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Abstract

Two numerical approximations to radiative heat transfer problem based on asymptotic and entropy ap-
proaches are proposed for hydrodynamics radiation coupling. We compare the radiative 6uxes between the
two approaches and we show that the coupling based on the entropy approach is 6ux limited, while the other
approach does not preserve this condition. Relaxation schemes are considered for the hydrodynamic part, and
an iterative procedure is used for radiation. The new splitting algorithm avoids the use of Riemann solvers
and Newton iterations. Numerical examples are carried out on two and three dimensional problems.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of coupling the radiative transfer to hydrodynamics has been an immensely challeng-
ing one in the general areas of computational astrophysics, laser fusion and combustion phenom-
ena, see [2,10] and further references are therein. Indeed, the equations governing this problem are
strongly coupled due to the interaction between 6uid dynamics, transport, and radiative heat transfer.
Moreover, as a result of the dependence of radiation energy on the temperature, these equations
are highly nonlinear. Furthermore, it is well known that the solutions of these equations are char-
acterized by steep fronts, sharp peaks and even shock discontinuities, which need to be resolved
accurately in applications and often cause severe numerical diAculties. Finally, the large number of
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unknowns, the diHerence on propagation between radiative signals and hydrodynamic 6ows, and the
computational cost are typical diAculties in radiation hydrodynamic computations. Hence, it is the
purpose of the present work to derive a numerical model for radiation hydrodynamics that oHers the
following properties:

• The model used to approach the full radiative transfer equation should preserve the physical
features of the full equation, for instance, the radiative 6ux must be limited by the light speed i.e.
any radiative signal has a velocity below the light speed. In this paper we propose two approaches
to the radiative transfer equation. The P1 approach [10] based on asymptotic analysis and the M1

approach [9] based on entropy principle. Numerical examples presented here show that coupling
the hydrodynamic to M1 approach preserves the 6ux-limited property, whereas the other coupling
does not.

• The numerical methods used to compute the solution of the coupling model should resolve and
keep track of shocks involved and at the same time treat the radiation signals eAciently. In this
paper we introduce a two stages splitting technique. The hydrodynamic stage of the splitting is
straightforwardly treated by a high resolution scheme, while the radiative stage uses a monotone
iterative method. The new algorithm is second order in space and time, robust and avoids the use
of Riemann solvers and Newton iterations.

The plan of this paper is as follows. In Section 2 radiation hydrodynamic equations are formulated.
The numerical procedure for the hydrodynamic stage of the splitting is presented in Section 3.
Section 4 is devoted to the numerical procedure for the radiation stage. Numerical tests validating
our approximations are given in Section 5. Section 6 contains the conclusion.

2. Governing equations

The radiation hydrodynamic equations we consider in this paper can be written as a hyperbolic
system of conservation laws for gas material together with emission and absorption of radiation.
If we assume that the gas material is radiatively opaque i.e., the mean-free-path of photons is
much smaller than the typical length of 6ows, and the absorption coeAcient is independent of the
frequency. Then, after neglecting the scattering eHects, the radiation hydrodynamic equations are
written in dimensionless form as follows

@t�+∇ · (�u) = 0;

@t�u +∇ · (�(u ⊗ u) + p) = 0;

@tE +∇ · (u(E + p)) =∇ · (	∇T )− �(4�B(T )− ’): (1)

�; u = (u1; u2; u3)T; p; E; T and ’ denote, respectively, the mass density, the 6ow velocity, the
thermal pressure, the total energy, the temperature and the radiative energy. In the above and in
what follows bold face type denote vector quantities. The equation of state

p= R�T = (�− 1)
(
E − �

2
u2
)
; (2)
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is required, where R is the gas constant and � is the speciKc heat ratio. 	 and � denote respectively,
the heat conductivity and the absorption coeAcients. The function B(T ) = aRT 4, with aR is the
radiation constant.
To close the system (1) an equation for the radiative energy is needed. For this end we consider

two approaches
The well known P1 approximation [7,10] given by

∇ ·
(−1
3�

∇’
)
+ �’= 4��B(T ): (3)

The M1 approximation studied in [5,9] as

∇ · � + �’= 4��B(T );

∇ · (D’) + �� = 0; (4)

where the Eddington tensor D is deKned as

D=
1− �
2

I +
3� − 1
2

f ⊗ f
‖f‖2 ; with f =

�
’
; and � =

3 + 4‖f‖2
5 + 2

√
4− 3||f ||2 :

