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ABSTRACT The shape of mechanically pierced giant vesicles is studied to obtain the elastic modulus of Gaussian
curvature of egg lecithin bilayers. It is argued that such experiments are governed by an apparent modulus, K- not the

true modulus of Gaussian curvature, K-. A theory of Kap is proposed, regarding the pierced bilayer vesicle as a closed
monolayer vesicle. The quantity measured, i.e. Kapp/K, where K is the rigidity, agrees satisfactorily with the theory. We
find Ka = -(1.9 + 0.3) * 10-12 erg (on the basis of K = (2.3 ± 0.3) * 10-12 erg). The result may have implications for
bilayer fusion.

INTRODUCTION

The curvature elastic energy of fluid layers, in its usual
quadratic approximation, is governed by two elastic mod-
uli. One of them, the bending rigidity K, has been obtained
(1-5) for the bilayers of some lecithins, in particular those
of egg lecithin, by analyzing the shape fluctuations of
vesicles. The other modulus, K, is associated with Gaussian
curvature. The integral of this curvature over a closed
surface depends only on the genus (6), i.e., the number of
handles, of the surface (Gauss-Bonnet theorem). It
changes in steps of -4ir with the topology, e.g., in going
from a sphere to a torus. As a result, Gaussian curvature
cannot cause any surface torques and forces in the mem-
brane, but it will give rise to line torques and forces acting
along imaginary or real cuts through the membrane.

It is tempting to assume the bending elastic energy and
the line torques of bilayers to be determined by membrane
shape and the elastic moduli K and K. The energies of
circular disks and spherical caps have, in fact, been
expressed by Helfrich (7) and Fromherz (8) in terms of K,
K, and an edge energy or line tension y. Derzhanski et al.
(9) did a first estimate of K for egg lecithin. It is based on a
theoretical instability of disks with respect to sphering, the
minimum size of sonicated vesicles, and experimental
values for y and K (see below). Mitov (private communica-
tion) tried to obtain K from the membrane curvatures at the
rim of the hole of electrically opened egg lecithin vesicles
(10), assuming a vanishing elastic line torque about the
membrane edge.
When we started to pierce giant vesicles with a needle to

derive K, like Mitov, from the membrane curvatures next to
the hole, we realized that current concepts are most
probably naive, supposing the edge to behave like a clean
cut with the hydrocarbon chains in contact to water. The
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energy of such an edge seems prohibitive in view of the
large hydrocarbon/water interface. If the edge has a
different structure, e.g., connects the two monolayers, we
may have to replace the true bilayer modulus, K, by an
apparent modulus of Gaussian curvature, Kapp when deal-
ing with bilayer edges. The equations for membrane
energy and boundary torques need not change their forms,
although the elastic energy associated with Ka may reside
in the curved edge rather than the curved membrane.

This paper is a study of Kapp, both experimental and
theoretical. We begin with a theory of the bending elastic
energies of membranes and their edges. The approach
taken here is to regard the pierced bilayer vesicle, including
the membrane edge, as a closed monolayer vesicle. In the
framework of the model we show that indeed the equations
do not change while K is replaced by a well-defined Kapp
With a view to the experiments, the boundary torque
balance relating K pp/K to the ratio of the principal curva-
tures at the membrane edge is formulated such as to allow
for an interaction with the needle. Subsequently, we
describe the experiments in which egg lecithin membranes
were pierced with micromanipulated glass and tungsten
needles under a phase contrast microscope. The measured
value of Kapp agrees rather well with the theoretical predic-
tion. There is also satisfactory agreement with the estimate
employing the minimum size of sonicated vesicles. Finally,
we discuss a slight dependence of Ka on needle radius and
in this context the interaction between needle and mem-
brane edge. The significance of our results for the fusion of
egg lecithin bilayers is considered in the conclusion.

