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Abstract

We provide a systematic way of dimensional reduction for (4 + 2n)-dimensional U(N) supersymmetric 
Yang–Mills (SYM) theories (n = 0, 1, 2, 3) and their mixtures compactified on two-dimensional tori with 
background magnetic fluxes, which preserve a partial N = 1 supersymmetry out of full N = 2, 3 or 4 in the 
original SYM theories. It is formulated in an N = 1 superspace respecting the unbroken supersymmetry, 
and the four-dimensional effective action is written in terms of superfields representing N = 1 vector and 
chiral multiplets, those arise from the higher-dimensional SYM theories. We also identify the dilaton and 
geometric moduli dependence of matter Kähler metrics and superpotential couplings as well as of gauge 
kinetic functions in the effective action. The results would be useful for various phenomenological/cosmo-
logical model buildings with SYM theories or D-branes wrapping magnetized tori, especially, with mixture 
configurations of them with different dimensionalities from each other.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Supersymmetric Yang–Mills (SYM) theories in higher-dimensional spacetime have been at-
tracting our attention from both theoretical and phenomenological points of view. First, they 
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appear in low-energy limits of some superstring theories. The superstring theories are great can-
didates for a unified theory including the quantum gravity and have actively evolved for decades. 
Besides their beautiful theoretical features, their phenomenological aspects also have come to 
draw our attention. The higher-dimensional SYM theories accommodate plausible fields for such 
phenomenological studies and many works have been done on the basis of SYM theories so far 
(see Ref. [1] for a review and references therein).

The SYM theories are also motivated by bottom-up approaches. It is known that, although 
the standard model (SM) is a successful theory to describe the nature of elementary particles 
discovered so far including the Higgs particle, there are some mysteries and unsatisfactory issues 
from a theoretical point of view in the SM, which may indicate the presence of new physics 
behind it. The basic ingredients of the higher-dimensional SYM theories relevant to their low-
energy phenomenology are supersymmetry (SUSY) and extra dimensional space, which are 
known as promising candidates for the new physics. Therefore, it is sensible to study the higher-
dimensional SYM theories as a particle physics model beyond the SM, even without mentioning 
superstring theories.

From a phenomenological perspective, the matter field profile in the extra dimensional space 
is one of the principal issues to study in higher-dimensional theories. Especially, it has a potential 
for generating the observed intricate flavor structure of the SM without introducing hierarchical 
input parameters, due to the localized profile of fields in extra dimensions [2]. It was indicated 
that the toroidal compactification of SYM theories with magnetic fluxes [3–5] yields product 
gauge groups, generations of chiral matter particles localized at different points on the tori, and 
potentially hierarchical Yukawa couplings among them [6]. It is remarkable that all of such phe-
nomenologically interesting features are derived as consequences of the existence of magnetic 
fluxes in extra dimensions.

Due to such a fine prospect, a wide variety of phenomenological studies on the magnetized 
toroidal/orbifold compactifications has been done [7–13]. For example, in Refs. [10,12], a semi-
realistic model based on a ten-dimensional (10D) magnetized U(8) SYM theory was proposed. 
This model contains all the SM gauge groups, fermion flavors, Higgs particles and their SUSY 
partners, those induced by magnetic fluxes in the extra-dimensional tori. Furthermore, the ob-
served quark and lepton masses and mixing angles can be successfully generated by certain 
non-hierarchical input parameters and vacuum expectation values of relevant fields.

The magnetic fluxes in the extra compact space is closely related to SUSY. Higher-
dimensional SUSY theories intrinsically possess N = 2, 3 and 4 SUSY in terms of four-
dimensional (4D) supercharges. From a phenomenological point of view, such an extended 
SUSY should be broken down to N = 1 or 0 in order to yield a chiral spectrum in the 4D 
effective theory. It is remarkable that the magnetic fluxes in extra dimensions generically break 
the higher-dimensional SUSY [3], and the number of remaining supercharges is determined by 
the flux configuration. Because N = 1 SUSY models, such as the minimal SUSY SM (MSSM), 
are phenomenologically and cosmologically attractive, it is worth studying higher-dimensional 
SYM theories compactified on tori with magnetic fluxes, those preserve N = 1 SUSY.

In Ref. [9], the authors provided a systematic way of dimensional reduction for 10D U(N)

SYM theories compactified with such intended configurations of magnetic fluxes, and derived 
a 4D effective action written in terms of N = 1 superfields, where the unbroken N = 1 SUSY 
becomes manifest. Furthermore, the dilaton and geometric moduli dependences of matter Kähler 
metrics and superpotential couplings as well as of gauge kinetic functions were identified by up-
grading the gauge coupling constant and torus parameters to supergravity (SUGRA) fields. Then 
the 4D effective SUGRA action was reconstructed which is described in the N = 1 superspace, 



H. Abe et al. / Nuclear Physics B 900 (2015) 331–365 333
and low-energy particle spectra including the effect of moduli-mediated SUSY breaking were 
analyzed in Refs. [10,12] based on the effective SUGRA action.

In this paper, we generalize the previous way of dimensional reduction for 10D U(N)

SYM [9] to those for (4 + 2n)-dimensional U(N) SYM theories (n = 0, 1, 2, 3), and even for 
mixtures of them with different dimensionalities from each other. Such an extension would be 
quite meaningful because the various-dimensional SYM theories and their mixtures could arise 
as low-energy effective theories of D-brane systems in type II orientifold models (see Ref. [14]
for a review and references therein). Furthermore, it is expected in a bottom-up perspective that 
they are quite useful to construct more realistic models including hidden sectors for moduli sta-
bilization and dynamical SUSY breaking, as well as sectors for yielding some non-perturbative 
effects to generate certain masses and couplings required phenomenologically and observation-
ally in the visible and hidden sectors.

The sections of this paper are organized as follows. In Section 2, the superfield description of 
magnetized 10D SYM theories shown in Ref. [9] is reviewed. In Section 3, the simplest extension 
which consists of magnetized 6D and 10D SYM theories as well as their couplings is proposed 
and their 4D effective SUGRA action is shown. This is motivated by a D5/D9 brane system 
in type IIB orientifold models. The above mentioned semi-realistic model derived from a 10D 
SYM theory [10,12] can be straightforwardly embedded into this system with a capacity for 
sequestered hidden sectors. Various combinations of (4 + 2n)-dimensional SYM theories can 
be treated in accordance with the procedure given in this section. Another example is shown 
in Section 4, which consists of 4D SYM and magnetized 8D SYM theories accompanied by 
their couplings, motivated by a D3/D7 brane system. Section 5 is devoted to conclusions and 
discussions with some future prospects. A particular SUSY configuration for the mixture of 6D 
and 10D SYM theories is shown in Appendix A.

2. Review of 10D magnetized SYM theory in N = 1 superspace

We give a review of the superfield description for 10D SYM theories with magnetized extra 
dimensions developed in Ref. [9] based on Refs. [15,16], which is the basis of extensions given 
in this paper. Most notations and conventions in this section follow those adopted in Ref. [9]. We 
start from the following 10D SYM action with a 10D vector field AM and a 10D Majorana–Weyl 
spinor field λ satisfying λC = λ and �10λ = +λ (λC is the charge conjugate to λ and �10 is the 
10D chirality operator),

S =
∫

d10X
√−G

1

g2
Tr

[
−1

4
F MNFMN + i

2
λ̄�MDMλ

]
, (1)

where XM = (xμ, xm) is a 10D coordinate, and M : 0, . . . , 9, μ : 0, . . . , 3 and m : 4, . . . , 9. F MN , 
DM and �M are the 10D field strength, the 10D covariant derivative and the 10D gamma matrix. 
The 10D gauge coupling g is the sole parameter. We compactify it on three tori (T 2)i (i : 1, 2, 3)

with xm ∼ xm + 2 and the 10D line element is then given by

ds2 = ημνdxμdxν + cmndxmdxn,

where ημν = diag(−, +, +, +) gives the 4D Minkowski spacetime and the 6D compact space 
metric cmn is written by a (6 × 6)-matrix as

c =
⎛
⎝ c(1) 0 0

0 c(2) 0
(3)

⎞
⎠

0 0 c
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using (2 × 2)-matrix c(i) which represents the i-th torus metric. Its explicit form is given by

c(i) = (2πRi)
2
(

1 Re τi

Re τi |τi |
)

,

where Ri and τi are the radius and the complex structure of (T 2)i . In the following, instead of 
the real coordinates, we use a complex coordinate (vector) defined as

zi ≡ 1

2
(x2+2i + τix

3+2i ), z̄ī ≡
(
zi
)∗

,

Ai ≡ − 1

Im τi

(τ ∗
i A2+2i − A3+2i ), Āī ≡ (Ai)

† .

We can then elicit the metric hīj of this complex coordinate from

ds2
6D = cmndxmdxn ≡ 2hīj dz̄īdzj ,

and find

hīj = δīj 2 (2πRi)
2 .

The vielbein is also determined by hīj = δījeī
īej

j and it has the following form,

ei
i = √

2 (2πRi) δi
i .

In this notation, the 10D vector field is decomposed into the 4D vector fields Aμ and the three 
complex fields Ai (i = 1, 2, 3). We can also decompose the 10D Majorana–Weyl spinor field λ
into 4D spinors with respect to their chirality as λs1s2s3 , where si = ± represents its chirality on 
the i-th torus. A product s1s2s3 must be + to satisfy the 10D chirality condition �10λ = +λ, and 
subsequently we can obtain four 4D Weyl spinors, λ+++, λ+−−, λ−+− and λ−−+. We describe 
them simply as

λ0 = λ+++, λ1 = λ+−−, λ2 = λ−+−, λ3 = λ−−+ .

The decomposed bosonic and fermionic fields form the following (on-shell) supermultiplets 
of the 4D N = 1 SUSY which is a part of the full N = 4 SUSY,

V = {vμ,λ0
}
, φi = {Ai,λi} .

These are embedded into the 4D N = 1 vector superfield and the three 4D N = 1 chiral super-
fields as follows,

V ≡ −θσμθ̄Aμ + iθ̄ θ̄θλ0 − iθθ θ̄ λ̄0 + 1

2
θθ θ̄ θ̄D,

φi ≡ 1√
2
Ai + √

2θλi + θθFi ,

where θ and θ̄ are fermionic supercoordinates of the N = 1 superspace.
The 10D SYM action (1) can be rewritten with the superfields V and φ in the N = 1 super-

space as [15,16]

S =
∫

d10X
√−G

[∫
d4θK +

{∫
d2θ

(
1

4g2
WαWα +W

)
+ h.c.

}]
, (2)

where the functions K, W and Wα are given by
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K = 2

g2
hīj Tr

[(√
2∂̄ī + φ̄ī

)
e−V

(
−√

2∂j + φj

)
eV + ∂̄ī e

−V ∂j e
V
]
+KWZW,

W = 1

g2
εijkei

iej
j ek

kTr

[√
2φi

(
∂jφk − 1

3
√

2
[φj ,φk]

)]
,

Wα = −1

4
D̄D̄e−V DαeV .

∂i represents the derivative with respect to zi , and Dα and D̄α̇ are the supercovariant derivative 
and its conjugate. KWZW is the Wess–Zumino–Witten term which vanishes in the Wess–Zumino 
gauge fixing. εijk is the anti-symmetric tensor. This action remains invariant under the full N = 4
SUSY and the superspace formulation make the N = 1 SUSY manifest.

This superspace formulation contains some auxiliary fields. Field equations for them are given 
by

D = −hīj

(
∂̄īAj + ∂j Āī + 1

2

[
Āī ,Aj

])
, (3)

F̄ī = −hjīε
jklej

j ek
kel

l

(
∂kAl − 1

4
[Ak,Al]

)
. (4)

The N = 1 SUSY is preserved as long as vacuum expectation values (VEVs) of these auxiliary 
fields D and Fi are vanishing.

In the following, we consider a SUSY vacuum where the decomposed 10D fields develop 
their VEV as

〈Ai〉 �= 0, 〈Aμ〉 = 〈λ0〉 = 〈λi〉 = 0.

The vanishing VEVs are required for the 4D Lorentz invariance and the nonvanishing one of Ai

is expected to satisfy 〈D〉 = 〈Fi〉 = 0 with Eqs. (3) and (4). We expand the 10D SYM action 
around this vacuum in the superspace formulation, that is, we redefine fluctuations of the fields 
as

V → 〈V 〉 + V, φi → 〈φi〉 + φi,

where 〈V 〉 = 0 and 〈φi〉 = 〈Ai〉/
√

2. From now on, V and φi represent fluctuations around a 
nontrivial magnetized vacuum. We use these in the SYM action (2) and expand it in powers 
of V . The functions K and W are then given by

K = 2

g2
hīj Tr

[
φ̄īφj + √

2

{(
∂̄īφj + 1√

2
[〈φ̄ī〉, φj ] + h.c.