Note that if we set D= 1
3 I, where I is the identity matrix, then Eqs. (4) are reduced to the P1 model

(3). Henceforth we term P1 to Eqs. (1)–(3) and M1 to Eqs. (1)–(4), and we deKne its associated
radiative 6uxes as

fP1 =
−1
3�

∇’; and fM1 =
�
’
; (5)

and the normalized 6uxes are f̃P1 = fP1=c, f̃M1 = fM1=c, where c is the light speed in the vacuum.
As will be shown in Section 4, it is important to note that f̃M1 is bounded below one (‖f̃M1‖6 1).
This limitation is not satisKed by f̃P1 .
Notice that in (1) we have assumed the thermodynamic equilibrium, i.e., the radiative and the

6uid temperatures are equal. Furthermore, the models P1 and M1 are deKned in a space domain �,
time interval [0; T ] and subject to appropriate boundary and initial conditions.
A natural way to approximate solutions to P1 or M1 consists of splitting the set of Eqs. (1)–(3)

or (1)–(4) in the two following sets of equations

@tU + @xF(U) + @yG(U) + @zH(U) = 0; (6)

for hydrodynamic and

@tE −∇ · (	∇T ) =−�(4�B(T )− ’);

−∇ ·
(
1
3�

∇’
)
= �(4�B(T )− ’); (7)
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for P1 or

@tE −∇ · (	∇T ) =−�(4�B(T )− ’);

∇ · � = �(4�B(T )− ’);

∇(D’) =−��; (8)

for M1. Here

U =




�

�u1

�u2

�u3

E



; F=




�u1

�u21 + p

�u1u2

�u1u3

u1(E + p)



; G =




�u2

�u1u2

�u22 + p

�u2u3

u2(E + p)



; H =




�u3

�u1u3

�u2u3

�u23 + p

u3(E + p)



:

Numerically, we solve the P1 or M1 model through consecutively solving Eq. (6). The total energy
obtained through solving (6) is only an intermediate solution, which should be updated through Eqs.
(7) for P1 model or (8) for M1 model.

3. Numerical procedure: hydrodynamics

For simplicity in formulation, we consider only the two-dimensional case of (1), and the extension
to the three-dimensional case is straightforward. To discretize in space, we cover � by the numerical
nonuniform grids

{(xi; yj)T; xi = ihi; yj = jhj; i = 1; 2 : : : ; Nx; j = 1; 2 : : : ; Ny}:
We use the notations

!ij =
1
hihj

∫ xi+1=2

xi−1=2

∫ yi+1=2

yi−1=2

!(x; y) dxdy; and !i+(1=2) j+(1=2) = !(xi+1=2; yj+1=2):

We deKne the following diHerence operators

Dx!ij =
!i+(1=2) j − !i−(1=2) j

hi
; Dy!ij =

!ij+1=2 − !ij−1=2
hj

: (9)

Then, a semi-discrete approximation for (6) can be directly written as

dUij

dt
+DxVij|Vij=F(Uij) +DyWij|Wij=G(Uij) = 0; (10)

where the numerical 6uxes are given for the kth component (k = 1; 2; 3; 4) by

Ui+(1=2) j =
Uij + Ui+1j

2
− Vi+1j − Vij

2	k
+
�x;+ij + �x;−i+1j

4	k
;
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Vi+(1=2) j =
Vij + Vi+1j

2
− 	k

Ui+1j − Uij

2
+
�x;+ij − �x;−i+1j

4
;

Uij+1=2 =
Uij + Uij+1

2
− Wij+1 −Wij

2&k
+
�y;+ij + �y;−ij+1

4&k
;

Wij+1=2 =
Wij +Wij+1

2
− &k

Uij+1 − Uij

2
+
�y;+ij − �y;−ij+1

4
:

	k and &k are given by the kth eigenvalue of the Jacobian matrix @F=@U and @G=@U, respectively:
	1 = |u − cs|; 	2 = 	3 = u; 	4 = u + cs and &1 = |v − cs|; &2 = &3 = v and &4 = v + cs. The sound
speed cs is deKned by c2s = �p=�. The slope limiters are deKned as

�x;±ij = (Vi+1j ± 	kUi+1j − Vij ∓ 	kUij))(*
x;±
ij );

*x;±ij =
Vij ± 	kUij − Vi−1j ∓ 	kUi−1j
Vi+1j ± 	kUi+1j − Vij ∓ 	kUij

;