THEORY

The curvature elastic energy per unit area, g, of a fluid
surface that may be a bilayer or a monolayer is usually
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written as (I 1)

1 2g == K (C1 + c2 - 0) + KCIC21c2 (1)

where cl and c2 are the principal curvatures, co the sponta-
neous curvature, and K and K_ the elastic moduli. The
product c1c2 is called Gaussian curvature and corresponds
to saddle splay in liquid crystals. In conformity with Eq. 1,
our calculations will be restricted to a quadratic approxi-
mation in the curvatures unless otherwise stated.
The monolayers of a bilayer are assumed to slide freely

on each other. In the following, bilayer moduli are
unmarked, monolayer moduli are distinguished by the
superscript m (Kin, K), while co exclusively denotes mono-
layer spontaneous curvature. (The spontaneous curvature
of the pierced bilayer is thought to vanish.) Spontaneous
curvature co and the modulus Km can be nonzero if the
stress profile of the flat monolayer contains regions of
counterbalancing push and pull (12, 13). The net lateral
tensions as well as monolayer stretching will be regarded as
negligible.
A bilayer vesicle with one hole is topologically equiva-

lent to a closed monolayer vesicle if the two monolayers
composing the bilayer are connected at the edge of the
membrane. An edge structure of this type is sketched in
Fig. 1. The total integral of Gaussian curvature over the
monolayer vesicle is 4ir. It can be split into two parts, one
taken over the strongly curved edge region and the other
over the weakly bent monolayers of the bilayer membrane,
as illustrated by Fig. 2. We may write

cIc2dA + 2 Clc1c2dA = 47r (2)
Ldge mem

where in the edge region the integral is over the neutral

z

xO ----- X.

FIGURE 1 Proposed structure of bilayer edge surrounding a circular
hole. The neutral surface, not shown, should lie within the monolayer. ,0
is the edge angle, i.e., the angle between the membrane tangent at the hole
and the normal to the rotation axis. For practical purposes it makes no
difference whether x. is the radius of the needle, or of the core line (see
text), or of another line in the edge (as here). The function c(XO)
introduced in the text depends on the position of the line.

FIGURE 2 Schematic drawing of rotationally symmetric pierced bilayer
vesicle represented by closed monolayer vesicle. The solid lines indicate
the neutral surfaces of the inner and outer monolayers. The membrane
area, Am.,. indicated by the dashed line, lies in the middle between the
neutral surfaces. Aed, is the area of the neutral surface in the edge region.

surface of the monolayer, i.e. the surface where the mean
molecular cross section equals that in the flat state.
Outside the edge region the integral over the monolayers is
expressed by twice the integral over the membrane, or the
central surface between the monolayer neutral surfaces,
and its curvatures. Eq. 2 will permit us to replace certain
integrals over the edge by integrals over the membrane and
vice versa.
We are interested in the total curvature elastic energy of

the pierced vesicle G = Gmem + Gedge. The energy of the
membrane without edge (or with an edge like a cut) may
be cast in the form

Gmem = 2 [- Km (cl + c2)2 dA + Km f c2 dA

± Kmf c1c2dA] -2Kmac0f c1c2dA, (3)
mem J mem

employing monolayer material parameters. The curvature
of the outer monolayer of a spherical membrane is defined
as positive. The length a is the (constant) spacing of the
monolayers, more precisely of their neutral surfaces. The
last term of Eq. 3 takes into account that the contributions
of the two monolayers to the integral of co(c1 + c2) do not
cancel completely. Although cubic in curvatures, it cannot
be dropped, as co can be much larger than cl and c2. An
easy way of checking the last term, in particular its
Gaussian character, is to calculate the energy in question
directly for a sphere and a cylinder. It is nonzero for the
sphere but zero for the cylinder. The bilayer modulus of
Gaussian curvature is, according to Eq. 3

K = 2K m - 2K a c0. (4)

An extensive derivation of this relationship has been given
by Petrov and Bivas (12). Finally, we suppose ac0 << so
that a quartic correction of the second term of Eq. 3, also of
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Gaussian character, can be neglected. (It would drop out
anyway below.)

