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Abstract Hydrogen peroxide appears to mediate growth factor 
actions, and it inhibits DNA synthesis in normal mouse osteoblas- 
tie cells (MC3T3-E1) at non-toxic doses. However the sensitivity 
of cells to H~Oz is greatly decreased in their ras-transformants. 
To understand the molecular basis of this sensitivity to H20~, we 
attempted to identify H202-inducible eDNA clones from MC3T3 
cells by differential screening of eDNA libraries, and one of such 
genes, named HIC-53, was isolated. The level of HIC-53 mRNA 
was moderately increased by H202 as well as by calcium iono- 
phore or dexamethasone, but was not increased by the addition 
of serum, tumor promoting phorbol ester, or epidermal growth 
factor. Among mouse organs, HIC-53 mRNA levels were higher 
in the kidney and lung, but were almost undetectable in the brain, 
heart, bone, muscle or spleen. In MC3T3 cells transformed with 
v-Ki-ras, the HIC-53 mRNA level was markedly decreased, and 
effect of H202 was abolished. Although the biological function 
of HIC-53 is unknown at present, the predicted amino acid 
sequence exhibited some similarity with bovine cardiac Na+l 
Ca ÷ exchanger. The nueleotide sequence of HIC-53 eDNA 
showed no significant similarity with other known gene se- 
quences. 
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1. Introduction 

Active oxygen species are generally toxic to living cells be- 
cause they modify and damage various biologically important  
molecules [I-3], but  recent evidence indicates that active oxy- 
gen species at low doses act as mediators of cellular physiolog- 
ical responses [4-9]. Active oxygen species are produced from 
cultured cells upon stimulation with mitogens or tumor pro- 
moters [10,11], and non-toxic levels of hydrogen peroxide or 
superoxide anion induced DNA synthesis as well as the expres- 
sion of the early response gene family [6,12,13]. Scavengers for 
free radicals inhibited gene expression induced by cytokines 
[14,15]. Furthermore,  hydrogen peroxide generated from cells 
treated with T G F  fll was found to act as a second messenger 
for the transcriptional induction of egr-1 gene [8]. In addition 
to growth-related functions, active oxygen radicals seem to be 
involved in apoptosis that is prevented by the Bcl-2 gene prod- 
uct [ 16]. 

In signal transduction pathways of active oxygen species in 
mammal ian  cells, activities of several protein kinases [17] and 
protein phosphatases [18,19] were found to be regulated 

through redox-based mechanisms. D N A  binding activity of 
nuclear transcription factors could be a target for redox regula- 
tion, and NFtcB activity is known to be modulated by reactive 
oxygen species [4]. The transcriptional capacity of the bacterial 
OxyR protein is activated by direct oxidation [20], but  there has 
been no direct evidence that mammalian  transcription factors 
are directly regulated by active oxygen species. To elucidate the 
molecular basis of the actions of these active oxygen species, 
isolation of genes that are induced by them would give us a 
better understanding in the mechanisms involved. In this study, 
we have successfully isolated one such gene that showed differ- 
ential characteristics in terms of induction profiles when stimu- 
lated with H202. 

2. Materials and methods 

2.1. Cell culture 
Mouse osteoblastic MC3T3-E1 cells were cultured in Dulbecco's 

modified MEM (DMEM) supplemented with 10% fetal bovine serum 
in a humidified atmosphere of 5% CO2/95% air. MC3T3 cells trans- 
formed with v-Ki-ras (clones Kl, K2, K10) or v-Ha-ras (H2) were 
cultured similarly as described [21]. 

2.2. Measurement of DNA synthesis 
Cells in logarithmically growing phase were plated in 35-ram dishes 

at a concentration of 5 x 105 cells/dish, and medium was changed one 
day later. DNA synthesis was measured by the incorporation of 
[3H]thymidine (0.1/lCi/ml) after incubating for 12 h into acid-precipita- 
ble fractions. Radioactivity was determined in a liquid scintillation 
counter. 