)
+ 1√

2
[φ̄ī , φj ]

}
V

+ (∂̄īV
) (

∂jV
)+ 1

2

(
φ̄īφj + φj φ̄ī

)
V 2 − φ̄īV φjV

]
+K(D) +K(br),

W = 1

g2
εijkei

iej
j ek

kTr

[√
2

(
∂iφj − 1√

2
[〈φi〉, φj ]

)
φk − 2

3
φiφjφk

]
+W(F), (5)

where the expansion terminates at V 2 because the supercoordinates θ and θ̄ are anticommuting 
two-component Weyl spinors. K(D) and W(F) are vanishing when the N = 1 SUSY is preserved. 
K(br) represents a mass term of V corresponding to partial gauge symmetry breaking due to 
the magnetic fluxes (we will explain later) and also contains other interaction terms. Wα is not 
changed because it contains only V and its VEV is vanishing.



336 H. Abe et al. / Nuclear Physics B 900 (2015) 331–365
2.1. Zero-mode equations

In the toroidal compactification, the superfields V and φi can be decomposed with Kaluza–
Klein (KK) towers as

V (xμ, zj , z̄j̄ ) =
∑
n

(
f

(1),n1
0 (z1, z̄1̄) × f

(2),n2
0 (z2, z̄2̄) × f

(3),n3
0 (z3, z̄3̄)

)
× V n(xμ)

φi(x
μ, zj , z̄j̄ ) =

∑
n

(
f

(1),n1
i (z1, z̄1̄) × f

(2),n2
i (z2, z̄2̄) × f

(3),n3
i (z3, z̄3̄)

)
× φn

i (xμ), (6)

where n = (n1, n2, n3). V n and φn
i are n-th KK modes and their internal wavefunctions on the 

j -th torus are described by f (j)

0 and f (j)
i , respectively. They have the Yang–Mills indices but 

we omit them here. The internal wavefunction is common to scalar and spinor fields included 
in a superfield as long as the SUSY is preserved, and their dependence on the supercoordinate 
appears only in V n and φn

i .
In the following, we focus on zero-modes with n1 = n2 = n3 = 0 and denote their internal 

wavefunctions simply by f (j)

0 and f (j)
i omitting nj = 0 for j = 1, 2, 3, that is, f (j)

0 ≡ f
(j),nj =0
0

and f (j)
i ≡ f

(j),nj =0
i . In the superspace action (5) given on a nontrivial background, the follow-

ing zero-mode equations can be found,

∂̄īf
(i)
0 + 1

2
[〈φ̄ī〉, f

(i)
0 ] = 0,

∂̄īf
(i)
j + 1

2
[〈φ̄ī〉, f

(i)
j ] = 0 for i = j,

∂īf
(i)
j − 1

2
[〈φi〉, f

(i)
j ] = 0 for i �= j.

We introduce (Abelian) magnetic fluxes and continuous Wilson lines in the extra compact 
space. The vacuum configuration 〈φi〉 = 〈Ai〉/

√
2 is then given by

〈Ai〉 = π

Im τi

(
M(i)z̄ī + ζ̄ (i)

)
, (7)

where magnetic fluxes M(i) and Wilson lines ζ (i) are (N × N)-diagonal matrices corresponding 
to the U(N) gauge symmetry of the SYM theory. Note that, each entries of M(i) must be integer 
because of the Dirac’s quantization condition. We also expect them to satisfy the SUSY condition 
〈D〉 = 〈F 〉 = 0 with Eqs. (3) and (4). The Abelian (1, 1)-form flux (7) always satisfies 〈F 〉 = 0
but the other 〈D〉 = 0 requires each entry of M(i) to satisfy∑

i

1

A(i)
m

(i)
k = 0,

where m(i)
k is the k-th entry of the diagonal matrix M(i), and A(i) represents the area of the i-th 

torus.
The magnetic fluxes and the Wilson-lines can break the gauge symmetry of SYM theories. 

For example, when all the N entries of diagonal matrix M(i) take different values from each 
other, an original U(N) gauge symmetry is broken down to a product of N U(1) symmetries. In 
another case when some of them take the same values, that is, the magnetic fluxes are given as
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M(i) = diag(

=M
(i)
N1︷ ︸︸ ︷

m
(i)
1 ,m

(i)
2 , · · · ,m(i)

N1
,

=M
(i)
N2︷ ︸︸ ︷

m
(i)
N1+1, · · · ,m(i)

N1+N2
, · · · ,

=M
(i)
Nn︷ ︸︸ ︷

m
(i)
N1+···+Nn−1+1, · · · ,m(i)

N1+···+Nn
),

they break the gauge symmetry as U(N) →∏
a U(Na) (note that M(i)

Na
�= M

(i)
Nb

). This discussion 
also apply to the Wilson lines. We use indices a, b and c to label unbroken gauge subgroups of 
U(N).

We denote a bifundamental representation (Na, N̄b) of the zero-mode f (i)
j by (f (i)

j )ab . The 

zero-mode equations for the representation (f (i)
j )ab on the torus (T 2)i are given by[

∂̄ī + π

2 Im τi

(
M

(i)
ab zi + ζ

(i)
ab

)]
(f

(i)
j )ab = 0 for i = j, (8)[

∂i − π

2 Im τi

(
M

(i)
ab z̄ī + ζ̄

(i)
ab

)]
(f

(i)
j )ab = 0 for i �= j, (9)

where

M
(i)
ab ≡ M

(i)
Na

− M
(i)
Nb

, ζ
(i)
ab ≡ ζ

(i)
Na

− ζ
(i)
Nb

.

A normalizable solution of Eq. (8) is found [6] as

(f
(i)
j )ab = f I

(i)
ab ≡

⎧⎪⎪⎨
⎪⎪⎩

�I
(i)
ab ,M

(i)
ab (z̃i ) (M

(i)
ab > 0)

(A(i))−1/2 (M
(i)
ab = 0)

0 (M
(i)
ab < 0)

,

where z̃i ≡ zi + ζ
(i)
ab

M
(i)
ab

and

I
(i)
ab ≡

⎧⎪⎨
⎪⎩

1, . . . , |M(i)
ab | (M

(i)
ab > 0)

0 (M
(i)
ab = 0)

no solution (M
(i)
ab < 0)

.

When M(i)
ab > 0, M(i)

ab normalizable zero-modes appear and they are labeled by the index I (i)
ab . On 

the other hand, zero-modes are projected out by the magnetic fluxes when M(i)
ab < 0. A vanishing 

magnetic flux M(i)
ab = 0 induces a trivial zero-mode with a flat profile of wavefunction. The 

zero-mode wavefunction �I
(i)
ab ,M

(i)
ab in the above expression is defined by

�I,M (z) =NMeπiMz Im z/ Im τ ϑ

[
I/M

0

]
(Mz,Mτ) , (10)

where the Jacobi-theta function is given by

ϑ

[
a

b

]
(ν, τ ) =

∑
l∈Z

eπi(a+l)2τ e2πi(a+l)(ν+b).

The normalizations are determined by∫
dzidz̄ī

√
det c(i)f I

(
f J
)∗ = δIJ , (11)
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and it leads to

NM =
(

2 Im τi |M|
(A(i))2

)1/4

.

We can also describe a normalizable solution of Eq. (9) as

(f
(i)
j )ab = f I

(i)
ab ≡

⎧⎪⎪⎨
⎪⎪⎩

0 (M
(i)
ab > 0)

(A(i))−1/2 (M
(i)
ab = 0)

(�I
(i)
ab ,M

(i)
ab (z̃i ))

∗ (M
(i)
ab < 0)

,

and |M(i)
ab | normalizable zero-modes are obtained when M(i)

ab < 0 for i �= j .

2.2. 4D effective action

We give a 4D effective action derived from the 10D magnetized SYM theory in the super-
space formulation, concentrating on zero-modes of gauge fields of unbroken gauge subgroups 
(V n=0)aa and bifundamental matter fields (φn=0

i )ab (a �= b) in the assumption of gauge symme-
try breaking U(N) →∏

a U(Na) due to the magnetic fluxes.2 In the following, we consider a 
case with M(i)

ab > 0 and M(j)
ab < 0 for ∀j �= i. The total number of zero-modes (φn=0

i )ab which 
appear in the 4D effective field theory is then given by

Nab = |
3∏

i=1

M
(i)
ab |,

while (V n=0)aa does not feel magnetic fluxes and a single zero-mode with a flat wavefunction is 
obtained. We denote them simply by

(V n=0)aa ≡ V a, (φn=0
i )ab ≡ gφ

Iab

i ,

where Iab = (I
(1)
ab , I (2)

ab , I (3)
ab ) labels Nab zero-modes, that is, Iab = 1, 2, . . . , Nab . We normalize 

the chiral superfields φi by the gauge coupling constant g for the later convenience.
In the 4D effective field theory with these zero-modes, we can compute Yukawa and higher-

order couplings as integrals of wavefunctions of the form (10), which can be performed analyti-
cally [6,17]. We substitute the KK-mode expansion (6) in Eq. (5) and extract a part involving the 
zero-modes V a and φIab

j . That is described by

S =
∫

d4x

[∫
d4θKeff +

{∫
d2θ

(
1

4g2
a

Wa,αWa
α +Weff

)
+ h.c.

}]
, (12)

where the functions Keff, Weff and Wa
α have the following form,

Keff =
∑
i,j

∑
a,b

∑
Iab

Z̃
īj

Iab
Tr
[
φ̄
Iab

ī
e−V a

φ
Iab

j eV a
]
,

2 We remark on the other elements, (V n=0)ab (a �= b) and (φn=0
i

)aa . A bifundamental representation of the gauge 
multiplets (V n=0)ab (a �= b) gets its mass corresponding to the partial gauge symmetry breaking, which mass should 
be large comparable to the compactification scale. The other (φn=0

i
)aa remains massless and we need a prescription to 

make them heavy or eliminate them. Toroidal orbifolds, for example, can eliminate these extra zero-mode [7,10].
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Weff =
∑
i,j,k

∑
a,b,c

∑
Iab,Ibc,Ica

λ̃
ijk

IabIbcIca
Tr
[
φ
Iab

i φ
Ibc

j φ
Ica

k

]
,

Wα = −1

4
D̄D̄e−V a

DαeV a

. ga = g

(∏
i

A(i)

)−1/2

.

In this expression, Kähler metric Z̃īj

Iab
and holomorphic Yukawa coupling λ̃ijk

IabIbcIca
are deter-

mined by integrals in the 6D extra compact space and they can be written as

Z̃
īj

Iab
= 2hīj (13)

λ̃
ijk

IabIbcIca
= −2g

3
εijkei

iej
j ek

k
3∏

r=1

λ̃
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

, (14)

where

λ̃
(r)

(r)IabI
(r)
bc I

(r)
ca

=
∫

dzrdz̄r̄
√

det c(r)f I
(r)
ab f I

(r)
bc f I

(r)
ca . (15)

We have performed the integral in the Kähler metric by using Eq. (11). The calculation of Yukawa 
couplings (15) can also be carried out analytically and we summarize the results as follows,

λ̃
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

=

⎧⎪⎨
⎪⎩

λ̃
(r)
ab,c (M

(i)
ab > 0)

λ̃
(r)
bc,a (M

(i)
bc > 0)

λ̃
(r)
ca,b (M

(i)
ca > 0)

, (16)

where

λ̃
(r)
ab,c =N−1

M
(r)
ab

N
M

(r)
bc

N
M

(r)
ca

M
(r)
ab∑

m=1

δ
I

(r)
bc +I

(r)
ca −mM

(r)
bc , I

(r)
ab

× exp

[
πi

Im τr

(
ζ̄

(r)
ab

M
(r)
ab

Im ζ
(r)
ab + ζ̄

(r)
bc

M
(r)
bc

Im ζ
(r)
bc + ζ̄

(r)
ca

M
(r)
ca

Im ζ (r)
ca

)]

× ϑ

[
M

(r)
bc I

(r)
ca −M

(r)
ca I

(r)
bc +mM

(r)
bc M

(r)
ca

M
(r)
ab M

(r)
bc M

(r)
ca

0

](
ζ̄ (r)
ca M

(r)
bc − ζ̄

(r)
bc M(r)

ca ,−τ̄rM
(r)
ab M

(r)
bc M(r)

ca

)
.