Let us assume now that the curvature in an orthogonal
cross section of the edge depends on the angle 0 as
indicated in Fig. 1 (c(-4) = c(q)), but is independent of
whether the edge is a straight or curved line. This ensures
that c(+) is always a principal curvature, say cl, which of
course is very strong. It is then advantageous to decompose
the elastic energy of the edge as follows

Gedge 2Km (c- 2c1ce) dA + 2Km cdA
+e2 K =e C2g de)dge

+ -K f c24dA + K"Lm C2(CI - co)dA

+ Km .l; c1c2 dA. (5)

We assign to the edge a fixed width and define a core line
r(s), which lies in its central surface at a fixed distance
from its vertex. The variable s measures the length of the
line. The distance is chosen such that the contribution of
the first term of Eq. 5 per ds remains unchanged if the line
is curved. (The line curvature is reflected in c2; it could
affect the considered term through dA whenever its curva-
ture vector d2r/ds2 has a component in the tangent plane of
the membrane.) The first term of Eq. 5 may now be
identified with -yL, where y is the edge energy per unit
length, also called line tension, and L the total length of the
line. The third term of Eq. 5 represents a bending energy of
the edge that does not generally vanish, but should be
negligible as compared to other terms of G in experiments
with large circular holes. Omitting it, we are left with

I
Gedge = yL + 2Km jc2 dA + Km c2(cI - c) dA

+ Kfme ClC2dA. (6)

Adding Eqs. 3 and 6 results in

G = yL + Km f (C1 + C2)2 dA + Km ClC2 dA

-2Km acOf CC2 dA-KmCO f C2 dA. (7)

Note that the two Km terms no longer appear since because
of Eq. 2 their sum is a constant, and can thus be dropped.
Assuming the monolayer to be unstretchable, we have also
lost the two c02 terms that together form another constant.
The simplest conceivable model of the membrane edge is

a semi-cylindrical monolayer joining the two membrane
monolayers. Closure of the edge then requires cl = 2/a all
over the edge. In this model the distance between core line
and vertex is (a/2)(1- 2/r) and the natural choice for the
width of the edge is a/2. (Not only the edge energy but also
the edge area is conserved when this edge is bent.) Using

Eq. 2 again, we combine the last term and half the fourth
of Eq. 7 into an integral over the edge,

KmCOf 21(2 - I) (8)

plus a further constant. The integral vanishes if cl = 2/a is
inserted. The semicylinder model may not be quite realistic
as the monolayer is likely to bulge at the membrane edge
for reasons of molecular packing (14). However, it is
assumed here to be valid for the sake of simplicity.
Deviations from it would affect in the following Eq. 10 only
the term proportional to c0. The other, more important
term is independent of the details of edge structure.

Collecting the remaining nonconstant terms of Eq. 7 and
using the obvious equality K = 2Km, we arrive at

If
G = 2yL+ K (C1 + C2)2dA + Kappme c1c2dA, (9)

where

a
Kapp = K(lI + -C0). (10)

The energy of the last term of Eq. 9 resides in the edge
rather than the membrane. Nevertheless, we prefer the
representation in terms of membrane integrals since the
same equation, with K instead of Kapp_ holds for a cutlike
edge possessing no curvature elastic energy of its own. In
such a model, yL would be the energy of the hydrocarbon/
water interface along the membrane edge. The real mem-
brane edge may differ from both the naive model of a cut
and the monolayer-vesicle model, especially its quadratic
approximation. We expect Eq. 9 to hold in any case, with
Kapp depending on edge structure.
A formula permitting us to obtain Kap from experiment

is derived next. For this purpose we consider a rotationally

z

xo~~~~

Cm> °

CP < 0

FIGURE 3 Cross section of a vesicle with inserted needle assuming
rotational symmetry. x0 is the radius of the hole (or the needle at the
position of the hole), 4t0 is the edge angle. It is positive for clockwise
rotation. R. and Rp are the radii of principal curvatures (the largest and
the smallest), cm = 1/Rm and cp = 1/Rp.
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symmetric piece of membrane with a hole of radius xo at
one pole as shown in Fig. 3. With i,6 being the edge angle,
i.e., the angle between the tangent to the membrane
contour at the hole and the normal to the rotation axis, the
two principal curvatures are the meridional curvature cm =
cos /6odi//dx, and the parallel curvature cp = sin i/0/xo. The
internal torque per unit length acting about the membrane
edge is given by the derivative of Eq. 1 with respect to
meridional curvature,

