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We introduce a new matrix model that describes Causal Dynamical Triangulations (CDT) in two
dimensions. In order to do so, we introduce a new, simpler definition of 2D CDT and show it to be
equivalent to the old one. The model makes use of ideas from dually weighted matrix models, combined
with multi-matrix models, and can be studied by the method of character expansion.
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1. Introduction

It has long been hoped that a theory of quantum gravity could
be defined as the continuum limit of a discretised gravitational
path integral. Using the Dynamical Triangulations (DTs) discreti-
sation, the histories to be summed over are “triangulations” built
by gluing together equilateral simplices in every possible config-
uration, weighted appropriately for gravity [1]. With this simple
definition, many results of physical interest can be obtained by
analytical means. In 2D, matrix model techniques [2] have been
particularly useful in this regard, allowing the solution of many
models of 2D quantum geometry and matter.

In 4D the original DT model does not seem to give physically
acceptable results. However, adding a physically motivated restric-
tion on the space of configurations leads to the better-behaved
Causal Dynamical Triangulation (CDT) models [3]. Here, all the ob-
servables that have been calculated are consistent with the emer-
gence of an extended 4D geometry at large scales [4,5]. The ability
to calculate genuine generally covariant observables from a theory
of quantum gravity, with good results, is a unique and important
achievement for this approach.

However, not all of the analytical tools that were so useful in
the case of DTs have been successfully carried over to the case
of CDTs. In the new model, the space of configurations is limited
by demanding that: (a) there exists a global time foliation; (b) that
spatial topology change is disallowed. At first glance, these “causal”
conditions seem to be of an irreducibly global nature. Many of the
analytical techniques used for DTs are not easily compatible with
the imposition of such a global condition. Other techniques have
found a role in 2D CDTs, which indeed has been solved, in the
pure gravity case, by several different means [6,7]. Unfortunately
none of these methods has proved useful in the presence of mat-
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ter (where the only analytical results come from high-temperature
expansion [8]), or in higher dimensions, with the only exception
of the heap of pieces representation [9] of a reduced model of 3D
CDT [10].

In the original 2D DT model, the partition function can be re-
expressed as a matrix integral, which in many cases can be ex-
plicitly computed. The techniques have been generalised in many
ways (e.g. adding matter, different face shapes, and non-standard
weights). However, it has until now been thought impossible to
impose the CDT conditions directly on a matrix model, and ap-
plications of matrix models to CDTs have followed other ideas
[11–13]. Restrictions on the triangulations generated by a matrix
model typically depend only on the properties of local structures
such as vertices and faces. It is not obvious how restrictions of this
type could be used to introduce global foliations and ban topology
change.

In this Letter, we exhibit a novel matrix model that imposes
the causal conditions, and generates CDT configurations. As in the
original DT case, the correspondence between the matrix model
and CDTs applies directly at the discrete level. The fact that this
is possible is interesting in itself, opening up new possibilities for
the study of matrix models and CDTs in general. Using this ma-
trix model, we can address problems in the CDT model, such as
finding the critical point. The results of these calculations will be
presented elsewhere.

The observation that makes a matrix model formulation of CDTs
possible is that global restrictions, such as topological restrictions,
can sometimes be brought about as consequences of local restric-
tions, by what might be called “rigidity”. For instance, if a finite
tessellation is restricted to have only four-sided faces, and only
4-valent vertices, it is easy to see that the only allowed topology
is the torus, since the tessellation must be a regular lattice. This
rigidity has been noted in the context of matrix models before,
where “dually weighted models” have been developed that allow
non-trivial weights that depend on both the valency of vertices
and the number of sides of faces [14–16]. The CDT restriction can
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be expressed in a similar way, as a “partial rigidity”. In a 2D CDT,
each vertex in the triangulation is incident on exactly two space-
like edges, that connect it to its neighbours in its 1D spatial slice.
This property, along with the spacelike/timelike colouring of the
edges bounding the triangles, completely characterises 2D CDTs, as
we prove below in Section 2.

Expressed in this new way, the CDT condition can be imposed
on a matrix model (see Section 3). The model generalises the
techniques of dually weighted matrix models to impose the first
restriction, and it is a 2-matrix model so that it incorporates the
spacelike/timelike labeling. We envisage a new application of the
character expansion methods mentioned above as a possible way
to solve the matrix model; some steps towards the solution are
presented in Section 3.1.