(17)

This expression is obtained in the case with M(r)
ab M

(r)
bc M

(r)
ca > 0. In another case with vanishing 

magnetic fluxes, that is, M(r)
ab M

(r)
bc M

(r)
ca = 0, the integral in Eq. (15) induces a simple factor, 

λ̃
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

= (A(r))−1/2.

2.3. Effective supergravity and moduli multiplets

We have obtained the 4D effective action based on the 10D SYM theories in the magnetized 
toroidal compactification. We can read the action in the framework of supergravity (SUGRA) 
introducing the moduli fields. The 10D SYM theory is described with a global SUSY but its 4D 
effective action has remnants of local structure of the SUSY, such as, the 10D gauge coupling g
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and the torus parameters R(i) and τi . The moduli fields are related to complex and Kähler struc-
tures, and the 10D dilaton φ10 determines the gauge coupling as g = e〈φ10〉/2. Thus, we can define 
the moduli and dilaton superfields by the remnant parameters in the toroidal compactification as 
follows,

Re〈S〉 = e−〈φ10〉
3∏

i=1

A(i), Re〈Ti〉 = e−〈φ10〉A(i), 〈Ui〉 = iτ̄i . (18)

The obtained 4D effective action should fit into the following general form of the action for 
4D N = 1 conformal SUGRA with the moduli superfields,

S =
∫

d4x

√
−gC

[
−3
∫

d4θC̄Ce−K/3

+
{∫

d2θ

(
1

4
faW

a,αWa
α + C3W

)
+ h.c.

}]
, (19)

where C = C0 + θθFC is the chiral compensator superfield and the metric gC is defined by 
gC

μν = (CC̄)−1eK/3gE
μν for the Einstein-frame metric gE

μν . Our obtained action is given in a 
so-called string frame and we can choose C0 = e−φ4eK/6 to arrive at the frame in the above 
conformal SUGRA, where the VEV of the 4D dilaton φ4 is determined as

e−2〈φ4〉 = e−2〈φ10〉∏
i

A(i) = g−4
∏
i

A(i).

The Kähler potential for the moduli fields is given by

K(0) = −log
(
S + S̄

)− log
3∏

i=1

(
T (i) + T̄ (i)

)
− log

3∏
i=1

(
U(i) + Ū (i)

)
.

When we compare the obtained action (12) with the general SUGRA action (19) in the string 
frame, the Kähler potential K , the superpotential W and the gauge kinetic function fa in the 
conformal SUGRA formulation can be identified as

K = K(0) +
∑
i,j

∑
a,b

∑
Iab

Z
īj

Iab
Tr
[
φ̄
Iab

ī
e−V a

φ
Iab

j eV b
]
,

W =
∑
i,j,k

∑
a,b,c

∑
Iab,Ibc,Ica

λ
ijk

IabIbcIca
Tr
[
φ
Iab

i φ
Ibc

j φ
Ica

k

]
,

fa = S, (20)

where the Kähler metric ZI īj
ab

and the holomorphic Yukawa coupling λijk

IabIbcIca
are given by

ZI īj
ab

= e2〈φ4〉Z̃I īj
ab

,

λ
ijk

IabIbcIca
= e3〈φ4〉e−K(0)/2λ̃

ijk

IabIbcIca
.

Z̃I īj
ab

and λ̃ijk

IabIbcIca
have been defined in Eqs. (13) and (14), respectively.

These should be shown as functions of the only moduli fields and an additional manipula-
tion is required for that. If we promote straightforwardly the parameters to the moduli fields in 
accordance with Eq. (18) in the above expressions, the Yukawa couplings will contain both the 
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chiral and anti-chiral superfields and the holomorphicity of the superpotential is broken. Correct 
combinations of these parameters should be promoted to the moduli fields in the superpotential 
and the rest must be removed from the superpotential to the Kähler potential by rescaling the 
superfields φIab

i .
We consider the following rescaling,3

φ
Iab

i → α
(i)
ab φ

Iab

i ,

where

α
(i)
ab = 1

g
√

2 Im τi

(∏
r

A(r)

√
2 Im τr

)1/2

× exp

[
−
∑

r

πi

Im τr

ζ̄
(r)
ab

M
(r)
ab

Im ζ
(r)
ab

](
|M(i)

ab |∏
r �=i |M(r)

ab |

)1/4

,

and we promote the remaining parameters to the moduli fields after this. As the result, we can ob-
tain the moduli depending form of the Kähler metric ZI īj

ab

and the holomorphic Yukawa coupling 

λ
ijk

IabIbcIca
as follows,

ZI īj
ab

= δīj

(
Tj + T̄j̄

2

)−1( 3∏
r=1

Ur + Ūr̄

2

)−1/2

× 1

25/2

(
|M(j)

ab |∏
r �=j |M(r)

ab |

)1/2

exp

⎡
⎢⎣−

3∑
r=1

4π

Ur + Ūr̄

(
Im ζ

(r)
ab

)2

M
(r)
ab

⎤
⎥⎦ ,

λ
ijk

IabIbcIca
= −1

3
εijkδi

i δ
j

j δk
k

3∏
r=1

λ
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

,

where

λ
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

=

⎧⎪⎨
⎪⎩

λ
(r)
ab,c (M

(i)
ab > 0)

λ
(r)
bc,a (M

(i)
bc > 0)

λ
(r)
ca,b (M

(i)
ca > 0)

(21)

and

λ
(r)
ab,c =

M
(r)
ab∑

m=1

δ
I

(r)
bc +I

(r)
ca −mM

(r)
bc , I

(r)
ab

×ϑ

[
M

(r)
bc I

(r)
ca −M

(r)
ca I

(r)
bc +mM

(r)
bc M

(r)
ca

M
(r)
ab M

(r)
bc M

(r)
ca

0

](
ζ̄ (r)
ca M

(r)
bc − ζ̄

(r)
bc M(r)

ca , iUrM
(r)
ab M

(r)
bc M(r)

ca

)
.

(22)

3 This paper shows the explicit rescaling rules for the chiral fields, which determines the moduli dependence of their 
Kähler metrics. We should note that it is not completely deterministic. Indeed, there are many ways of the rescaling to 
remove the ill-defined factors, and we show the most plausible one. This discussion was also done in Ref. [18].
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These expressions are valid for M(r)
ab M

(r)
bc M

(r)
ca > 0. The study with vanishing magnetic fluxes 

M
(r)
ab M

(r)
bc M

(r)
ca = 0 is also shown in Ref. [9].

3. 6D and 10D SYM theories and their mixtures

In this section, we give extensions of the previous work given in the 10D SYM theory. We 
can expect the way of dimensional reduction and obtaining the 4D effective SUGRA action to 
be applied to the (4 + 2n)-dimensional cases (n = 1, 2, 3) and their mixtures, because such SYM 
systems can be derived from single 10D SYM theories through “partial” dimensional reductions.

3.1. Superfield description of the 6D and 10D SYM theories

For a while, we concentrate on an instructive case which consists of a six-dimensional (6D) 
SYM theory and a 10D SYM theory.

6D SYM theories with a vector multiplet and a hyper multiplet of 4D N = 2 SUSY are 
straightforwardly obtained by dimensional reductions of 10D SYM theories. In the 10D SYM 
theories compactified on a flat space without magnetic fluxes and so on, the zero-mode wavefunc-
tions of the 10D fields are given by a constant in the space, and we can then perform integrations 
of the action with respect to the flat directions. For example, when we perform the integration 
with respect to four extra-dimensional coordinates (x6, x7, x8, x9), that induces just the 4D vol-
ume factor and a 6D effective action is directly derived. The 6D vector Am, m = 0, 1, . . . , 5, and 
a part of the 10D Majorana–Weyl spinor form an N = 2 vector multiplet, and the other parts 
form an N = 2 hyper multiplet.

In mixtures of 6D SYM theory and 10D SYM theory, there should appear an additional mix-
ing sector. This consists of bifundamental representations which are charged under both the 6D 
and 10D SYM theories. They form another hyper multiplet because the mixing part also has 
the N = 2 SUSY counted by the 4D supercharges. Furthermore, since they are coupled to the 
10D gauge fields as well as the 6D gauge fields, it is sensible for their wavefunctions to de-
pend on all of the 10D coordinates but have profiles of point-like quasi-localizations in the four 
(x6, x7, x8, x9)-directions.

The positions of localization points are significant because they are related to the magnitude 
of their coupling constants in the 4D effective theory. The positions are determined by the VEVs 
of position moduli, and field contained in the hyper multiplet plays the role in our SYM systems.

These situations are realized or understood in single 10D SYM theories by introducing infinite 
magnetic fluxes in the four directions [6]. To demonstrate, let us consider a 10D U(M +N) SYM 
theory compactified on three tori, and introduce an infinite magnetic flux on two of the three tori 
to break the gauge group as U(M +N) → U(M) ×U(N). In this scheme, adjoint representations 
of the unbroken subgroups U(M) and U(N) do not feel the magnetic fluxes, thus they have a flat 
zero-mode profile. Carrying out the integration of the U(M) SYM action (either of the two SYM 
actions) on the two infinitely magnetized tori leads to the 6D U(M) SYM theory and the other 
is still the 10D U(N) SYM theory. Bifundamental representations (M, N̄) and (M̄, N) feel then 
the infinite magnetic fluxes which localize them at a point on the two tori.

To see the details, we consider the limit |M| → ∞ in the following integral of zero-mode 
wavefunctions of the bifundamentals,∫

2

d(Re z)
(
�I,M

)∗
�I,M = (2 Im τ |M|)1/2

A
∑
n

e
−2π |M| Im τ

(
n+ I

|M| + Im z
Im τ

)2

,

T
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which appears in the way of the normalization (11) and the wavefunction �I,M is defined in 
Eq. (10). In the limit of infinite magnetic fluxes, this integral gives a delta function as∫

T 2

d(Re z)
(
�I,M

)∗
�I,M = 1

A
∑
n

δ

(
Im z

Im τ
+ n + I

|M|
)

. (23)

The infinite magnetic fluxes induce an infinite number of the zero-modes labeled by “I”. They 
are quasi-localized at different points with an interval 1/M . That is, this torus is filled up with 
an infinite number of zero-modes but each of which is localized at different points like the delta 
function. Now, we choose a zero-mode with I = 0, which zero-mode is quasi-localized at the 
origin on the torus, and eliminate the other zero-modes by hand.4 As a result, the desirable 
bifundamental representation is obtained. The summation of “n” gives the delta function to a 
certain periodicity on the torus and the right-hand side of Eq. (23) with I = 0 can be identified 
as a well-defined delta function on the torus. We denote it by δT 2(z) as is used in Ref. [6], that is,

δT 2(z) ≡ 1

A
∑
n

δ

(
Im z

Im τ
+ n

)
. (24)

We can infer from this result that the point-like localization of the bifundamental representa-
tions is described by �0,M with

�0,M ∼√δT 2(z),

which is caused by the infinite magnetic flux M . When we consider Wilson lines on the magne-
tized torus, this is translated as√

δT 2(z) →√
δT 2(z + ζ ).

Since the Wilson lines on the torus is given as the VEVs of the fields contained in the hyper 
multiplet, those fields can be identified with the position moduli fields as we expected.

In the rest of this subsection, we derive a specific form of the effective action corresponding 
to the mixture of the 6D U(M) SYM theory compactified on (T 2)1 and the 10D U(M) SYM 
theory on (T 2)1 × (T 2)2 × (T 2)3, by introducing the following infinite magnetic fluxes in a 10D 
U(M + N) SYM theory, in accordance with the vacuum configuration (7),

M(1) =
(

0 × 1M 0

0 0 × 1N

)
,

M(2) =
(

H × 1M 0

0 0 × 1N

)
, M(3) =

(−H × 1M 0

0 0 × 1N

)
, (25)

where we take the limit H → ∞. These matrices represent the internal space of U(M + N). In 
the VEV of the form (7), we can also introduce the Wilson lines ζ (i) and they shift the point-
like localized wavefunctions of bifundamental representations (M, N̄) and (M̄, N) by ζ (i)

MN/H

(ζ (i)
MN ≡ ζ

(i)
M − ζ

(i)
N ). That is, the wavefunctions are shifted as

√
δT 2(z) →

√
δT 2(z + ζ

(i)
MN/H).