Ti= - = K(Cm + cp) + KappCp, (11)

where, as in Eq. 9, Ka takes the place of K. The spontaneous
curvature should vanish because of equal media inside and
outside the membrane and the possibility of the monolayer
molecular densities equilibrating via the edge. (These are,
of course, preconditions for the monolayer-vesicle model to
be applicable.)
The torques per unit length of membrane edge can be

the sum of an external line torque Te and an internal line
torque Ti. The total torque vanishes, i.e.,

Te+ Ti =O, (12)

if the membrane is in mechanical equilibrium. In the
absence of external torques acting on the membrane one
has ri = 0. Because of Eq. lIthe ratio of the elastic moduli
is then

Kapp _I + - (13)

K Cp/

Accordingly, Kapp can be derived if K is known and cm and cp
are measured. If an external torque exists, the ratio is given
by

Kapp =-(1 + -)-

K Cp KCp
(14)

MATERIALS AND METHODS

Egg lecithin was obtained from Serva (Heidelberg, Federal Republic of
Germany) and used without further purification. About 30% of the head
groups were phosphatidylethanolamine, as checked by thin layer chroma-
tography (15). Water was ion-depleted by an ion exchanger (Seradest,
Scral, Ransbach-Baumbach, FRG) and had a conductivity of <0.1
,uS/cm and a pH between 5 and 6.

For preparing giant unilamellar vesicles a small amount of egg lecithin
dissolved in ethanol was dropped on a stainless steel surface (2 x 10 mm),
and the ethanol was evaporated overnight in vacuum at a temperature of
-700C. Then the support was positioned in a special chamber (inner
height 2 mm, base 1 x 2 cm) so that the thin lecithin film was oriented
vertically. The chamber was filled with water from the open side and
mounted on the stage of the microscope. The lecithin swelled at room
temperature and formed unilamellar and multilamellar vesicles. After >1
h a suitable vesicle (unilamellar, diameter between 100 and -200 ,m)
was selected and opened by a thin needle made of glass or tungsten.
The glass needles were pulled from 1-mm glass tubes in a micropipette

puller (E. Leitz, Wetzlar, FRG) to outer tip diameters of -1 gm or more.
The tungsten needles were prepared by electrolysis in an electrolyte bath

of satured potassium nitrite solution with currents of 1-2 A DC until
minimal radii of 1 Am were reached. The microneedles could be mounted
on a pipette holder of a micromanipulator (E. Leitz) and moved in the
chamber by a mechanically acting control lever. The geometric parame-
ters of the needles, their diameters and conicities, were determined from
the video image. The optical resolution was 0.4 ,um in the object plane.
The angles # between needle axis and the conical surface lay between 00
and 13.50 (see Table I) and were determined with an uncertainty of
±0.50.

All observations were made at room temperature with a phase-contrast
microscope (E. Leitz) and simultaneously recorded on video tape (Grun-
dig). The lamellarity of the vesicles, i.e., the number of bilayers in the
vesicle wall, was determined from the contrast of the video image of the
vesicle's contour. For that purpose the intensity distribution along video
lines perpendicular to the contour of the vesicle wall was analyzed by
means of a line selector (Grundig, Fuirth, FRG) and a digital storage
oscilloscope (Tektronix, Inc., Beaverton, OR). The optical contrast of
vesicle walls has been shown to depend on lamellarity and radius (16, 17).
Our apparatus was calibrated by measuring the contrast of >30 giant
vesicles. In the resulting diagram of contrast vs. radius, the group with
smallest contrast could be clearly distinguished from the rest and was
associated with unilamellarity. Photographs of opened vesicles were
analyzed with the help of a semi-automatic image analyzer (MOP-
Videoplan, Kontron, Oberkochen, FRG). The contour coordinates were
obtained with a digitizer tableau, and the principal curvatures of the
membrane near the hole were computed by numerical fitting. The ratio of
the elastic moduli given below represents the average of the two sides if
the rotational symmetry was imperfect.

