0019 mg/mL
compared to the ascorbic acid (IC50: 0.0057 ± 0.0002 mg/mL).

Results are expressed as mean ± SEM (n = 3).

4. Discussion

This study described the efficiency of ZnS as antibacterial,
antifungal and antioxidant agent. First, the antibacterial effects
under simulated solar light of 50 mW/cm2 tested with E. coli
bacteria were outlined, the stimulation of ZnS by ordinary light
switch the effect regarding the preliminary resistant strain E. coli
which present a novel exploration of the antibacterial effect
using ZnS by light stimulated conditions to get better result and
explain the contribution of the optic propriety in the restricted
application. Whereas ZnS exhibited an antibacterial activity
without any supplementary activation with E. faecalis and
B. subtilis, the same result has been observed with the two tested
fungi Alternaria alternate and Fusarium solani. This findings
are in agreement with those obtained by Azm et al., showing that
undoped nanoparticles could increase ROS generation [9] and
are responsible for stop bacteria bacteria through chemical
phenomena [9,38]. Regarding the mechanism of action, it is
important to mention that inactivation power of nanoparticles
could be explained by the capacity of transporting charge
carriers to the surface of the nanoparticles via defect levels in
the forbidden gap which make possibility of interaction with
oxygen and water molecules to generate more ROS [9].
Moreover, since nanoparticles are efficient energy donors
[39,40], they could transfer energy to nearby oxygen molecules
inducing the generation of reactive oxygen species (ROS) and
in turn leading to cell damage or death [41].

In the second part of this work, the study focused on the
in vitro antioxidant effect of the ZnS particles, results showed
that ZnS exhibited a possible antioxidant activity referring to
ascorbic acid. This indicate that ZnS nanocrystals have a higher
OH� and H2O2 scavenging activities more than DPPH. These
results were relatively confirmed by the experiment done by
Rakcha et al., which show that commercial undoped ZnS is
more OH� scavenging than doped ZnS [42]. This evidence show
that undoped ZnS have an efficient direct antioxidant when the
OH� scavenging activity predominates over OH� generation.
These results were in agreement with those performed by
Seung Soo [43], who suggested that nanoparticles have the
ability to absorb and release oxygen ions in a chemical
reaction known as reduction-oxidation reaction. When ROS
increase, nanoparticles react immediately in order to absorb free
radicals [43]. In the first state, nanoparticles have sufficient gaps
energy in their surface that makes possible absorption of oxygen
ions like a sponge. In addition, when nanoparticles are mixed
with free radicals, they catalyze a reaction that effectively
defangs the ROS by capturing oxygen atoms; the particles
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then slowly release their captured oxygen and can break down
free radicals again [40]. These results were further confirmed
by the high undoped ZnS activity as chelating and reducing
power. These results suggest that ZnS could be considered as
a chelator and also as a secondary antioxidant by inhibiting
the Fenton reaction. In these reactions, iron plays an important
role suggesting that the selective in vitro antioxidant properties
of the nanoparticles are due to their iron chelating
characteristics. Recently, nanoparticles have been proven to
prevent Alzheimer disease, progressing Alzheimer disease and
other neurologic disorders associated with trace metal
imbalance.

The results presented highlight the possible uses of ZnS
nanoparticles in different biological level of study. The right
crystalline phase of ZnS with a particular size present a multi-
capacity for antioxidant intervention either for generation of
electrons that can be released in the reactional medium to serve
as reducing agent when the electron has been in demand or an
oxidizer agent to accomplish oxydo-reduction reaction, this
ability have been evidenced by the in vitro tests. Regarding the
hydroxides species the ZnS nanoparticles can reside the hy-
droxyl anion from the aqueous solution however regarding the
poorly modified surface as revealed by FTIR analysis it has a
limited ability to generate proton when requested in case DPPH
reducing ability. Finally, the ZnS nanoparticles have been used
for species profiling regarding the ability to act as antibacterial
or antifungal agent.
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