2. A new way of defining 2D CDTs

The following definition of 2D CDTs follows from the standard
one [6] by replacing the terminology of triangulations with that of
the dual fatgraph. Vertices in the triangulation are dual to faces
bounded by loops (or “boundary-components”) in the fatgraph as
usual; now, spacelike edges in the triangulation are dual to time-
like edges in the dual and vice versa. Below we will use the colour
labels A and B for spacelike and timelike (the same names that
we later give the corresponding matrices in the matrix model). In
a CDT, triangles, which had two timelike edges and one spacelike
edge, become “A AB vertices” incident on two spacelike and one
timelike edge in the dual.

A CDT fatgraph is a finite connected fatgraph obeying the fol-
lowing conditions. (1) All vertices are A AB . (2) There are disjoint
sets of faces, which we call “strips”, each of which is connected,
and such that its members are glued on their timelike edges only
to other members of the set (these are dual to cycles of space-
like edges in the triangulation). Each face in the strips in the
dual fatgraph has exactly two timelike edges glued to the adja-
cent faces in the same strip. (3) It is possible to label these strips
s0, s1, . . . , sT −1, such that the following holds: each face li (with
labels natural to the cyclic order of the strip) on strip st is glued
by spacelike edges to faces on strip st+1 (this addition is mod T
for toroidial topology, while the rule is ignored for strip sT −1 for a
cylinder). These gluings exhaust all of the spacelike edges (apart
from the initial and final strips in the case of a spherical CDT,
which are then glued to an initial or final face bounded entirely
by spacelike edges).1 The original description of 2D CDTs in [6]
mentions other properties, but they follow easily from those given
here.

This formulation is not suited to the application of matrix
model techniques. For this reason, we introduce an alternative def-
inition: a CDT fatgraph is a finite connected fatgraph with only
A AB vertices, and such that every face has either 2 or 0 timelike
edges. Below, we will show that the new definition is equivalent
to the original CDT definition.

One of the crucial features of the definition of 2D CDTs is
the lack of spatial topology change: each time slice consists of
one connected strip. The new definition reveals that a more lo-
cal restriction, that is, a restriction on the colourings of vertices
and loops in the fatgraph, can be used to enforce this topologi-
cal property. In order for there to be topology change, one of two
things would have to be allowed. If all vertices are to remain A AB ,

1 In this definition, there is nothing to stop self-gluings and double-gluings be-
tween vertices, so a spatial slice may have length 2 or 1. Also we have included an
initial and final face, dual to an initial or final vertex rather than a boundary, so
that these CDTs are spherical in topology rather than cylindrical.
Fig. 1. (a): A triangulation with time slices, and with triangles with 2 timelike edges
and one spacelike edge, but with spatial topology change. Timelike edges are shown
in red, and the slashes indicate identified edges. The same triangulation is shown
twice to illustrate both the time slices and the fact that, in time slice t , there is a
branching vertex incident on more than 2 spacelike edges. (b): The dual fatgraph of
the same triangulation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this Letter.)

the only way is to allow “discrete Morse points” (or “branching
points”) in the triangulation [6]. As shown in Fig. 1, such a branch-
ing point has more than two spacelike edges incident on it, leading
to a face in the dual with more than two timelike edges. Another
way of introducing topology change would be to add branching
points in the dual, so that one strip would be glued to more than
one strip in the same time direction. This cannot happen without
there being a vertex incident on more than 2 spacelike edges; the
fact that all vertices are A AB is therefore also crucial. The com-
ments below indicate how this CDT gluing between strips follows
from the new definition.

It can immediately be seen that a fatgraph satisfying the orig-
inal CDT definition also satisfies the new CDT definition given
above. The converse is not so obvious; to show this, we must take
a fatgraph Γ conforming to the new definition and show that
it obeys each part of the (lengthier) original definition in turn.
Part (1) of the definition is also a part of the new definition. As
for part (2), in such a fatgraph Γ the set of faces containing two
timelike edges can be partitioned based on which faces glue on
timelike edges (this is dual to partitioning vertices by connectivity
on spacelike edges), which is a partitioning into strips as described
above. This leaves part (3) of the original definition, which is less
trivial.