OBSERVATIONS AND RESULTS

During the swelling of egg lecithin a great variety of
vesicular structures developed from the thin lecithin film.
We saw vesicles that moved freely in the aqueous phase,
while other membranes stayed in contact with the steel
surface. Sometimes we observed giant, almost planar
membranes with curvatures <50 cm-', which spanned the
whole visible part of the chamber. Small vesicles mostly
drifted away when approached by the needle, but larger

TABLE I
SELECTED DATA OF ELEVEN VESICLES

No. xo R1?, . cm Kapp/K

JAm degrees degrees 'Um
1 1.3 75 -11 1.5 -0.025 -0.82 ± 0.06
2 1.5 80 -54 0 -0.022 -0.95 ± 0.03
3 1.6 100 13 <1 -0.016 -0.97 ± 0.1
4 1.9 >>100 38 9 -0.014 -0.96 ± 0.02
5 2.2 45 -43 2 -0.031 -0.90 ± 0.04
6 3.0 75 -19 5.5 -0.054 -0.70 ± 0.05
7 4.5 60 -35.5 1 3 -0.035 -0.73 ± 0.06
8 4.9 >>100 37 6 -0.021 -0.82 ± 0.05
9 5.0 85 -31.5 1 3.5 -0.039 -0.63 ± 0.07
10 5.3 >>100 47.5 10 -0.025 -0.82 ± 0.05
11 2.6 >>100 -24.5 2 -0.026 -0.84 ± 0.08

Only one needle position is considered for each vesicle. The vesicles were
pierced with glass (1-10) and tungsten (11) needles. x0 is the radius of the
hole in the membrane, e.g. the needle radius at the position of the
membrane hole. R, is the radius of the vesicle. 4t' is the edge angle (see
Fig. 1), with 4'. < 0 indicating an inward funnel. , is the conicity of the
needle, i.e. the angle between axis and surface of the needle. cm is the
meridional curvature of the membrane at the position of the hole.

BIOPHYSICAL JOURNAL VOLUME 50 1986568



ones did not so readily escape. They could be pressed
against the vertical steel support and were often deeply
dented without being pierced. In some cases, however, the
needle perforated the vesicle wall. The membrane edge Ij I
often manifested itself by a very faint line across the
needle. The contours of the membranes near the hole could
point inwards or outwards as illustrated by Figs. 4 and 5.
We remark that outward funnels were observed only with
open (pipette-like) needles that gave both inward and
outward funnels with the same vesicles. All the bilayers
showed undulations with amplitudes up to a few microme-
ters before and after being pierced, which indicates that
the lateral tensions were extremely small (SIO-' dyn/cm)
(18). The membrane edges were not seen to fluctuate.

If the slightly conical needles were moved horizontally,
the membrane edges came into contact with different
needle diameters. The membranes relaxed within 20-50 s
to a new (quasi) stationary position, where they remained
until further needle movements. Thus it was possible to
analyze membrane contours with different hole radii for a
single vesicle. Although the membrane edges seemed to
slide easily over the needle they may have settled in g

I ~i: iU 1I

FIGURE 5 Photograph of a video image of a pierced vesicle forming
outward funnel. The bar represents 10 Am.

nonequilibrium positions (see below). Electron micro-
graphs of a glass needle revealed a pronounced surface
roughness, with some protrusions reaching a height of 100
nm. When the needle was drawn out of a vesicle the

k i. _EE membrane sometimes slid off the needle, in other cases a

thin lecithin tether was pulled out of the membrane.
The apparent modulus of Gaussian curvature of pierced

'l unilamellar vesicles was calculated with Eq. 13 from 17

experiments that were carried out with 11I different vesi-
ces. The vesicle diameters ranged from 90 Am to >200
A~m, and the needle diameters at the position of the hole

<, Xl<gg§ llllfi! w ranged from 1.3 to 5.3 pim. We obtained ratios pp/K
-;!,1JA ~~~~~~~~~between -0.63 and -0.97 with a mean value of -0.83

and a standard deviation of 0.12, which was about as large
as the estimated error of the single experiments resulting
from imperfect rotational symmetry and other uncertain-
ties. With the curvature elastic modulus K = (2.3 + 0.3)
10-12 erg (1) the apparent modulus of Gaussian curvature
for pierced unilamellar egg lecithin membranes in water at
room temperature comes out to be K --(1.9±0.3) .
10-12 erg