4 This will not break the SUSY.
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This deviation vanishes in the limit H → ∞ unless the Wilson lines ζ (i)
MN given by the position 

moduli take infinite values. This is one of differences between the usual Wilson lines and the 
VEVs of the position moduli.

These infinite magnetic fluxes H and −H induce a kind of chirality projection as well as the 
point-like localizations. As the result, some of the zero-modes are eliminated as

V =
(

V m 0

0 V n

)
,

φ1 =
(

φm
1 0

0 φn
1

)
, φ2 =

(
φm

2 gφmn
2

0 φn
2

)
, φ3 =

(
φm

3 0

gφmn
3 φn

3

)
.

Now, we assign that the first-block entries V m and φm
i to the 6D U(M) SYM theory and the 

last-block entries V n and φn
i to the 10D U(N) SYM theory. The U(N) part labeled by “n” 

is the same as is reviewed in the previous section. The 6D gauge fields V m and φm
1 form an 

N = 2 vector multiplet. A hyper multiplet is also composed of the fields φm
2 and φm

3 , which 
are identified with the position moduli. The bifundamentals φmn

2 and φmn
3 form another hyper 

multiplet and their action will be given to have an SU(2)R invariance. Here they are normalized 
by the gauge coupling constant g for later convenience.

In the superfield description of the 10D U(M + N) SYM theory, we consider the infinitely 
magnetized background to obtain 6D and 10D pure SYM theories. The action is composed of 
three parts as follows,

S = Sm + Sn + Smn. (26)

First, the explicit form of the 6D SYM action Sm is obtained by the dimensional reduction for the 
second and the third tori. Since the relevant fields V m and φm

i do not feel the magnetic fluxes and 
their wavefunctions are flat on the two tori, the dimensional reduction can be straightforwardly 
performed. As the result, we find

Sm = A(2)A(3)

g2

∫
d6X

√−G6

∫
d4θKm +

{∫
d2θ

(
1

4
Wα

mWαm +Wm

)
+ h.c.

}
,

where G6 is the determinant of the 6D spacetime metric, M4 × (T 2)1, and the three functions 
Km, Wm and Wα

m are given by

Km = 2Tr
[
h11
((√

2∂̄1 + φ̄m
1

)
e−V m

)(
−√

2∂1 + φm
1

)
eV m

+ h11∂̄1e
−V m

∂1e
V m + h22φ̄m

2 e−V m

φm
2 eV m

+ h33φ̄m
3 e−V m

φm
3 eV m +K′

WZW

]
,

Wm = 2
√

2 (e1e2e3)
−1 φm

3

(
∂1φ

m
2 − 1√

2

[
φm

1 , φm
2

])
,

Wαm = −1

4
D̄D̄e−V m

DαeV m

.

The determinant of the vielbein ei is given by 
√

2 (2πRi) and the derivative terms with respect to 
z2 and z3 vanishes because of the flat wavefunctions. In this dimensional reduction, we adopt a 
normalization where the flat zero-mode wavefunctions are given by 1, instead of Eq. (11). Thus, 
the integration just induces a global factor corresponding to the volume A(2)A(3). Although the 
prefactor A(2)A(3)/g2 seems to be a gauge coupling constant of this 6D U(M) SYM theory, we 
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should replace this by a new symbol as A(2)A(3)/g2 → 1/g2
6 because this can be generically 

independent of the volume of the other four extra dimensions of space in pure 6D theories.
Next, we consider the 10D U(N) SYM part Sn in Eq. (26). This part is elicited from the 

original 10D U(M + N) SYM theory directly:

Sn =
∫

d10X
√−G

∫
d4θKn +

{∫
d2θ

(
1

4g2
Wα

nWαn +Wn

)
+ h.c.

}
,

where the three functions Kn, Wn and Wα
n of superfields are given by

Kn = 2

g2
hij̄ Tr

[(√
2∂̄ī + φ̄n

ī

)
e−V n

(
−√

2∂j + φn
j

)
eV n + ∂̄ī e

−V n

∂j e
V n
]
+KWZW,

Wn = 1

g2
εijkei

iej
j ek

kTr

[√
2φn

i

(
∂jφ

n
k − 1

3
√

2

[
φn

j ,φn
k

])]
,

Wαn = −1

4
D̄D̄e−V n

DαeV n

.

This has the same form as that of the original 10D SYM action.
In the last part Smn, the infinite magnetic flux is a key to derive effective actions, which is 

analogous to an off-diagonal part of 10D SYM theories shown in the previous section. Substi-
tuting the vacuum configuration (25) for 〈φi〉 and 〈φ̄ī〉 in the action (5), the zero-mode equations 
for φmn

2 and φmn
3 on the second and the third tori are given by[

∂̄ī + π

2 Im τi

(
Hzi + ζ

(i)
MN

)]
(f

(i)
j )mn = 0 for i = j, (27)[

∂i − π

2 Im τi

(
Hz̄ī + ζ̄

(i)
MN

)]
(f

(i)
j )mn = 0 for i �= j, (28)

where i, j = 2, 3 and (f (i)
j )mn represents the zero-mode wavefunction of φmn

j on the i-th torus 
omitting the mode number ni = 0. We also consider the Wilson lines in addition to the infinite 
magnetic fluxes here as we discussed it in the below of Eq. (25). These equations have an infinite 
numbers of normalizable solutions labeled by an index I (i)

mn in the limit H → ∞, and we pick up 
one of them by I (i)

mn = 0. Thus, we obtain the well-defined delta function (24) which expresses the 
point-like localization as the solution of the zero-mode equation. We can carry out the integration 
with respect to z2 and z3 in the action and obtain the following form,

Smn =
∫

d6X
√−G6

∫
d4θ Tr

(
2h22φ̄mn

2 e−V m

φmn
2 eV n + 2h33φmn

3 eV m

φ̄mn
3 e−V n

)
+ 2

√
2 (e1e2e3)

−1
∫

d2θ Tr

[
φmn

3

(
∂1φ

mn
2 − 1√

2
φm

1 φmn
2 + Q√

2
φmn

2 φn
1

)
+ h.c.

]
,

(29)

where the factor Q is given by the integrals on the two tori as,

Q =
∏

s=2,3

∫
dzsdz̄s̄

{
(f

(s)
1 )n(zs) × δT 2(zs + ζ̃ (s))

}

=
∏

(f
(s)
1 )n(ζ̃ (s)), (30)
s=2,3
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with ζ̃ (s) ≡ ζ
(s)
MN/H . In the above, (f (s)

1 )n(ζ̃ (s)) is the zero-mode wavefunction of φn
1 on the s-th 

torus and its constant argument ζ̃ (s) represents the position of the point-like quasi-localization 
on the tori. (Note that this zero-mode wavefunction (f (s)

1 )n is a constant function now because 
physical finite fluxes are absent in Eq. (25).)

We have obtained the superfield description of the mixture of the 6D U(M) SYM theory 
and the 10D U(N) SYM theory, which is derived from the 10D U(M + N) SYM theory by 
introducing the infinite magnetic fluxes.

3.2. 4D effective action on magnetized backgrounds

The infinite magnetic fluxes have yielded the action for the 6D U(M) SYM theory, the 10D 
U(N) SYM theory and their mixing part compactified on “virtually pure” tori. That is, the infinite 
magnetic fluxes are used for only realizing the point-like localizations and inducing a kind of 
projections, and they lead to un-magnetized higher-dimensional SYM systems. In the following, 
we add “finite (physical)” magnetic fluxes in this mixture of the SYM theories. We consider the 
following configuration of magnetic fluxes, instead of Eq. (25),

M(1) =
(

M
(1)
m 0

0 M
(1)
n

)
,

M(2) =
(

M
(2)
m + H × 1M 0

0 M
(2)
n

)
, M(3) =

(
M

(3)
m − H × 1M 0

0 M
(3)
n

)
, (31)

where the (M ×M)-matrix M(i)
m and the (N ×N)-matrices M(i)

n represent finite magnetic fluxes, 
and the infinite magnetic flux is also introduced by H in the limit H → ∞.

This is a generic form of flux configurations. Some of their entries would have some con-
straints. For instance, the matrices M(2)

m and M(3)
m should be restricted not to break the gauge 

symmetry, that is, M(2)
m ∝ M

(3)
m ∝ 1M , otherwise the zero-mode wavefunctions of the 6D fields 

are deformed and their spectrum is shifted by structure of the 4D extra space which is not related 
to the 6D SYM theory. When M(2)

m ∝ M
(3)
m ∝ 1M , the matrix M(1)

m should also be proportional 
to the identity to preserve the N = 1 SUSY. Note that these trivial magnetic fluxes in the U(M)

sector M(i)
m ∝ 1M can be eliminate by a shift of flux configurations as M(i) → M(i) +mi ×1M+N

because the two configurations in the SYM theories lead to equivalent 4D effective theories. For 
completeness of our description, we consider a general form of M(1)

m in the following calcula-
tions even if it breaks the N = 1 SUSY. The others M(2)

m and M(3)
m are proportional to 1M , and 

they have no affect on the 4D effective theory in the limit H → ∞. The 4D effective action with 
M

(1)
m ∝ 1M is also calculated in Appendix A.
When some of diagonal entries of the matrices M(1)

m and M(i)
n take degenerate values, the two 

gauge symmetries are broken as U(M) →∏
a′ U(Ma′) and U(N) →∏

a U(Na). The unbroken 
gauge subgroups of the 6D U(M) SYM theory are labeled by indices a′, b′, c′. The indices 
a, b, c label the remaining subgroups of the 10D U(N) SYM theory and this is the same as in 
the previous section.

We discuss the zero-mode equations and wavefunctions on this magnetized background. Since 
those obtained in the 10D U(N) SYM sector and its 4D effective SUGRA action are given in the 
previous section with the same notation, we focus on the other sectors. First, we consider the 6D 
U(M) SYM part Sm which contains only fields with the subscript m, the superfield description 
of which on the magnetized background is given by
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Sm = 1

g2
6

∫
d6X

√−G6

∫
d4θKm +

{∫
d2θ

(
1

4
Wα

mWαm +Wm

)
+ h.c.

}
,

where the three functions Km, Wm and Wα
m are given by

Km = 2hīj Tr

[
φ̄m

ī
φm

j + [φ̄m

ī
, φm

j ]V m + (∂̄īV
m
) (

∂jV
m
)

+ 1

2

(
φ̄m

ī
φm

j + φm
j φ̄m

ī

)
(V m)2 − φ̄m

ī
V mφm

j V m

]

+ 2
√

2h1̄1Tr

[(
∂̄1̄φ

m
1 + 1√

2
[〈φ̄m

1̄
〉, φm

1 ] + h.c.

)
V m

]
+K(D)

m ,

Wm = 2
√

2 (e1e2e3)
−1 φm

3

(
∂1φ

m
2 − 1√

2

[〈φm
1 〉, φm

2

]− 1√
2

[
φm

1 , φm
2

])+W(F)
m .

In the assumption of U(M) gauge symmetry breaking due to the magnetic fluxes M(1)
m , we 

derive the zero-mode equations for the relevant fields (φm
i )a′b′ on the torus (T 2)1 from this action, 

which are described as follows,[
∂̄1̄ + π

2 Im τ1

(
M

(1)

a′b′z1 + ζ
(1)

a′b′
)]

(f
(1)
1 )ma′b′ = 0,[

∂1 − π

2 Im τ1

(
M

(1)

a′b′ z̄1̄ + ζ̄
(1)

a′b′
)]

(f
(1)
i )ma′b′ = 0 for i = 2,3,

where (f (1)
i )m

a′b′ represents the zero-mode wavefunction of bifundamental (φm
i )a′b′ on the first 

torus, and the magnetic fluxes and the Wilson lines are defined as M(1)

a′b′ ≡ (M
(1)
m )Ma′ − (M

(1)
m )Mb′

and ζ (1)

a′b′ ≡ (ζ
(1)
m )Ma′ − (ζ

(1)
m )Mb′ . This is similar to those in Eqs. (8) and (9). When the sign of 

the magnetic fluxes is correctly chosen, we can obtain |M(1)

a′b′ | normalizable solutions labeled by 

the index Ia′b′ = 1, 2, . . . , |M(1)

a′b′ |.
We describe the zero-modes in the 4D effective action as follows,

(V m,n1=0)a′a′ ≡ V a′
, (φ

m,n1=0
i )a′b′ ≡ g6φ

Ia′b′
i .