2.3. eDNA libraries and differential screening 
Two cDNA libraries were constructed as follows: double-stranded 

cDNA was synthesized using poly(A) ÷ RNA obtained from MC3T3 
cells treated with 0.2 mM H202 for 4 h. cDNA library I was constructed 
by directional cloning using poly(dT) primer linked to synthetic XhoI 
and GAGA sequences using a kit (Strategene, Madison, WI) following 
the manufacturer's instructions. The cDNA was inserted into the 
EcoRI/XhoI site of 2ZAP. cDNA library II was prepared from double- 
stranded cDNA synthesized with random primer, and the cDNA frag- 
ment was inserted into the EcoRI site of ),gtl0 vector using an EcoRI 
adaptor (a kit from Pharmacia, Uppsala). Differential screening was 
carried out using 32p-labeled cDNA synthesized with poly(A) ÷ RNA 
from untreated MC3T3 cells or cells treated with 0.2 mM H202 for 
4 h as described previously [22]. 

2.4. RNA extraction and analysis 
Total RNA was extracted using the guanidiurn/hot phenol method 

[23], and samples of 20/zg of RNA/lane was separated on agarose gel 
containing 2 M formaldehyde. RNA was transferred onto a nylon 
membrane (Hybond-N, Amersham), and hybridized with molecular 
probes. Mouse ~-tubulin cDNA (Moil) was used as a reference to 
monitor the amounts of RNA in each lane. 

*Corresponding author. Fax: (81) (3) 3784-6850. 

Accession Number of the sequence shown in this study is GenBank 
L43371. 

2.5. DNA sequence 
Nucleotide sequence was determined by dideoxynucleotide chain ter- 

mination in conjunction with unidirectional deletion [24]. The se- 
quences of both strands were determined. 
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signal with the probe synthesized from H202-treated cells, was 
isolated. Northern blot analysis indicated that the HIC-53 
mRNA level was modelately induced by 0.2 mM H202, reach- 
ing a peak at about 2 h after induction (Fig. 2). 

HIC-53 expression was examined in cells stimulated with 
various agents, and level of HIC-53 mRNA was found to be 
increased by calcium ionophore A23187 and dexamethasone, 
but not by the addition of serum, phorbol 12-myristate-13- 
acetate, or epidermal growth factor (data not shown). It was 
also not affected by DNA-damaging agents such as mitomycin 
C or adriamycin (data not shown), and this characteristic is 
distinct from gadd genes whose expression is increased in cells 
irradiated with ),-ray [25]. DNA damage caused by H202, thus, 
may not participate in HIC-53 expression. 
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Fig. 1. Sensitivity of DNA synthesis to H202 in normal and transformed 
MC3T3 cells. Cells were treated with various concentrations of H202, 
and 12 h later, [3H]thymidine was added. Cells were then incubated 
another 12 h. Acid-insoluble radioactivity was measured, o, MC3T3; 
o, o; Ki-ras-transformed K1, and K4, respectively; • Ha-ras-trans- 
formed H2. 

3. Results and discussion 

3.1. Sensitivity of  DNA synthesis to H20: in normal and 
tramformed cells 

We have previously shown the involvement of H202 in nega- 
tive growth regulation by the action of TGF fll [7]. Since trans- 
formed cells are generally refractory to negative growth regula- 
tion, the sensitivity of normal and transformed cells to H202 
was compared. Normal MC3T3-E1 and ras-transformed cells 
in the logarithmic phase were treated with low doses of H202 
for 12 h, and [3H]thymidine incorporation was measured. As 
shown in Fig. 1, normal cells were more sensitive to H2Oz than 
the transformed cells, and as low as 0.1 mM greatly inhibited 
DNA synthesis in normal cells. In contrast, DNA synthesis in 
the ras-transformed K1 and K4 cells were much more refrac- 
tory to H202. Cell viability as assessed by the dye-exclusion test 
was more than 95% in every case, but colony forming ability 
decreased significantly above concentrations of 0.3 mM H202 
in both normal and transformed cells. These results indicate 
that non-toxic doses of H202 inhibited DNA synthesis in nor- 
mal cells, but not in ras-transformed cells. 