�y;±ij = (Wij+1 ± &kUij+1 −Wij ∓ &kUij))(*
y;±
ij );

*y;±ij =
Wij ± &kUij −Wij−1 ∓ &kUij−1
Wij+1 ± &kUij+1 −Wij ∓ &kUij

:

For the slope limiter function ) we used the Van Leer limiter function [8]. In principle, the above
space discretization is based on combining the second order MUSCL method [8] with the relaxation
scheme [6], which the authors referred to as relaxed scheme. The main advantage of considering
such a method is that no Riemann solvers are involved during the discretization.
The time integration of the semi-discrete equations (10) may be handled by any implicit ode’s

solver, since they are computationally without risk by virtue of their accuracy and linear uncondi-
tionally stability. This allows for larger time steps in the integration process. However, due to the
large set of nonlinear algebraic equations at each time step, these methods may be quite slow. In
this section we use the modiKed three-stages second order explicit Runge–Kutta scheme introduced
in [1]. It is shown that the scheme is I-stable and possess a large stability region over the classical
second order Runge–Kutta method.
Let the time interval [0; T ] be divided into subintervals [tn; tn+1] of length Ot such that tn = nOt,

we denote !ij;n =!ij(tn). Hence, the implementation of the hydrodynamic algorithm to solve (6) is
carried out in the following simple steps: Given Uij; n; Uij; n+1 is computed by

U(1)
ij =Uij; n − Ot

3
(DxVij; n|Vij; n=F(Uij; n) +DyWij; n|Wij; n=G(Uij; n));

U(2)
ij =Uij; n − Ot

2
(DxV

(1)
ij |V(1)

ij =F(U(1)
ij )
+DyW(1)

ij |W(1)
ij =G(U(1)

ij )
);

U(3)
ij =Uij; n −Ot(DxV

(2)
ij |V(2)

ij =F(U(2)
ij )
+DyW(2)

ij |W(2)
ij =G(U(2)

ij )
);

Uij; n+1 =U(3)
ij : (11)
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Notice that, the new solution vector Uij; n+1 computed by (11) contains, density, moments and energy
at the new time level tn+1. To update the pressure we used the state equation (2). Moreover, using
the hydrodynamic approach (10)–(11) neither linear algebraic equation nor nonlinear source terms
can arise. In addition the algorithm is TVD, stable under the usual CFL condition and second order
accurate in space and time.

4. Numerical procedure: radiation

Unlike the hydrodynamic stage where much care must be given to the space discretization and
explicit schemes to resolve the shocks accurately, in the radiative stage of the splitting, attention is
given to time integration and implicit schemes. Since the hydrodynamic solution U has been updated
through the Krst stage of the splitting (6), the second stage of the splitting is used to update the
total energy E and therefore the temperature T together with the radiative energy ’. Therefore, for
P1 model, we write Eqs. (7) as

@tẼ −∇ · (	∇T ) =−�(4�B(T )− ’);

−∇ ·
(
1
3�

∇’
)
= �(4�B(T )− ’); (12)

where Ẽ is the part of energy depending on temperature, Ẽ = R�T=(�− 1).
In order to maintain the same order of accuracy as in the hydrodynamic stage, we use the Crank–

Nicolson method to integrate in time (12) along with the monotone iterations [11]. Hence, using the
same notations as in the previous section, Eqs. (12) transform to

T (0)ij; n+1 = Tij;n; ’(0)ij; n+1 = ’ij;n;

−D2
h

(
Ot	
2

T (m+1)n+1

)
ij

+
R�
�− 1 T

(m+1)
ij; n+1 + -1T

(m+1)
ij; n+1 = -1T

(m)
ij; n+1 + F1;

−D2
h

(
1
3�

’(m+1)n+1

)
ij

+ �’(m+1)ij; n+1 + -2’
(m+1)
ij; n+1 = -2’

(m)
ij; n+1 + F2; (13)

where the diHerence operator D2
h =D2

x +D2
y, with

D2
x(.!)ij =

.ij + .i+1j
2

!i+1j − !ij

h2i
− .i−1j + .ij

2
!ij − !i−1j

h2i
;

D2
y(.!)ij =

.ij + .ij+1
2

!ij+1 − !ij

h2j
− .ij−1 + .ij

2
!ij − !ij−1

h2j
:

F1 =
R�
(�−1) Tij;n +

Ot
2 (D

2
h(	Tn)ij − �(4�B(T (m)ij; n+1) + 4�B(Tij;n)− ’ij;n − ’(m)ij; n+1));

F2 = �4�B(T (m)ij; n+1) and -1; -2 are nonnegative monotone terms choosing at each time step tn such
that

-1 = max
ij

{
−@F1
@T

(Tij;n; ’ij;n)
}
; -2 = max

ij

{
−@F2
@’
(Tij;n; ’ij;n)

}
:
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To compute (Tn+1; ’n+1) from (13) one has to solve a linear system of equations of the form
A +

(
R�
�− 1 + -1

)
I 0

0 B+ (� + -2)I



(
T (m+1)n+1

’(m+1)n+1

)
=

(
-1T

(m)
n+1 + F1

-2’
(m)
n+1 + F2

)
; (14)

m = 0; 1; : : : ; where A and B are band-matrices generated by the diHerence operator D2
h for T and

’, respectively.
We now turn our attention to the M1 model. The Krst equation in (8) can be solved in similar

way as in (13), and the remainder equations can be written in vector form as

@xF(U) + @yG(U) =−�U+S(T ); (15)

U=




’

/1

/2


 ; F(U) =




/1

D11’

D21’


 ; G(U) =




/2

D12’

D22’


 ; S(T ) =



�4�B(T )

0

0


 :

Dij (i; j=1; 2) are the entries of the Eddington matrix D. Assuming the use of the space discretization
introduced in the hydrodynamic procedure, the discrete form of (15) reads

DxVij|Vij=F(Uij) +DyWij|Wij=G(Uij) + �Uij =S(Tij): (16)

The diHerence operators Dx and Dy are given in (9). Linearizing the 6uxes in (16) and iterating
lead to the following radiative algorithm for the M1 model

AT (m+1)n+1 +
(

R�
�− 1 + -1

)
T (m+1)n+1 = -1T

(m)
n+1 + F1(T

(m)
n+1; ’

(m));

(A(m) +B(m))U(m+1) + �U(m+1) =−DxV
(m) −DyW

(m)

+(A(m) +B(m))U(m) +S(T (m)n+1); (17)

where the Jacobian matrices A and B are given by


0 1 0

D11 + ( @D11@’ )’ ( @D11@/1
)’ ( @D11@/2

)’

D21 + ( @D21@’ )’ ( @D21@/1
)’ ( @D21@/2

)’


 and




0 0 1

D12 + ( @D12@’ )’ ( @D12@/1
)’ ( @D12@/2

)’

D22 + ( @D22@’ )’ ( @D22@/1
)’ ( @D22@/2

)’


 ;

respectively. Once again to compute the solution (Tn+1;Un+1) from (17) requires the inversion of a
large sparse banded matrix of the form

A +
(

R�
�− 1 + -1

)
I 0

0 B̃+ �I



(
T (m+1)n+1

U(m+1)

)
=

(
-1T

(m)
n+1 +F1

B̃U(m) + F̃2

)
; (18)
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m = 0; 1; : : : ; with B̃ = A(m) + B(m) and F̃2 = −DxV
(m) − DyW

(m) + S(T (m)n+1). Note that each
iteration in the P1 or M1 radiative stage requires the solution of a linear system involving a
block tridiagonal matrix. The resulting solution process is much more economical than the New-
ton algorithm in terms of computer storage and CPU time. We would like to point out that
another way to solve the equations (15) is to introduce a time marching procedure. Then the
methods (10)–(11) remain suitable to compute the required steady state solution provided the
size of the time step is restricted such that the radiative signal propagate no more than one
grid cell.
As indicated above, all the methods used for space and time discretizations in hydrodynam-

ics and radiation procedures are second order accurate: In hydrodynamics step, the second order
MUSCL [8] and second order Runge–Kutta [1] were used, while radiation step employed sec-
ond order central diHerencing and second order Crank-Nicolson method. In order to link these
procedures in a splitting algorithm which conserves second order accuracy we have
used in our numerical experiments the second order accurate Strang splitting [12].