We use the similar notation to the previous section: V a′
represents the zero-mode of an adjoint 

representation of U(Ma′) and φa′b′
i is the zero-mode of a bifundamental one (Ma′, M̄b′). We can 

omit the subscript m because they have the YM indices a′b′ which represent the gauge subgroups 
of U(M). The adjoint representation V a′

do not feel the magnetic fluxes and their zero-modes 
have a trivial profile. We calculate the 4D effective action in the same manner and find

Sm =
∫

d4x

[∫
d4θKm,eff +

{∫
d2θ

(
1

4
Wa′,α

m Wa′
m,α +Wm,eff

)
+ h.c.

}]
(32)

where the functions Km,eff, Wm,eff and Wa′
m,α have the following form,

Km,eff =
∑
i,j

∑
a′,b′

∑
I

(1)

a′b′

Z̃
īj
Ia′b′ Tr

[
φ̄

Ia′b′
ī

e−V a′
φ

Ia′b′
j eV a′ ]

,

Weff =
∑
i,j,k

∑
′ ′ ′

∑
I ,I ,I

λ̃
ijk
Ia′b′ Ib′c′ Ic′a′ Tr

[
φ

Ia′b′
i φ

Ib′c′
j φ

Ic′a′
k

]
,

a ,b ,c a′b′ b′c′ c′a′
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Wa′
α = − 1

4g2
a′

D̄D̄e−V a′
DαeV a′

. ga′ = g6A(1)−1/2
.

In these expressions, the Kähler metric Z̃īj
Ia′b′ and holomorphic Yukawa coupling λ̃ijk

Ia′b′ Ib′c′ Ic′a′ are 
determined by integrals in the 6D extra compact space and they can be written as

Z̃
īj
Ia′b′ = 2hīj (33)

λ̃
ijk
Ia′b′ Ib′c′ Ic′a′ = −2g6

3
εijkei

iej
j ek

kλ̃
(1)
Ia′b′ Ib′c′ Ic′a′ , (34)

where

λ̃
(1)
Ia′b′ Ib′c′ Ic′a′ =

⎧⎪⎨
⎪⎩

λ̃
(1)

a′b′,c′ (M
(1)

a′b′ > 0)

λ̃
(1)

b′c′,a′ (M
(1)

b′c′ > 0)

λ̃
(1)

c′a′,b′ (M
(1)

c′a′ > 0)

,

and

λ̃
(1)

a′b′,c′ =N−1
M

(1)

a′b′
N

M
(1)

b′c′
N

M
(1)

c′a′

M
(1)

a′b′∑
m=1

δ
Ib′c′+Ic′a′−mM

(1)

b′c′ , Ia′b′

× exp

[
πi

Im τ1

(
ζ̄

(1)

a′b′

M
(1)

a′b′
Im ζ

(1)

a′b′ + ζ̄
(1)

b′c′

M
(1)

b′c′
Im ζ

(1)

b′c′ + ζ̄
(1)

c′a′

M
(1)

c′a′
Im ζ

(1)

c′a′

)]

× ϑ

⎡
⎣ M

(1)

b′c′ Ic′a′−M
(1)

c′a′ Ib′c′+mM
(1)

b′c′M
(1)

c′a′
M

(1)

a′b′M
(1)

b′c′M
(1)

c′a′
0

⎤
⎦

×
(
ζ̄

(1)

c′a′M
(1)

b′c′ − ζ̄
(1)

b′c′M
(1)

c′a′ ,−τ̄1M
(1)

a′b′M
(1)

b′c′M
(1)

c′a′
)

.

The normalization factors are defined in Eq. (11).
Next, we consider the mixing part Smn, which consists of bifundamental representations 

(Ma′ , N̄b) and their conjugate representations. (Note that U(Ma′) and U(Nb) are subgroups of 
the gauge groups U(M) and U(N), respectively.) The infinite and finite magnetic fluxes (31), in-
stead of Eq. (25), are introduced in the action (5). On the second and the third tori, the zero-mode 
equations (27) and (28) are a little modified by the finite fluxes, but the finite shift of H does not 
affect in the limit H → ∞. It leads to the same results on these two tori and the 6D action of the 
form (29) is obtained again. In addition to that, we have the following zero-mode equations for 
(φmn

2 )a′b and (φmn
3 )ab′ on the first torus,[

∂1 − π

2 Im τ1

(
M

(1)

a′bz̄1 + ζ̄
(1)

a′b

)]
(f

(1)
2 )mn

a′b = 0,[
∂1 − π

2 Im τ1

(
M

(1)

ab′ z̄1̄ + ζ̄
(1)

ab′
)]

(f
(1)
3 )mn

ab′ = 0,

where (f (1)
2 )mn

a′b and (f (1)
3 )mn

ab′ are the zero-mode wavefunctions of the bifundamental represen-
tations (φmn

2 )a′b and (φmn
3 )ab′ , respectively. Note that φmn

2 is the bifundamental representation 
(M, N̄) of the product gauge group U(M) × U(N). It contains only bifundamental represen-
tations as (Ma′, N̄b) and does not include the others (M̄a′, Nb). On the other hand, φmn is the 
3
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bifundamental representation (M̄, N) which consists of only the bifundamental representations 
as (M̄a′ , Nb).

These zero-mode equations with the negative magnetic fluxes allow |M(1)

a′b| or |M(1)

ab′ | nor-
malizable solutions labeled by Ia′b or Iab′ in the same way as in Eq. (9). We express the 
corresponding zero-modes as

(φ
mn,n1=0
2 )a′b ≡ φ

Ia′b
2 , (φ

mn,n1=0
3 )ab′ ≡ φ

Iab′
3 .

We omit the subscript “mn” again because they have YM indices a′b or ab′ with which we can 
see that these fields are in the “mn” sector.

The signs of the magnetic fluxes are constrained to yield the nonvanishing Yukawa couplings 
φ

Ia′b′
1 φ

Ib′c
2 φ

Ica′
3 and φ

Ia′b
2 φ

Ibc

1 φ
Ica′
3 because the magnetic fluxes cause the chirality projections. As 

a result, the fluxes should satisfy the following conditions on the first torus,

M
(1)

a′b′ > 0, M
(1)
ab > 0, M

(1)

a′b < 0, M
(1)

ab′ < 0.

In the case of vanishing magnetic fluxes, the 4D effective action would be changed and is dis-
cussed in Appendix A.

On this magnetized background, we can derive the 4D effective action for the mixing part 
Smn,

Smn =
∫

d4x

∫
d4θ Tr

(
Z̃2̄2

Ia′b φ̄
Ia′b
2 e−V a′

φ
Ia′b
2 eV b + Z̃3̄3

Iab′ φ
Iab′
3 eV a

φ̄
Iab′
3 e−V b′)

+
∫

d2θ Tr
[
λ̃Ia′b′ Ib′cIca′ φ

Ia′b′
1 φ

Ib′c
2 φ

Ica′
3 + λ̃Ic′aIabIbc′ φ

Ic′a
2 φ

Iab

1 φ
Ibc′
3 + h.c.

]
. (35)

In this action, the Kähler metrics and the holomorphic Yukawa couplings are described as

Z̃2̄2
Ia′b = 2h22,

Z̃3̄3
Iab′ = 2h33,

λ̃Ia′b′ Ib′cIca′ = −2g6 (e1e2e3)
−1 λ̃

(1)

a′b′,c

λ̃Ic′aIabIbc′ = 2g10 (e1e2e3)
−1 Qλ̃

(1)

ab,c′ ,

where Q is defined in Eq. (30) and λ̃a′b′,c is given by

λ̃
(1)

a′b′,c =N−1
M

(1)

a′b′
N

M
(1)

b′c
N

M
(1)

ca′

M
(1)

a′b′∑
m=1

δ
Ib′c+Ica′−mM

(1)

b′c, Ia′b′

× exp

[
πi

Im τ1

(
ζ̄

(1)

a′b′

M
(1)

a′b′
Im ζ

(1)

a′b′ + ζ̄
(1)

b′c
M

(1)

b′c
Im ζ

(1)

b′c + ζ̄
(1)

ca′

M
(1)

ca′
Im ζ

(1)

ca′

)]

× ϑ

⎡
⎣ M

(1)

b′cIca′−M
(1)

ca′ Ib′c+mM
(1)

b′cM
(1)

ca′
M

(1)

a′b′M
(1)

b′cM
(1)

ca′
0

⎤
⎦(ζ̄ (1)

ca′ M
(1)

b′c − ζ̄
(1)

b′c M
(1)

ca′ ,−τ̄1M
(1)

a′b′M
(1)

b′cM
(1)

ca′
)

,

and λ̃ab,c′ is given by replacing as (a′, b′, c) → (a, b, c′) in the above expression.
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3.3. Supergravity action and moduli dependence

We embed the 4D effective action derived from the mixture of the SYM theories into the 
general form of the conformal SUGRA action (19). This embedding of the 10D U(N) SYM part 
Sn is exactly the same as is given in the previous section.

We generalize the discussion given in the previous section to treat various dimensional SYM 
theories. Now, we are considering the 6D SYM and the 10D SYM theories, and their gauge 
couplings are described as g6 and g10. Although we ignored the mass dimension of the gauge 
coupling in the case with only the 10D SYM theory and used the relation g10 = e〈φ10〉/2, we 
should renew it more exactly in the generic systems. In the 4 + 2n dimensional SYM theories, 
the gauge couplings are determined by the 10D dilaton as

g4+2n = e〈φ10〉/2α′n/2
, (36)

where α′ is a constant parameter and it has the mass dimension of [mass]−2. This parametrization 
is also supported by the string and D-brane pictures, where the parameter α′ is equivalent to the 
square of the string length scale. According to this, the definitions of the moduli fields (18) are 
also modified as

Re〈S〉 = e−〈φ10〉α′−3
3∏

i=1

A(i), Re〈Ti〉 = e−〈φ10〉α′−1A(i), 〈Ui〉 = iτ̄i , (37)

and the VEV of the 4D dilaton φ4 is determined as

e−2〈φ4〉 = e−2〈φ10〉α′−3
∏
i

A(i) = 1

g2
10

∏
i

A(i).

Before upgrading the parameters to the moduli fields using the above relations, the field 
rescaling should be performed to remove some factors to preserve the holomorphicity of the 
superpotential. This operation was also required in single 10D SYM theories. In the mixture 
of the 6D U(M) SYM theory and the 10D U(N) theory, we have four types of the Yukawa 
couplings as follows,

λ
ijk
Ia′b′ Ib′c′ Ic′a′ φ

Ia′b′
i φ

Ib′c′
j φ

Ic′a′
k (three 6D fields in Sm),

λ
ijk

IabIbcIca
φ
Iab

i φ
Ibc

j φ
Ica

k (three 10D fields in Sn),

λIa′b′ Ib′cIca′ φ
Ia′b′
1 φ

Ib′c
2 φ

Ica′
3 (mixing with a 6D field in Smn),

λIc′aIabIbc′ φ
Ic′a
2 φ

Iab

1 φ
Ibc′
3 (mixing with a 10D field in Smn). (38)

These 4D effective couplings can be decomposed into two parts. One is described by the Jacobi-
theta function and will be holomorphic functions of the moduli fields straightforwardly. On the 
contrast, the other part must be removed to the corresponding Kähler metrics by the field redef-
initions because it will contain both the moduli fields and their conjugates simultaneously. We 
focus on the latter part here to determine the rescaling rules neglecting trivial numerical fac-
tors and the Wilson line parameters. The focused part is fortunately universal for the generation 
structures and shown as

λ
ijk
Ia′b′ Ib′c′ Ic′a′ ∝ e3〈φ4〉e−K(0)/2

(∏
2πRr

)−1

g6
(Im τ1)

1/4

√
A1

,

r
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λ
ijk

IabIbcIca
∝ e3〈φ4〉e−K(0)/2

(∏
r

2πRr

)−1

g10
(Im τ1 Im τ2 Im τ3)

1/4

√
A1A2A3

,

λIa′b′ Ib′cIca′ ∝ e3〈φ4〉e−K(0)/2

(∏
r

2πRr

)−1

g6
(Im τ1)

1/4

√
A1

,

λIc′aIabIbc′ ∝ e3〈φ4〉e−K(0)/2

(∏
r

2πRr

)−1

g10
(Im τ1 Im τ2 Im τ3)

1/4

√
A1A2A3

. (39)

The first and the third one are related to the (a′b′)-fields φ
Ia′b′
i originating from the 6D SYM 

theory, and the extra dimensional integrals induce the same factors in these two Yukawa cou-
plings. And also, the second and the last one, which are related to the (ab)-fields originating 
from the 10D U(N) SYM theory, have the same form as each other. Since there are only three 
types of the fields to be rescaled, the rescaling rules are deterministic. Indeed, they would be 
uniquely found by using the rule for the (ab)-fields: In the second line, the Yukawa coupling 
of (ab)-, (bc)- and (ca)-fields is shown, and it is completely removed in accordance with the 
rescaling defined in Section 2. The forth line expresses the coupling of the (ab)-, (bc′)- and 
(c′a)-fields. Since the rescaling factor of the (ab)-field is already fixed, those of the other two 
fields are determined naively, and then, the rescaling rule for field φ

Ia′b′
1 is elicited in the third 

line. Finally, the first line determines those for the rest of contents φ
Ib′c′
2 and φ

Ic′a′
3 . Note that, 

the (a′b′)-sector originates from φ1, φ2 and φ3. One originating from φ1 forms a N = 2 vector 
multiplet with the 4D vector fields and the others form hypermultiplets which can be identified 
as position moduli fields. Thus, it seems sensible that the moduli dependence of their Kähler 
metrics are different for φ

Ia′b′
1 and the other two fields.