Let us consider the topology of a strip s in Γ , considered as
a set of faces joined only by the gluings of their timelike edges.
The boundary is then the set of all spacelike edges in the strip.
Because every fatgraph corresponds to an orientable surface (see
e.g. [2,17]), and each face is connected to only two others in the
strip, the strip has the topology of a standard strip (as opposed to,
say, a Möbius strip). The boundary of such a strip is composed of
two cycles. This observation allows us to show that the fatgraph
does obey the third part of the original CDT definition.

First let us treat the case in which Γ contains no completely
spacelike faces (i.e. faces containing no timelike edges). In this
case, all spacelike edges are in the boundaries of strips. Each strip
is glued to other strips (or to itself) by its spacelike edges, which,
as previously shown, are partitioned into two spacelike cycles per
strip. If one such cycle was glued to spacelike edges in more
than one other such cycle, three spacelike edges would somewhere
meet at a vertex, contradicting our assumptions. Thus, each strip is
glued to only two others. The collection of strips themselves, with
the relation between them of gluing, must form a cycle (they can-
not form multiple cycles or otherwise the graph would be discon-
nected, which is disallowed by assumption). We can now choose
a labelling of strips s0, s1, . . . , sT −1 consistent with this cyclic or-
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der on the strips. These gluings exhaust all of the spacelike edges.
This completes the proof that these fatgraphs obey the original
CDT definition — more specifically, the definition of toroidial CDTs.

There remains the case in which Γ contains some completely
spacelike faces. The boundary loop of a completely spacelike face
is a spacelike cycle. Again, this must be glued to exactly one
other spacelike cycle. It is easy to see that only 2 such faces
with no timelike edges can be included in the fatgraph if it is to
be connected. Hence we can repeat most of the argument from
the former case. In this case, it is possible to label the strips
s0, s1, . . . , sT −1, such that the following holds: faces in strip st are
glued by spacelike edges to faces on strip st+1, apart from when
t = T − 1. These gluings exhaust all of the spacelike edges, except
those from strips s0 and st−1, which also glue to two completely
spacelike faces. Thus, these graphs fulfil the definition of spherical
CDTs given above.

3. The matrix model

We are now going to define a two-matrix model that generates,
via its perturbative expansion, the fatgraphs discussed in the pre-
vious section, and whose partition function Z will be related to
that of the CDT model in the usual way, i.e.

ZCDT = lim
N→∞ ln Z . (1)

The two-matrix model is defined by its partition function

Z =
∫

dA dB e−N Tr[ 1
2 A2+ 1

2 (C−1 B)2−g A2 B], (2)

with C an external matrix satisfying (in the large N limit) the con-
dition

Tr
(
Cm) = Nδ2,m, for m � 1. (3)

It is not hard to see that such model generates graphs for which in
each face there are always two (or zero) B-lines, and as explained
in the previous section this is enough to impose the “CDT con-
dition” on the dual triangulation. From standard analysis we can
read off the free (g = 0) propagators of the matrix model:

〈Aij Akl〉0 = 1

N
δilδkj, (4)

〈Bij Bkl〉0 = 1

N
CilCkj, (5)

〈Aij Bkl〉0 = 0, (6)

from which we find that in the expansion in Feynmann graphs
of (2) a face contributes a factor of Tr(Cm) with m being the num-
ber of internal B-lines, and hence we can control such number
by imposing conditions on Tr(Cm), as in (3). Note that this is a
generalization of the standard case where, being C = 1, a face con-
tributes just a factor N . On the other hand and just as usual each
edge brings a factor 1

N and each vertex a factor gN . In both cases
the factors N gather to give for each graph Γ a global Nχ(Γ ) where
χ(Γ ) = F − E + V = 2 − 2h is its Euler characteristic (F , E and V
are respectively the number of faces, edges, vertices of the graph
and h the number of handles of the surface on which it can be
drawn), so that the expansion in 1/N is effectively a topological
expansion, as first shown by ’t Hooft [18].