3.2. Isolation of  H20:-inducible cDNA clone 
To get some insights on the molecular mechanism of the 

effects of H202, we have been trying to isolate cDNA clones 
that were induced by H202 using differential screening. 32p. 
labeled cDNA probes were prepared from poly(A) ÷ RNA of 
untreated and H202-treated MC3T3 cells. After screening 
about 2 x 105 independent phage clones of  the library I, one 
candidate clone named HIC-53, which exhibited a stronger 
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Fig. 2. HIC-53 mRNA levels in H202-treated cells. (A) MC3T3 cells 
were treated with 0.2 mM H202 for various periods of time, and RNA 
was extracted. Twenty ktg/lane of total RNA was run on a gel, trans- 
ferred to a membrane, and hybridized with 32P-labeled HIC-53 or refer- 
ence glyceraldehyde 3-phosphate dehydrogenase (GAPDH) cDNA 
probes. (B) Relative HIC-53 mRNA levels normalized with GAPDH 
as determined by densitometric scanning of autoradiograms. 
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Tissue distribution of HIC-53 m R N A  was examined using 
total RNA from mouse organs. The HIC-53 m R N A  level was 
high in the kidney and lung, while it was ahnost undetectable 
in brain, bone, muscle or spleen, even though HIC-53 was 
originally isolated from osteoblastic cells (Fig. 3). 

3.3. Levels of  HIC-53 mRNA in transJormed cells 
We have previously isolated a set of  T G F  //1-inducible 

cDNA clones, and found that among 6 clones isolated, m R N A  
levels of two of them (TSC-36 and -160 identical to rrg [26]) 
were decreased significantly [27]. Since H202 seems to be re- 
leased from TGFil l - t rea ted cells and participates in the signal 
transduction pathways of TGFf l l ,  at least in part [8], we next 
examined the level of HIC-53 in ras-transformed cells. Total 
RNAs from normal MC3T3 cells or ras-transformed K1, K4, 
and H2 cells in their pre-confluent states were used to analyze 
HIC-53 m R N A  levels. The results shown in Fig. 4 clearly show 
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Fig. 3. Tissue distribution of HIC-53 mRNA in mouse organs. (A) 
Total RNA was extracted from various mouse organs, and 20 #g/lane 
of RNA was run on a gel. (B) Relative HIC-53 mRNA levels normal- 
ized with Mal (mouse a tubulin) as determined by densitometric scan- 
ning of autoradiograms. 1 = brain; 2 = heart; 3 = lung; 4 = liver; 
5 = kidney; 6 = bone; 7 = muscle; 8 = spleen. 
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Fig. 4. HIC-53 mRNA levels in normal and transformed MC3T3 cells. 
Cells were either untreated or treated with 0.2 mM H202 for 4 h, and 
total RNA was extracted. Levels of HIC-53 mRNA were determined 
as described in Fig. 3. 

that basal level of HIC-53 was markedly decreased in the trans- 
formed cells, and that was not induced by H202. 

3.4. Nucleotide sequence of  HIC-53 cDNA 
The original cDNA clone of HIC-53 isolated by differential 

screening of library I contained a fragment of about 700 bp 
fragment. This cDNA fragment was then used to screen library 
II, which was prepared using random primer to isolate the 
full-length cDNA. Several overlapping positive clones were iso- 
lated after extensive screening, and the sequence obtained from 
these clones is shown in Fig. 5. The determined nucleotide 
sequence of the constructed cDNA has about  1400 bases, but 
this size is smaller than that of  its m R N A  (about 2000 bases by 
Northern blot). We screened the cDNA libraries I and II exten- 
sively, but were unable to obtain any longer 5'-end of the 
HIC-53 cDNA, possibly due to unknown higher order struc- 
tures of m R N A  or for technical problems. 

A search of the GenBank Data Base (release 73) revealed no 
significant similarity of the nucleotide sequence of HIC-53 with 
known gene sequences. Even this sequence of the isolated HIC- 
53 cDNA contains no initiation codon, but we predicted that 
the longest open reading frame as shown in Fig. 5A might share 
some similarity with bovine cardiac Na+/Ca 2+ exchanger [28] 
based on homology search of N B R F  data base. The region that 
showed similarity includes the putative t ransmembrane domain 
(Fig. 5B), suggesting that HIC-53 may encode a membrane 
protein, but  further study is required to verify this point. 
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161 CQGNEEKVKEGRLSFSGTLFILYVLHAVCRTLSSRRLAR 

891 AANGEQFKVSPGTLAFSVTLFTIFAFINVGVLLYRRRPRI 

Fig. 5. Nucleotide sequence of HIC-53 cDNA. (A) Nucleotide sequence 
and putative open reading frame. (B) The region that showed similarity 
with cadiac Na+/Ca 2+ exchanger [28]. 
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