FIGURE 4 Photograph of a video image of a pierced vesicle forming The data of representative experiments, one with each of
inward funnel. The bar represents 10 ,m. the 10 vesicles opened with glass needles, are summarized
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in Table I. The last line refers to an experiment carried out
with a tungsten needle. The values for Kapp/K show no
dependence on vesicle radius or edge angle, but there is a
slight correlation with the radius x. of the membrane hole.
If we assume a linear dependence of the ratio of moduli on
the hole radius as suggested by Eq. 14 for fixed angle i10,
extrapolation to xo = 0 yields for the 10 representative
experiments of Table I performed with glass needles
Kapp(0)/K =-0.98 ± 0.07. Figs. 6 and 7 show the results
obtained with two single vesicles when the hole radius was
varied, the needles being of glass and tungsten, respec-
tively. Extrapolation to zero radius leads to K pp(O)/K -
-0.76 ± 0.04 with the tungsten needle. The slopes of the
linear fits are positive in the case of glass (Table I and Fig.
6), while a negative slope is found in the case of tungsten
(Fig. 7). The difference may result from a small specific
interaction of the membrane with the needle material (see
below). However, the dependences on hole radius lie
almost within experimental error.

DISCUSSION

The measured ratio iapp/K nearly equals minus one. This
may have been anticipated on the basis of our monolayer
model, i.e., Eq. 10. The spontaneous curvature co of the
egg-lecithin monolayer is probably much smaller than a
typical edge curvature, considering the bilayer's well-
known stability. The fact that all K pp/K, measured and
extrapolated, are less negative than minus one might
suggest a slightly negative c0. However, the use of the
quadratic theory of monolayer bending elasticity up to the
extreme curvatures of the membrane edge is likely to
impair the validity of Eq. 10. Elastic energy terms of
higher than second order in the curvatures (19) may enter
for which no data are available. Also, a bulging of the edge
which was assumed to be semicylindrical may reduce the
effect of spontaneous curvature on Ka in comparison with
Eq. 10. In any event, the apparent modulus Ka can differ
from the true bilayer modulus of Gaussian curvature of Eq.
4. Earlier attempts (9, 20, 21) to evaluate the modulus of
Gaussian curvature did not differentiate between K_ and
Kapp. (There remain ambiguities even if the distinction is
made.) The estimate of the modulus of Gaussian curvature

Kapp ° °
K

-0. 2

-0.4 _

-0 6

-0 8

-1. 0

-1.2
C) 2 4 6

xO/pm

FIGURE 6 Plot of Kapp/K as obtained from Eq. 13 vs. hole radius. All data
from a single vesicle pierced with a glass needle.

Kapp 0 0
K

-0. 2 _

-0.4 _

-0.6 _

-0. B

-1 2,I
0 2 4 6

XO /4m

FIGURE 7 Plot of ,,K as obtained from Eq. 13 vs. hole radius. All data
from a single vesicle pierced with a tungsten needle.

by Derzhanski et al. (9) should actually give K instead of
K. We repeat it here with slightly different numbers. It is
based on the formula

r, = 2(2K + KIPP)/'y (15)

for the maximum size of a circular disk that is stable with
respect to sphering (7). Note that r, is the radius of the
sphere made from the disk, the radius of the latter would
be twice as large. Inserting K = 2 * 101-2 erg (1, 5), y = 2 -

106 dyn (10), and r, = 100 A, the approximate minimum
radius of sonicated vesicles (22) (all found with egg
lecithin), one derives Kap = -3 * I01 erg. Alternatively,
one may identify rc with the sphere radius for which
circular disk and closed sphere have the same energy. The
resulting equation

rc = (2 K + Kapp)/ T (16)

and the above numbers yield K = -2 . 10-12 erg. The
agreement with our measured K,pp is better than can be
expected from such a crude estimate. It becomes poorer if
one takes the values of y obtained by other authors
(23, 24), which are about half the quoted one.