The model can be simplified by noting that we can perform the
integration over B , because it is a simple Gaussian, and obtain (up
to a multiplicative constant which we discard from now on in the
expression of the partition function)

Z =
∫

dA e−N Tr[ 1
2 A2− g2

2 (A2C)2], (7)
which looks similar to the standard one-matrix model which de-
scribes two-dimensional Euclidean quantum gravity and which
was originally solved in [19] (note that this kind of reduction from
two matrices to one matrix was considered in [20] for the case
C = 1 showing that a model with Lorentzian triangles without fur-
ther restrictions would be in the same universality class as the
standard Euclidean model) but with the important modification in
the vertex which turns out to be crucial. One can understand the
integration over the matrix B as the gluing of triangles along their
spacelike edge, which can be done only in one way, and which
gives rise (if there are no boundaries) to a model of squares with
only timelike edges. The presence of the external matrix C intro-
duces an anisotropy for the squares, while the condition (3) acts
to rigidly transfer such anisotropy from local to global level, i.e. to
the whole quadrangulation.

3.1. Character expansion

The standard reduction to eigenvalues is not directly available
in our case because, as [A, C] �= 0, the two matrices are not simul-
taneously diagonalizable, so we need some fancier trick to solve
the model, like the character expansion [14–16]. Indeed in terms
of reduction to eigenvalues our interaction term poses exactly the
same problem as the AB AB interaction of [16],2 i.e. we have to
perform the integral∫

dΩ eN g2

2 Tr(ΩΛ2Ω†C)2
, (8)

where Λ is the diagonal matrix of eigenvalues of A. Unlike the
case of the Itzykson–Zuber–Harish–Chandra integral (which differs
from our problem for the absence of the overall square in the
exponent) there is no exact formula for this kind of integral. Fol-
lowing [16] we can instead perform the character expansion

eN g2

2 Tr(A2C)2 ∼
∑
{h}

(
N

g2

2

)#h/2
�(he)�(ho)∏
i(

he
i

2 )!(ho
i −1
2 )!

× sgn

[∏
i, j

(
he

i − ho
j

)]
χ{h}

(
A2C

)
, (9)

where the sum is over all integers hi such that hN > hN−1 > · · · >
h1 � 0 and which have to be in equal number even (he) and odd
(ho), χ{h}(x) is the character of the group element x (the group
is GL(N) in our case) in the representation labelled by the set of
integers {h}, #h = ∑

hi − 1
2 N(N − 1) is the total number of boxes

in the corresponding Young tableau, and �(x) is the Vandermonde
determinant.

Now we can perform the integration over the unitary group us-
ing the character orthogonality relation

∫
dΩ χ{h}(ΩΛ2

AΩ†ΛC ) =
χ{h}(A2)χ{h}(C)/d{h} (where d{h} is the dimension of the represen-

tation given by d{h} = �(h)/
∏N−1

i=1 i!), to obtain

Z ∼
∑
{h}

(
N

g2

2

)#h/2

c{h}χ{h}(C)I{h}, (10)

where c{h} is the following coefficient ([x] denotes the integer
part),

c{h} ≡ 1∏
i[hi/2]!∏i, j(h

e
i − ho

j)
, (11)

2 Just replace their A with our A2 and their B with our C . Of course our is a
completely different model, because of the interaction containing four powers of A
rather than two, because C is an external matrix, and because we have no other
self-interaction term; but what we are interested in here is the similar xyxy struc-
ture which we want to disentangle.
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and I{h} is the matrix integral

I{h} ≡
∫

dA χ{h}
(

A2)e− N
2 Tr A2 ≡ 〈

χ{h}
(

A2)〉
0, (12)

which we have rewritten in terms of the full matrix for esthetic
reasons (the angular integration is now just an overall constant,
and hence we have the freedom to move it in and out of the par-
tition function). Using the formula

χ{h}(C) = c

(
N

2

) 1
2

∑
i hi �(he)�(ho)∏

i(
he

i
2 )!(ho

i −1
2 )!

sgn

[∏
i, j

(
he

i − ho
j

)]
, (13)

originally given in [15], for the character of a matrix satisfying the
condition (3), we can rewrite Z as

Z ∼
∑
{h}

(
N

g

2

)#h

c2
{h}�(h)I{h}. (14)

We have now succeeded in reducing the original integral in O (N2)

variables to a problem in O (N) variables, and this is a promising
step for its solution.