The Kähler metrics and the holomorphic Yukawa couplings in the generic form of the con-
formal supergravity can be found by the rescaling according to the above discussion. Let us start 
from a review of the 10D U(M) SYM part with the renewed moduli definitions (37). Although 
the corresponding factor is shown in the second line of Eq. (39), its complete form including 
numerical factors is expressed by

λ
ijk

IabIbcIca
= −221/4

3
εijkδi

i δ
j
j δk

ke
3〈φ4〉

(∏
r

2πRr

)−1(∏
r ′

Re〈Tr ′ 〉
)1/2(∏

r ′′
Re〈Ur ′′ 〉

)3/4

×
∣∣∣∣∣M

(2)
ab M

(3)
ab

M
(1)
ab

∣∣∣∣∣
1/4 ∣∣∣∣∣M

(1)
bc M

(3)
bc

M
(2)
bc

∣∣∣∣∣
1/4 ∣∣∣∣∣M

(1)
ca M

(2)
ca

M
(3)
ca

∣∣∣∣∣
1/4

× eH × ϑ,

where the exponential factor of the Wilson lines eH corresponds to the second line of Eq. (17)
and the holomorphic part given by the Jacobi-theta function is represented by the last factor ϑ . 
The following field rescaling recovers the Kähler metric and the holomorphic Yukawa coupling 
of the form obtained in Section 2,

φ
Iab

i → αab
i φ

Iab

i , (40)

where
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α
Iab

i = 2−7/4e−〈φ4〉 2πRi√
Re〈Ti〉

(∏
r

Re〈Ur 〉
)−1/4

× exp

[
−
∑

r

πi

Im τr

ζ̄
(r)
ab

M
(r)
ab

Im ζ
(r)
ab

](
|M(i)

ab |∏
j �=i |M(j)

ab |

)1/4

. (41)

The gauge kinetic function shown in Eq. (20) is also recovered using the gauge coupling (36)
and moduli definition (37).

Next we lead to the Kähler metrics of (ab′)- and (a′b)-fields contained in the mixing part 
Smn. From the second and the fourth lines of Eq. (39), it is inferred that the rescaling factors of 
these fields are equivalent to (ab)-sector up to numerical factors and the exponential factors of 
the Wilson lines. Indeed, when the localization described by the delta function (24) is not shifted 
(we will also discuss in another case of shifted quasi-localizations later), the un-holomorphic part 
of λIc′aIabIbc′ is entirely removed by the rescaling (40) and

φ
Ic′a
2 → αc′a

2 φ
Ic′a
2 , φ

Ibc′
3 → αbc′

3 φ
Ibc′
3 , (42)

where

αc′a
2 = 2−7/4e−〈φ4〉 2πR2√

Re〈T2〉

(∏
r

Re〈Ur 〉
)−1/4

× exp

[
− πi

Im τ1

ζ̄
(1)

c′a
M

(1)

c′a
Im ζ

(1)

c′a

]
|M(1)

c′a |−1/4,

αbc′
3 = 2−7/4e−〈φ4〉 2πR3√

Re〈T3〉

(∏
r

Re〈Ur 〉
)−1/4

× exp

[
− πi

Im τ1

ζ̄
(1)

bc′

M
(1)

bc′
Im ζ

(1)

bc′

]
|M(1)

bc′ |−1/4.

After these rescalings, the relevant holomorphic Yukawa couplings are found as

λIc′aIabIbc′ = λ
(1)

ab,c′ ×
⎛
⎝ ∏

r=2,3

ϑ

[
I

(r)
ab /M

(r)
ab

0

](
ζ

(r)
ab , iM

(r)
ab Ūr

)⎞⎠ ,

where λ(1)
ab,c is found in Eq. (22) by the replacing c → c′, and then, the Kähler metrics of two 

types of the bifundamental fields are obtained as

Z
I 2̄2
c′a

= 1

25/2

(
T2 + T̄2

2

)−1(∏
r

Ur + Ūr

2

)−1/2

× exp

⎡
⎢⎣− 4π

U1 + Ū1̄

(
Im ζ

(1)

c′a

)2

M
(1)

ca′

⎤
⎥⎦ |M(1)

c′a |−1/2,
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Z
I 3̄3
bc′

= 1

25/2

(
T3 + T̄3

2

)−1(∏
r

Ur + Ūr

2

)−1/2

× exp

⎡
⎢⎣− 4π

U1 + Ū1̄

(
Im ζ

(1)

bc′
)2

M
(1)

bc′

⎤
⎥⎦ |M(1)

bc′ |−1/2.

The rescaling factor of φ
Ia′b′
1 is derived from the Yukawa couplings shown in the third line of 

Eq. (39). As the result, it is found as

αa′b′
1 = 2−5/4e−〈φ4〉 2πR1√

Re〈S〉 (Re〈U1〉)−1/4

× exp

[
− πi

Im τ1

ζ̄
(1)

a′b′

M
(1)

a′b′
Im ζ

(1)

a′b′

]
|M(1)

a′b′ |1/4.

This yields the Kähler metric of the form

Z
I 1̄1
a′b′

= 1

23/2

(
S + S̄

2

)−1(
U1 + Ū1

2

)−1/2

× exp

⎡
⎢⎣− 4π

U1 + Ū1̄

(
Im ζ

(1)

a′b′
)2

M
(1)

a′b′

⎤
⎥⎦ |M(1)

a′b′ |1/2,

and the holomorphic Yukawa coupling is simply given by

λIa′b′ Ib′cIca′ = −λ
(1)

a′b′,c .

Finally, the rest of the rescaling factors are automatically determined in the first line of Eq. (39)
as

φ
Ib′c′
j → αb′c′

j φ
Ib′c′
j for j = 2,3,

where

αb′c′
j = 2−7/4e−〈φ4〉 2πRj√

Re〈Tj 〉

(∏
r

Re〈Ur 〉
)−1/4

× exp

[
− πi

Im τ1

ζ̄
(1)

b′c′

M
(1)

b′c′
Im ζ

(1)

b′c′

]
|M(1)

b′c′ |−1/4.

Their Kähler metrics and holomorphic Yukawa couplings are found as follows,

ZI j̄ j

b′c′
= 1

25/2

(
Tj + T̄j

2

)−1(∏
r

Ur + Ūr

2

)−1/2

× exp

⎡
⎢⎣− 4π

U1 + Ū1̄

(
Im ζ

(1)

b′c′
)2

M
(1)

b′c′

⎤
⎥⎦ |M(1)

b′c′ |−1/2
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for j = 2, 3, and

λ
ijk

I
(1)

a′b′ I
(1)

b′c′ I
(1)

c′a′
= −1

3
εijkδi

i δ
j

j δk
kλ

(1)

a′b′,c′ .

The gauge kinetic functions of the U(M) subgroups are given by

fa′ = T1,

which is different from those derived from the 10D U(N) SYM theory. This is one of signif-
icant features of the mixed higher-dimensional SYM systems. This is also consistent with the 
interpretation in a D-brane picture.

In the rest of this section, we discuss another case in which the point-like quasi-localizations 
of (a, b′)- and (a′, b)-sectors are shifted by VEVs of the position moduli. This effect appears in 
the factor Q of (c′a)–(ab)–(bc′) coupling, which is defined in Eq. (30). Considering the point 
like-localizations shifted from zs = 0 by χs (s = 2, 3), the factor Q is given by

Q =
∏

s=2,3

⎧⎪⎨
⎪⎩NM

(s)
ab

e

πi
Im τs

M
(s)
ab

(
χ̄s+ ζ̄

(s)
ab

M
(s)
ab

)
Im

(
χs+ ζ

(s)
ab

M
(s)
ab

)
× ϑ

⎫⎪⎬
⎪⎭ .

When χs is vanishing, the rescaling of φIab

1 defined in Eqs. (40) and (41) consistently removes 
the above exponential factor. We extract additional contributions induced by nonvanishing χs

from the above equation as

Q ∝ exp

⎡
⎣∑

s=2,3

πi

Im τs

(
M

(s)
ab χ̄s Imχs + χs Im ζ

(s)
ab + ζ̄

(s)
ab Imχs

)⎤⎦
This will be absorbed by the rescaling of (ab)-, (bc′)- and (c′a)-sectors. When we consider a 
modification of the rescaling rule for (bc′)- and (c′a)-sectors to remove this factor, those for 
(a′b′)-sector (6D fields) must also be modified for the holomorphicity of Yukawa couplings. As 
a result, the shift parameter χs appears in Kähler metrics of the 6D fields, even though this shift 
is caused in four-dimensional extra compact space which is not related to the 6D field theory. 
This is a bizarre consequence and we should consider another way. Thus, this additional factor 
would be absorbed by only (ab)-sector, and then, φIab

1 is further rescaled as

φ
Iab

1 → α̃
Iab

1 φ
Iab

1

α̃
Iab

1 = exp

⎡
⎣∑

s=2,3

− πi

Im τs

(
M

(s)
ab χ̄s Imχs + χs Im ζ

(s)
ab + ζ̄

(s)
ab Imχs

)⎤⎦ . (43)

As the result, the Kähler metric of φIab

1 is found as

ZI īj
ab

= δīj

(
Tj + T̄j̄

2

)−1( 3∏
r=1

Ur + Ūr̄

2

)−1/2

× 1

25/2

(
|M(j)

ab |∏
r �=j |M(r)

ab |

)1/2

exp

⎡
⎢⎣−

3∑
r=1

4π

Ur + Ūr̄

(
Im ζ

(r)
ab

)2

M
(r)
ab

⎤
⎥⎦ ,
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× exp

⎡
⎣−

3∑
s=2,3

4π

Us + Ūs̄

(
M

(s)
ab (Imχs)

2 + 2 Imχs Im ζ
(s)
ab

)⎤⎦ , (44)

where i = ī = 1 and the last line represents the additional contribution. This rescaling of φIab

1

induces the additional factor α̃Iab

i in another Yukawa coupling φIab

1 φ
Ibc

j φ
Ica

k (j, k = 2, 3) shown 

in the second line of Eq. (38), but rescalings of φIbc

j and φIca

k can naturally absorb this factor. 
This is because that the additional factor (43) is rewritten as

α̃
Iab

i = exp

[∑
s=2,3

πi

Im τs

(
M

(s)
bc χ̄s Imχs + χs Im ζ

(s)
bc + ζ̄

(s)
bc Imχs

+ M(s)
ca χ̄s Imχs + χs Im ζ (s)

ca + ζ̄ (s)
ca Imχs

)]
,

where we use M(s)
ab +M

(s)
bc +M

(s)
ca = 0(ζ

(s)
ab + ζ

(s)
bc + ζ

(s)
ca = 0). This is removed by further rescal-

ings of φIbc

j and φIca

k as follows,

φ
Ibc

j → α̃
Ibc

j φ
Ibc

j , φ
Ica

k → α̃
Ica

k φ
Ica

k ,

α̃
Ibc

j = exp

⎡
⎣∑

s=2,3

− πi

Im τs

(
M

(s)
bc χ̄s Imχs + χs Im ζ

(s)
bc + ζ̄

(s)
bc Imχs

)⎤⎦ ,

α̃
Ica

k = exp

⎡
⎣∑

s=2,3

− πi

Im τs

(
M(s)

ca χ̄s Imχs + χs Im ζ (s)
ca + ζ̄ (s)

ca Imχs

)⎤⎦ .