5. Applications

In this section two numerical tests are presented to validate the procedures discussed in previ-
ous sections, as well as to compare the P1 results to those obtained by M1 computations. Here,
the resulting linear system of algebraic equations from (14) or (18) is solved using the precondi-
tioned BI-CGSTAB [13] with a convergence criteria of 10−5. Furthermore, in all the computation
runs we set the heat conductivity 	 = 10−1 and the time step Ot = 10−3. The two-dimensional
example is the interaction between a wind and denser cloud [3]. The computational domain is a
rectangle of length 2 and height 1 divided into 200 × 100 grid cells. The initial ambient gas do-
main has the state U = (1; 0; 0; 0:09)T and T = 0:09, then a circular cloud of radius 0.15 which
is 100 times denser than the gas state is centred at (0:3; 0:5) in the rectangle. The wind is in-
troduced through the left boundary, at which Dirichlet condition is imposed as U = (1:5; 6; 0; 30)T

and T = 2. Out6ow condition is applied along the remainder boundaries. The absorption coeA-
cient � is Kxed to 10 in the pre-front of the cloud and 0.1 in the post-front. Fig. 1 shows the
numerical results for P1 and M1 models at t = 0:5. It is apparent that the density and the temper-
ature structures are similar for both models. However, the corresponding norm of the normalized
6uxes are totally diHerent. A comparison between ‖f̃P1‖ and ‖f̃M1‖ at x = 0:45 is reported in
the Fig. 2. It is obvious that the 6ux fM1 is limited by the speed of light, this condition is not
satisKed by the 6ux fP1 . Furthermore, the density and temperature plots in Fig. 1 compare well
with those presented in [3,4]. Our numerical procedures capture the shock and resolve the correct
solution well.
The next three-dimensional example is the shock propagation in a unit cube with a centred and

highly opaque tube involving incoming 6ow and thermal source on the front boundary -int as
showed in Fig. 3(a). Initially the ambient gas in the cube has the state U = (1; 0; 0; 300)T and
T = 300. The boundary state at -int is set to U = (1:5; 0; 100; 9000)T and T = 1000, homoge-
neous Neumann boundary are used on other boundaries and the velocities u1 and u2 vanish on
-ext. The absorption coeAcient � is Kxed to 1000 in the tube and 0.001 otherwise, and we used
50 × 50 × 50 gridpoints. These gridpoints are reKned by half in the opaque tube. In Fig. 4 we
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Fig. 1. Density, temperature and norm of normalized 6ux at t=0:5 for theP1 model (left column) andM1 model (right column).

Fig. 2. A cross section of ‖f̃ P1‖ and ‖f̃M1‖ at x = 0:45 for two diHerent instants.

Fig. 3. (a) Geometry of the cube with an opaque tube. The opacity � is set to 1000 in the tube and 0:001 otherwise.
(b) A cross section of ‖f̃ P1‖ and ‖f̃M1‖ at z = 0:5; y = 0:2.
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Fig. 4. Temperature, a cross section of the temperature and norm of normalized 6ux at z = 0:5 for the P1 model (left
column) and M1 model (right column).

report the temperature propagation in the cube as well as a cross section of the temperature and the
norm of normalized norm 6uxes at t = 0:1. Only a part of the computational domain is shown. The
proKle of the norms ‖f̃P1‖ and ‖f̃M1‖ at z = 0:5; y = 0:2 is displayed in Fig. 3(b). As we have
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pointed out in the previous example, no diHerence between the temperature patterns in both mod-
els. However, regarding to the 6uxes fP1 and fM1 in Figs. 4 and 3(b), the obtained results are
diHerent.

6. Conclusion

We have proposed two approaches for the multidimensional radiation hydrodynamic problems
along with numerical algorithm to compute their solutions. The new algorithm consists on splitting
the problem in two sets of equations. The set of hydrodynamical equations is approximated by
a nonoscillatory relaxation scheme without using neither Riemann solvers nor solving nonlinear
systems, while the set of radiative equations is iteratively solved through a monotone Crank-Nicolson
method. Numerical experiments have been carried out on two examples, and upon the results obtained
we would like to mention that coupling the hydrodynamics to the M1 model which based on entropy
principles has 6ux limited by the light speed. This property is not preserved by the P1 model which
is based on asymptotic approach, it generates numerical solutions even the radiative 6ux is above
the light speed. Nevertheless to say that, in an opaque medium with constant absorption coeAcient,
the P1 approximation can be more eAcient and more accurate than Rosseland approach for the
hydrodynamic radiation problems.
The multidimensional algorithms presented in this paper can be highly optimized for vector com-

puters, because they are explicit procedures for the Krst stage and contain no recursive elements
neither nonlinear systems in the second stage.
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