Unfortunately the integral (12) is not of the Di Francesco–
Itzykson type [14], and an exact formula is not known. Another
possible way to tackle the evaluation of the partition function (10)
could be a double saddle point method along the lines of [16], but
again the quadratic dependence on A in the character makes the
existing results difficult to use, and we could not obtain sensible
saddle point equations.

We could of course simply rely on the equivalence of the model
to usual CDT, as proven in Section 2, and hence conclude that the
model has already been solved. Although that would be a com-
pletely legitimate attitude, we find it instructive to try and take
some further steps within the character expansion method, espe-
cially in view of the fact that, if successful, this method might be
extended to solve other CDT models that have not been solved by
other means.

In order to proceed let us then look for a moment at the par-
tition function Z1 for the usual matrix model with quartic vertex,
which is obtained by substituting C = 1 in (7), and which was first
solved in [19]. If in (10) we substitute C = 1, we find

Z1 ∼
∑
{h}

(
N

g2

2

) #h
2

c{h}d{h} I{h}

=
∑
{h}

(
N

g2

2

) #h
2 �(he)�(ho)∏

i[hi
2 ]!

〈
χ{h}

(
A2)〉

0, (15)

which of course in this expansion presents the same difficulty as
our new model. In order to find an expression for 〈χ{h}(A2)〉0
we compare (15) to the expansion that was derived for the same
model in [15],

Z1 ∼
∑

{h(0),h(1),h(2),h(3)}

(
g2

2N

) #h
4 3∏

ε=0

�2(h(ε))
∏

i h(ε)
i !!

∏
i(

h(ε)
i −ε

4 )!
×

∏
i, j

(
h(0)

i − h(2)
j

)(
h(1)

i − h(3)
j

)
, (16)

where the integers h have factored into 4 groups of N/4 integers
h(ε) with ε = 0,1,2,3 denoting the congruence modulo 4. Match-
ing powers of g among (15) and (16), we can conjecture

〈
χ{h}

(
A2)〉

0 ∼ 1

N#h

3∏
�2(2h(ε)

)∏(
2h(ε)

i

)!!, (17)

ε=0 i
as the extension of the Di Francesco–Itzykson formula we were
looking for. We stress that this is by no means a proof, but just a
conjecture that we would like to test against the known solution
of CDT.

Substituting (17) into our partition function (14) we reduce it
to a pure sum over representations,

Z ∼
∑

{h(0),h(1),h(2),h(3)}

(
g

2

) #h
2 3∏

ε=0

�2(h(ε))
∏

i h(ε)
i !!

(
∏

i(
h(ε)

i −ε

4 )!)2

×
∏

i, j(h
(0)
i − h(2)

j )(h(1)
i − h(3)

j )∏
i, j(h

e
i − ho

j)
. (18)

We can now proceed to try and solve this model via a saddle point
method for the shifted highest weights.

Similarly to what is usually done in the case of the eigenvalues,
in the large N limit it is useful to rescale hi → hi/N , introduce the
density distribution ρ(h) = 1

N
∂ i
∂h , for which we assume (following

[15,16]) that

ρ(h) = 1, for 0 < h < h1,

0 < ρ(h) < 1, for h1 < h < h2, (19)

for some h1 and h2 to be determined (note that the indices 1 and
2 have nothing to do with the index i which is omitted in the
continuous notation). This condition is simply the statement that
in a typical Young tableau of N rows there will be a lower fraction
of rows which are empty. Finally we define the resolvent function

H(h) =
h2∫

0

dh′ ρ(h′)
h − h′ = ln

h

h − h1
+

h2∫
h1

dh′ ρ(h′)
h − h′

= ln
h

h − h1
+ H̃(h), (20)

which as usual satisfies

/H(hi) = 1

N

∂

∂hi
log�(h), for hi ∈ [0,h2], (21)

where we used the notation /H(h) = 1
2 (H(h + iε) + H(h − iε)). As-

suming that, because of symmetry, the various sets of weights
should have the same distribution, we arrive at the following sad-
dle point equation:

/̃H(h) = −2 ln(2g) − ln
h

h − h1
, for h ∈ [h1,h2]. (22)

This equation constitutes a standard Hilbert problem [21] whose
solution is given by