These have the same form as Eq. (43). And also, expression (44), which gives the Kähler metric 
of φIab

1 for i = ī = 1, can describe those of the other two fields for i = ī = 2, 3. We have obtained 
the general form of the 4D effective action which is valid even when the positions of the 6D fields 
on the two tori are shifted by the nonvanishing VEVs of the position moduli. A variety of 6D and 
10D SYM systems is obtained with multiple 6D SYM theories distinguished by their localized 
points. Furthermore, the most generic SYM system can also be also constructed in the similar 
way which is demonstrated in this section.

In the next section, we show a mixed system consisting of 4D SYM theories and 8D SYM 
theories as another example.

4. 4D and 8D SYM theories and their mixtures

Although any of SYM mixtures basically can be derived in the same manner, we give another 
specific system with 4D and 7D SYM theories. These SYM theories can be expected to appear 
as low-energy effective field theories of mixed configurations of D3- and D7-branes. It is known 
that the D3–D7 brane systems are related to the D9–D5 brane systems by T-duality. Indeed, 
SYM systems which might describe these two D-brane systems can be derived from a single 
10D SYM theory with the same configuration of the infinite magnetic fluxes (25) by performing 
two different ways of dimensional reduction.
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4.1. Superfield description of the 4D and 8D SYM theories

We derive a superfield description of mixture of a 4D U(N) SYM theory localized at a point 
of the extra dimensions and an 8D U(M) SYM theory compactified on two tori, M4 × (T 2)2 ×
(T 2)3 from the 10D U(M+N) SYM theory with the infinite magnetic fluxes (25). The remaining 
zero-modes are also equivalent to those of the previous model but they are interpreted differently. 
The first-block entries are assigned to the 8D U(M) SYM theory and the last ones to the 4D 
U(N) SYM theory. In these theories, φn

2 and φn
3 are identified as the position moduli of the 

U(N) SYM theory on the two tori. φm
1 and φn

1 can also be seen as the position moduli of the 
irrelevant torus (T 2)1 where no field of this system lives. For simplicity, the VEVs of φm

1 and φn
1

are set to vanish in the following.
The effective action obtained by the partial dimensional reduction is given by the following 

three parts,

S = Sm + Sn + Smn,

where Sm corresponds to the 8D U(M) SYM theory compactified on the second and the third tori, 
Sn to the 4D U(N) SYM theory and the last part Smn to the mixings of the two theories which 
contains φmn

2 and φmn
3 . These are easily calculated in a similar way to the previous section: The 

8D U(M) SYM theory is obtained by carrying out the integration with respect to coordinates z1
and z̄1̄, and it is found as

Sm = 1

g2
8

∫
d8X

√−G8

∫
d4θKm +

{∫
d2θ

(
1

4
Wα

mWαm +Wm

)
+ h.c.

}
,

where the three functions Km, Wm and Wα
m are given by

Km = 2Tr
[
h22
((√

2∂̄2 + φ̄m
2

)
e−V m

)(
−√

2∂2 + φm
2

)
eV m

+ h33
((√

2∂̄3 + φ̄m
3

)
e−V m

)(
−√

2∂3 + φm
3

)
eV m

+ h22∂̄2e
−V m

∂2e
V m + h33∂̄3e

−V m

∂3e
V m

+ h11φ̄m
1 e−V m

φm
1 eV m +K′

WZW

]
,

Wm = 2
√

2 (e1e2e3)
−1
(

φm
3 ∂1φ

m
2 + φm

1 ∂2φ
m
3 − 1√

2
φm

3

[
φm

1 , φm
2

])
,

Wαm = −1

4
D̄D̄e−V m

DαeV m

.

The 4D U(N) part is given by

Sn = 1

g2
4

∫
d4X

√−G4

∫
d4θKn +

{∫
d2θ

(
1

4
Wα

nWαn +Wn

)
+ h.c.

}
,

where the three functions Kn, Wn and Wα
n are given by

Kn = 2Tr
[
hjī φ̄n

ī
e−V n

φn
j eV n +K′

WZW

]
,

Wn = −2

3
εijkei

iej
j ek

kφn
i φn

j ,φn
k ,

Wαn = −1
D̄D̄e−V n

DαeV n

.

4
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After the integration of the well-defined delta functions induced by the infinite magnetic fluxes 
with respect to the torus coordinates, the last mixing part Smn is described by

Smn =
∫

d4X
√−G4

∫
d4θ Tr

(
2h22φ̄mn

2 e−V m

φmn
2 eV n + 2h33φmn

3 eV m

φ̄mn
3 e−V n

)

+ 2
√

2 (e1e2e3)
−1
∫

d2θ Tr

[
φmn

3

(
− Q̃√

2
φm

1 φmn
2 + 1√

2
φmn

2 φn
1

)
+ h.c.

]
, (45)

where the factor Q̃ is given by the integrals on the two tori,

Q̃ =
∏

s=2,3

∫
dzsdz̄s̄

{
(f

(s)
1 )m(zs) × δT 2(zs + ζ̃ (s))

}
=
∏

s=2,3

(f
(s)
1 )m(ζ̃ (s)), (46)

with ζ̃ (s) ≡ ζ
(s)
MN/H .

4.2. 4D effective action on magnetized backgrounds

We derive the 4D effective action from the mixture of the 4D U(N) SYM theory and 8D 
U(M) SYM theory compactified on magnetized tori. This is given by the following configuration 
of magnetic fluxes, instead of Eq. (25)

M(1) =
(

0 0
0 0

)
,

M(2) =
(

M
(2)
m + H × 1M 0

0 0

)
, M(3) =

(
M

(3)
m − H × 1M 0

0 0

)
, (47)

where the finite fluxes of the 8D U(M) SYM theory M(2)
m and M(3)

m are (M × M) matrices and 
they can lead to a gauge symmetry breaking U(M) →∏

a U(Ma). Note that, in this configura-
tion, the infinite fluxes H and −H can be moved to the last-block entries without any physical 
changes (as long as we are studying SYM theories).

In assumption of the gauge symmetry breaking U(M) →∏
a U(Ma), bifundamental fields 

φmn
2 and φmn

3 appearing in Smn are replaced by φan
2 and φan

3 , which are bifundamental repre-
sentations (Ma, N̄) and (M̄a, N) of U(Ma) × U(N), respectively. We can concentrate on the 
8D U(M) SYM theory Sm to derive the 4D effective theory of this system because the extra 
dimensional integrations have already been carried out in the other parts.

In assumption of the gauge symmetry breaking U(M) →∏
a U(Ma), the 4D effective action 

of the 8D U(M) SYM Sm is given by

Sm =
∫

d4x

[∫
d4θKeff +

{∫
d2θ

(
1

4g2
a

Wa,αWa
α +Weff

)
+ h.c.

}]
, (48)

where the functions Keff, Weff and Wa
α have the following form,

Keff =
∑
i,j

∑
a,b

∑
Iab

Z̃
īj

Iab
Tr
[
φ̄
Iab

ī
e−V a

φ
Iab

j eV a
]
,

Weff =
∑∑ ∑

λ̃
ijk

IabIbcIca
Tr
[
φ
Iab

i φ
Ibc

j φ
Ica

k

]
,

i,j,k a,b,c Iab,Ibc,Ica
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Wα = −1

4
D̄D̄e−V a

DαeV a

, ga = g8

(
A(2)A(3)

)−1/2
,

with Iab = (I
(2)
ab , I (3)

ab ), and Kähler metric Z̃īj

Iab
and holomorphic Yukawa coupling λ̃ijk

IabIbcIca
are 

given by

Z̃
īj

Iab
= 2hīj

λ̃
ijk

IabIbcIca
= −2g8

3
εijkei

iej
j ek

k

3∏
r=2

λ̃
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

.

The factor λ̃(r)

I
(r)
ab I

(r)
bc I

(r)
ca

is defined in Eqs. (16) and (17) and these are valid when M(r)
ab M

(r)
bc M

(r)
ca > 0.

4.3. Supergravity action and moduli dependence

At this final step, we embed the 4D effective action into the generic form of N = 1 conformal 
supergravity. A D3/D7 brane system, which is a motivation of this section, is T-dual to a D5/D9 
system as we mentioned, and indeed, a part of the T-dual picture has been seen in our study of 
SYM systems. According to the T-duality, the moduli definitions (37) should also be replaced in 
the 4D- and 8D-SYM systems by

Re〈S〉 = e−〈φ10〉, Re〈Ti〉 = e−〈φ10〉α′−2A(j)A(k), 〈Ui〉 = iτ̄i , (49)

where i �= j �= k �= i. We can see from studying the gauge kinetic functions that these new iden-
tifications of the moduli VEVs are plausible in our system. The two gauge kinetic functions of 
the 4D effective field theories derived in this section are

Ref4D = 1

g2
4

, Refa = 1

g2
8

A(2)A(3).

The parameters in these functions are upgraded to the moduli field in accordance with Eqs. (36)
and (49), and that leads to

f4D = S, fa = T1.

These results are consistent with the D3/D7 brane picture.
The field rescalings are also required in this system before upgrading the parameters to the 

moduli fields. We first determine the simplest rescaling rule for the fields of 4D U(N) SYM 
theory φn

i which has no generation structure because they are defined in the 4D spacetime from 
the beginning. Those for the other fields are uniquely found for the holomorphicity of four types 
of Yukawa couplings. The complete form of the Yukawa coupling λijkφn

i φn
j φn

k is given by

λijk = −29/2

3
εijkδi

iδj
j δk

ke3〈φ4〉
(∏

r

2πRr

)−1(∏
r ′

Re〈Tr ′ 〉
)1/2(∏

r ′
Re〈Ur ′′ 〉

)1/2

.

These are removed by the field rescaling

φn
i → αn

i φn
i ,

where

αn
i = 2−3/2e−〈φ4〉 2πRi√

Re〈Ti〉

(∏
Re〈Ur 〉

)−1/6

.

r
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As the result, the Kähler metric of this field and the holomorphic Yukawa couplings are found as

Zn

iī
= 1

4

(
Ti + T̄i

2

)−1(∏
r

Ur + Ūr

2

)−1/3

,

λijk = −1

3
εijkδi

iδj
j δk

k.

This leads to the following results for the other fields:

φan
i → αan

i φan
i ,

φ
Iab

1 → αab
i φ

Iab

1 ,

φ
Iab

j → αab
j φ

Iab

j , j �= 1,

where

αan
i = 2−3/2e−〈φ4〉 2πRi√

Re〈Ti〉

(∏
r

Re〈Ur 〉
)−1/6

,

αab
1 = 2−2e−〈φ4〉 2πRi√

Re〈S〉 (Re〈U1〉)−1/6 (Re〈U2〉)−5/12 (Re〈U3〉)−5/12

× exp

⎡
⎣−

∑
k �=1

πi

Im τk

ζ̄
(k)
ab

M
(k)
ab

Im ζ
(k)
ab

⎤
⎦
⎛
⎝∏

k �=1

|M(k)
ab |
⎞
⎠−1/4

,

αab
j = 2−3/2e−〈φ4〉 2πRj√

Re〈Tj 〉

(∏
r

Re〈Ur 〉
)−1/6

× exp

⎡
⎣−

∑
k �=1

πi

Im τk

ζ̄
(k)
ab

M
(k)
ab

Im ζ
(k)
ab

⎤
⎦( |M(j)

ab |
|M(s)

ab |j �=s �=1

)1/4

.

Recall that φn
1 is the U(N) adjoint representation, φIab

i is the bifundamental representation 
(Ma, M̄b), and φan

2 and φan
3 are (Ma, N̄) and (M̄a, N), respectively. The Kähler metrics for 

these fields are given by

Zan

jj̄
= 1

4

(
Tj + T̄j

2

)−1(∏
r

Ur + Ūr

2

)−1/3

,

ZI11̄
ab

= 1

23

(
S + S̄

2

)−1(
U1 + Ū1

2

)−1/3(
U2 + Ū2

2

)−5/6(
U3 + Ū3

2

)−5/6

×
⎛
⎝∏

k �=1

|M(r)
ab |
⎞
⎠−1/2

exp

⎡
⎢⎣−

∑
k �=1

4π

Uk + Ūk̄

(
Im ζ

(k)
ab

)2

M
(k)
ab

⎤
⎥⎦ ,
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ZIj j̄
ab

= 1

4

(
Tj + T̄j

2

)−1(∏
r

Ur + Ūr

2

)−1/3

×
(

|M(j)
ab |

|M(s)
ab |j �=s �=1

)−1/2

exp

⎡
⎢⎣−

∑
k �=1

4π

Uk + Ūk̄

(
Im ζ

(k)
ab

)2

M
(k)
ab

⎤
⎥⎦ .