It should be mentioned that even the largest value of y
measured, 2 * 10-6 dyn, is four times less than the line
tension calculated for the semicylinder model (13) with
Km = 1 0-12 erg, c0 = 0, and a = 4 nm. Bulging of the
edge may reduce the tension, but can hardly account for all
of the discrepancy. At least in principle, the edge can have
an energy-lower than calculated from bending elasticity by
reason of its thermal fluctuations.
An infinitely extended membrane pierced by a strictly

cylindrical needle should assume a flat configuration
whenever Ka <0. This is its state of minimum elastic
energy, regardless of which model applies: the naive model
(no distinction between K and Kapp) the monolayer vesicle
model (K-and K linked only through c0) or a mixed model,
each with a different distribution of the elastic energy over
membrane and edge. The inward or outward funnels that
we usually saw around conical and cylindrical needles
should, therefore, be nonequilibrium states. We believe
that the membrane edges became easily hooked on the
needle surfaces. They may have been held in place by the
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combination of a line tension with a surface roughness,
which in the case of glass was verified (see above). Most of
the needles used were conical enough to expect a slipping
membrane to be stripped. This follows from a simple
comparison of the energies of line contraction and vesicle
deformation. The fact that the edges around conical nee-
dles also came to a halt, even in the case of outward
funnels, is further evidence for a readiness of the edges to
hook on the needle surface.
The shapes of pierced vesicles can be quasistationary as

any elastic forces due to membrane curvature are very
weak. At least in the case of very extended membranes
they are unlikely to bring about significant changes of the
enclosed volume during an experiment. Any lateral ten-
sions appeared too low to disturb the measurement of the
curvatures next to the walls.
The ratio of the principal curvatures at the membrane

edge and thus K pp/K depended very little on the needle
radius. This suggests that no significant external torques
arose from the interaction of membrane edges and needle
surfaces. The curvature elastic torques per unit length-
should be inversely proportional to the hole radius, given a
fixed edge angle and zero lateral tension. The interaction
with the wall may produce torques per unit length that
depend differently or not at all on hole radius. Our linear
extrapolation of K pp/K to zero radius conforms with the
assumption that any external torques per unit length are
independent of hole radius (see Eq. 14). Straightforward
estimates indicate that thermal fluctuations can locally
pull the membrane edge away from the needle, a typical
separation being 2 nm for the radius xo = 1 ,um. Fluctua-
tions of this kind, while keeping the edges hooked, help to
understand the virtual absence of an external boundary
torque originating from an interaction with the needle
surface. However, a variation of the total length of mem-
brane edge with edge angle would also bring about an
external torque. Apparently, any change in length was
small enough to be insignificant (a membrane thickness or
less).

CONCLUSION

In our experiments with egg lecithin bilayers we have
found a negative apparent modulus of Gaussian curvature,
Kapp" of about the same magnitude as the bending rigidity.
The large negative value means that around a hole an
extended membrane prefers the flat configuration. Mem-
brane pores, i.e., very small holes, may be expected to
display the same tendency if the monolayers are still
connected by them. Such hydrophilic pores are thus
unlikely to form the funnels envisaged by Petrov and Mitov
(25) as possible precursors of membrane fusion. Fusion
remains energetically favored if the true modulus of Gaus-
sian curvature, Ks, is positive (13, 21), but the process of
fusion should take a different route. Recent experiments
with egg lecithi-n and similar materials seem to indicate

that the first step of membrane fusion is monolayer fusion
involving one monolayer of either bilayer (24, 26, 27).
The measured value of K agrees well with a theory

regarding the pierced bilayer vesicle as a closed monolayer
vesicle and employing monolayer bending elasticity. The
validity of our simple model remains to be tested by
experiments with other materials. It is obvious, and there is
evidence (10, 24, 28), that the edge energy can be lowered
by admixtures that accumulate in the edge region. The
monolayer-vesicle model may also hold in these cases (if
the concentration of the additive is proportional to mono-
layer curvature cl + c2). However, it is conceivable that
there are agents that change the boundary more drastical-
ly, producing low-energy edges with K, K so that funnels
could be preferred over flat pores. The new method of
analyzing the shape of pierced vesicles seems suitable to
examine this.
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