H̃(h) = √
(h − h1)(h − h2)

×
∮
γ

dz

2π i

2 ln(2g) + ln z
z−h1

(z − h)
√

(z − h1)(z − h2)
, (23)

with the contour γ encircling counterclockwise the cut [h1,h2].
The integral can be evaluated by inflating the contour and catching
the pole at z = h and the logarithmic cut on [0,h1]. Taking the
signature of the square root to be + to the right of the cut, and
− to the left (and ±i respectively above and below the cut), and
adding back the logarithmic part of the resolvent we find
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H(h) = ln

[
h2 − h1

4g2

× h

h(h1 + h2) − 2h1h2 + 2
√

h1h2
√

(h − h1)(h − h2)

]
.

(24)

On this expression we have to impose the condition H(h) ∼ 1
h for

large h, which is a consequence of the normalization of the density
function ρ(h), and this fixes the parameters h1 and h2 to be h1 =
1−4g2

1+4g2 and h2 = 1+4g2

1−4g2 . As expected we find a critical point at gc =
1/2, which is exactly the critical point of CDT [6]. At the critical
point h1 = 0 and h2 = +∞, i.e. the distribution has no saturated
part and is excited all the way to h = +∞.

To turn the above derivation into a proper solution it would
of course be fundamental to prove the conjecture behind formula
(17), but it is encouraging to see that this gives the right result for
the critical point.

4. Conclusion

Matrix model techniques proved to be a powerful tool in the
study of 2D gravity before the introduction of CDTs. By combin-
ing ideas from multi-matrix models and dually weighted matrix
models, we have been able to extend the technique to CDTs in a
direct way. This has been achieved using the idea of “rigidity”: that
constraints on local structures in a fatgraph can have global con-
sequences. As we have seen, a restriction on colourings of vertices
and faces serves to impose the CDT condition with all its conse-
quences (for example, the restriction on global topology). It has
been observed that the CDT model is intermediate between the
unrestricted dynamical spacetime of the DT model, and the totally
rigid regular lattice. It is interesting to review this observation in
the light of the above results.

The standard CDT model of the type discussed above rules
out spatial topology change, and it is interesting to consider re-
admitting topology change in a controlled way in the above model,
as has been done in [12]. As mentioned in Section 2 this can be
done by allowing vertices connecting to four spacelike edges (e.g.
by allowing A4 vertices), or faces with four timelike edges (the
dual of this is shown in Fig. 1). The latter case would mean al-
tering (3), setting Tr(Cm) = Nδ2,m + Ncδ4,m for m � 1, where c is
a new “dual coupling” constant. Of course adding such extensions
without control would bring us back to the universality class of the
Euclidean DT, so we would instead have to scale correctly the new
coupling in the continuum limit to control the topology change,
in a similar fashion to what done in [12]. It would be interesting
to compare the results of this approach with those of [11–13] and
maybe establish a direct link.

The matrix model above will be studied further in a forthcom-
ing paper, using generalisations of the character expansion meth-
ods of [14–16]. Hopefully, the power of matrix model techniques
can then be applied to unsolved problems in 2D CDTs. Outstanding
among these is the addition of matter, and the derivation of inter-
esting results like those found for the “pure gravity” case. By com-
parison to previous work on DT matrix models, one could write
down models for these cases without great difficulty. For exam-
ple, one way of putting the Ising model on the CDT matrix model
would be to double the number of matrices, replacing A with A+
and A− (and perhaps also B with B+ and B−) in an analogous
way to the case of DTs. Application to the Potts model and others
would be similar.

The new perspective given here on CDTs is neither confined
to 2D nor to CDT. In three and four dimensions also, analytic
techniques that were of use in DTs [22] have previously been
inapplicable to CDTs, due to the form of the causal condition.
However, there are extensions of the claims of Section 2 that
can be conjectured to hold in higher dimensions. This leads to
a reformulation of the causal condition. It would be most inter-
esting to determine if this reformulation can overcome the bar-
riers to analytic progress in CDTs in three and four dimensions.
Investigations of this question by Daniele Oriti, Pedro Machado
and the authors are currently underway. Furthermore these new
way of imposing causality on the graphs might be of interest for
other approaches to quantum gravity such as Group Field The-
ory [23].
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