The relevant Yukawa couplings

λmnφ
an
2 φn

1 φan
3 (in Smn),

λIab
φ
Iab

1 φbn
2 φan

3 (in Smn),

λ
ijk

IabIbcIca
φ
Iab

i φ
Ibc

j φ
Ica

k (in Sm),

are given by

λmn = 1,

λIab
= −1

⎛
⎝ ∏

r=2,3

ϑ

[
I

(r)
ab /M

(r)
ab

0

](
ζ

(r)
ab , iM

(r)
ab Ūr

)⎞⎠
λ

ijk

IabIbcIca
= −1

3
εijkδi

iδj
j δk

k

3∏
r=2

λ
(r)

I
(r)
ab I

(r)
bc I

(r)
ca

,

where λ(r)

I
(r)
ab I

(r)
bc I

(r)
ca

is defined in Eqs. (21) and (22). Note that φIab

1 and φIab

j �=1 are clearly distin-

guished in the above expressions, because φIab

j �=1 carries vector components of the 8D field theory 

but φIab

1 does not. In these expressions, the shift χs of the point-like localization of the 4D U(N)

SYM theory on the second and the third tori are absent, χs = 0. One can easily introduce the 
shift in the same manner as is in the last part of the previous section.

We have derived the 4D effective supergravity action from the 4D and 8D SYM system in the 
N = 1 superfield description.

5. Conclusions and discussions

A systematic way of dimensional reduction for 10D magnetized U(N) SYM theories provided 
in Ref. [9] has been extended, in this paper, to those for (4 + 2n)-dimensional U(N) SYM 
theories (n = 0, 1, 2, 3) and their mixtures wrapping magnetized tori, which are described by 
4D N = 1 superfields. Such a superfield description makes the N = 1 SUSY manifest, which 
is a (common) part of N = 2, 3 or 4 SUSY in the (mixture of) (4 + 2n)-dimensional SYM 
theories, preserved by the configuration of magnetic fluxes. While the magnetic fluxes break the 
higher-dimensional SUSY, the N = 1 SUSY is preserved as long as the auxiliary fields in N = 1
superfields have a vanishing VEV.

It is important to study N = 1 SUSY configurations of magnetic fluxes from both phenomeno-
logical and theoretical points of view. It is known that non-SUSY configurations are generically 
unstable in string theory due to the appearance of tachyonic modes in various sectors. The N = 1
superfield description of higher-dimensional SYM theories [15,16] is so powerful to find the 
desired flux configurations and explicit forms of Kähler metrics and holomorphic Yukawa cou-
plings with certain moduli dependences in the 4D effective SUGRA. Since the moduli-mediated 
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contributions to soft SUSY-breaking parameters are determined by them, it is easy to evaluate 
the induced SUSY spectra. This is a great advantage in phenomenological studies.

Two concrete examples for mixed SYM systems wrapping magnetized tori have been shown. 
The first one consists of 6D U(M) and 10D U(N) SYM theories accompanied by their couplings 
given in Section 3. This is a straightforward extension of the previous work [9] based on a single 
10D SYM theory and is derived from the 10D U(M + N) SYM theory by introducing infinite 
numbers of magnetic fluxes, which is a useful tool to construct mixed SYM systems in a sys-
tematic way. Especially, the bifundamental representations crossing over the two SYM theories, 
(M, N̄) and (M̄, N), those can couple to both 6D U(M) and 10D U(N) adjoint fields, will be 
strongly localized in the vicinity of the 6D hypersurface in which the 6D SYM fields reside if 
they are identified as open-string modes in D5/D9 systems.

In the field theoretical description, the infinite magnetic fluxes induce such a point-like local-
ization [6], and the well-defined delta functions are obtained as solutions of zero-mode equations 
for the bifundamental representations. Such a procedure utilizing infinite fluxes to construct a 
mixed SYM system is motivated by a T-duality in D-brane systems. It is known that D9-branes 
with infinite magnetic fluxes in four compact directions are related to pure D5-branes without 
magnetic fluxes by the T-duality in these directions.

At the last step to derive 4D effective SUGRA, we promote gauge coupling constants and torus 
parameters to moduli fields in accordance with modified parameterizations of the moduli VEVs. 
The modifications are required to describe moduli in a universal way in mixed SYM theories 
with different dimensionalities from each other, because their gauge coupling constants have 
different mass dimensions depending on their dimensionalities. The modified parameterizations 
could also have been interpreted consistently in a D-brane picture.

Another example which consists of 4D U(N) and 8D U(M) SYM theories have been shown 
explicitly in Section 4. This SYM system is also derived from the 10D U(M + N) SYM theory 
with the same configuration of infinite magnetic fluxes as that of the previous example. This 
seems plausible because D3/D7 brane systems are T-dual to D9/D5 brane systems in the frame-
work of type IIB compactifications. Referring to the duality in such D-brane pictures, we have 
adopted another parameterization for the VEVs of moduli fields in this second example. We 
confirmed a validity of the moduli parameterization in each example by comparing the obtained 
moduli-dependences of gauge kinetic functions in the 4D effective SUGRA with those identified 
in the corresponding D-brane system. They exactly accord with the corresponding ones in the 
D-brane picture.

Although we have shown only two examples, a wide variety of combinations of multiple 
SYM theories can be realized in the same manner. Such a variety is expected to be of service in 
phenomenological/cosmological studies towards a realistic model. For instance, these multiple-
SYM systems would provide a foundation for constructing moduli stabilization and dynamical 
SUSY breaking sectors, which are desired to be sequestered from the visible sector from the 
phenomenological point of view. In such a construction, bifundamental fields charged under 
both hidden and visible sectors could appear depending on the flux configuration, some of those 
can play a role of messenger which mediates SUSY breaking contributions from the hidden to 
the visible sector. Such a gauge-mediated contribution [19] to soft SUSY-breaking parameters 
can be one of the distinctive features of the system.

On the other hand, phenomenological consequences of mixed moduli- and anomaly-mediated 
contributions to the soft parameters (that is called mirage mediation [20]) were studied in a 
model based on the 10D magnetized SYM theory [10,12]. If the model is extended to a mixed 
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SYM system where the dynamical SUSY breaking sector is incorporated, the gauge-mediated 
contribution can also be comparable to moduli- and anomaly-mediated ones with a certain 
moduli stabilization mechanism. In such a case the system provides a UV completion of the 
deflected mirage mediation [21]. In any case, the low-energy spectra in visible and hidden 
sectors are governed by the configuration of background magnetic fluxes in the SYM sys-
tem.

The gauge kinetic function in the 4D effective action is given by the dilaton S or the Käh-
ler modulus Ti , depending on the dimensionality of the original SYM theory. If the SM gauge 
groups originate from different SYM theories in the mixed system, certain non-universal gauge 
kinetic functions can be realized in the SM sector. In such a case, some attractive scenarios are 
then conceivable deviating from the grand unification models, especially, non-universal gaugino 
masses at the compactification scale are possible at the tree-level, even when the gauge coupling 
constants are unified at the same scale. It is known that a certain value of wino-to-gluino mass ra-
tio extremely relaxes a fine-tuning of Higgsino-mass parameter (so-called μ-parameter) required 
for triggering a correct electroweak symmetry breaking in the MSSM or MSSM-like models [22]
without conflicting with the observed Higgs boson mass at the Large Hadron Collider [23].

Furthermore, in the moduli stabilization and SUSY breaking sectors, the moduli dependences 
of their gauge kinetic functions are extremely important, because some nonperturbative effects 
induced by the SYM dynamics are usually required in these sectors. For example, in the KKLT 
scenario of moduli stabilization [24], Kähler-moduli dependent nonperturbative effects are as-
sumed which determine the ratio between moduli- and anomaly-mediated SUSY breaking [25]. 
We should remark that there appear stringy corrections which mix multiple moduli in each gauge 
kinetic function depending on the configuration of magnetic fluxes [26,14], when the SYM sys-
tem is treated as a low-energy effective description of D-branes. Such a moduli-mixing in the 
gauge kinetic functions plays a role in the mechanism of moduli stabilization and SUSY break-
ing [27].

While these SYM theories in various-dimensional spacetime are related to each other by the 
T-duality in a D-brane picture, there are differences in their Kähler metrics and holomorphic 
Yukawa couplings, because their moduli dependence depends on the configurations of (finite) 
magnetic fluxes. The dynamics of moduli fields in low-energy effective field theories is quite 
significant in particle physics and cosmology, especially, in the early universe. This has recently 
attracted much attentions as cosmological observations highly evolve. In the study of early uni-
verse, couplings between the moduli and the matter particles have to be treated carefully. Since 
the higher-dimensional SYM systems give explicit forms of the couplings, it is of great interest 
to study these systems incorporating a certain scenario of the early universe.

The D-brane pictures, especially T-dualities in type II superstring theories, motivate and sup-
port this work. Indeed, in this paper, we find them in many respects. Although there are several 
issues to be addressed, such as tadpole cancellations [4,14], for a string realization of the mixed 
SYM system treated here, it is worth trying and we will study further elsewhere.
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Appendix A. A SUSY configuration in 6D and 10D SYM systems

We have adopted the generic configuration of magnetic fluxes in the 6D and 10D SYM theo-
ries in Subsection 3.2 for completeness of our description, even though it would break the N = 1
SUSY. That is, the magnetic flux in 6D U(M) sector M(1)

m is nonvanishing on the first torus 
on which the 6D SYM theory is compactified, and then, the gauge symmetry is broken by it as 
U(M) →∏

a U(Ma). In this appendix, we calculate 4D effective SUGRA on the basis of an-

other configuration with vanishing M(1)
m , where the U(M) gauge group is preserved as well as 

the N = 1 SUSY. There are four adjoint fields in the superfield description of 6D U(M) theory. 
We denote their zero-modes as

V m,n1=0 ≡ V m, φ
m,n1=0
i ≡ g6φ

m
i ,

where chiral superfields are normalized by the gauge coupling g6 for convenience. Since these 
U(M) adjoint fields do not feel magnetic fluxes on the first torus, their extra-dimensional wave-
functions are flat. The integration with respect to the first torus coordinates z1 and z̄1̄ can be 
straightforwardly performed, and it is easy to derive the 4D effective action. According to the 
normalization (11), their Kähler metric Z̃īj and tri-linear coupling λ̃ijk are given by

Z̃īj = 2hīj

λ̃ijk = −2g6

3
εijkei

iej
j ek

k(A(r))−1/2, (50)

instead of Eqs. (33) and (34).
We can find the 4D effective SUGRA on this background in the same manner as is in Section 3. 

The rescaling rules are given by

φm
i → αm

i φm
i for i = 1,2,3,

where

αm
1 = 2−1e−〈φ4〉 2πR1√

Re〈S〉 ,

αm
j = 2−7/4e−〈φ4〉 2πRj√

Re〈Tj 〉

(∏
r

Re〈Ur 〉
)−1/4

for j = 2,3.

After these rescalings, the parameters are promoted to the dilaton and moduli superfields in the 
Kähler potential in accordance with Eqs. (36) and (37). We find

Z1̄1 = 1

2

(
S + S̄

2

)−1

,

Zj̄j = 1

25/2

(
Tj + T̄j

2

)−1(∏
r

Ur + Ūr

2

)−1/2

for j̄ = j = 2,3,

and then, the tri-linear coupling λ̃ijk is simply given by

λijk = −1

3
εijkei

iej
j ek

k.

We should remark on couplings between these adjoint fields and (mn)-fields. There are bifun-
damental representations charged under the U(M) gauge group and a U(Na) gauge subgroup in 
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this system. If a pair of representations (M, N̄a) and (M̄, Na) appears in the 4D effective theory, 
they can couple to the above adjoint representations. However, either of these two bifundamen-
tal representations is eliminated by the chirality projection due to magnetic fluxes because these 
two representations feel magnetic fluxes with opposite signs (the bifundamentals are contained 
in only φ2 and φ3, which require the negative sign of magnetic fluxes on the first torus for their 
zero-modes to survive). As a result, the U(M) adjoint fields will not couple to the other sectors 
unless representations (M, N̄a) and (M̄, Na) feel vanishing fluxes.
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