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Function and 

Electrophysiological evidence at a cellular level and in vivo macroelectrode recordings converge in 
indicating a degree of specificity of acetylcholine action in vision. Acetyicholine (ACh) function is 
also thought to play a significant role in memory, learning and other cognitive processes. In ~this 
respect, ACh action is suggested to serve in both sensory and cognitive processes. The 
pharmacological blocking of brain muscarinic transmission has been proposed as a mode]l of 
geriatric memory impairment and Alzheimer's dementia. Visual electrophysiological testing is 
deemed of diagnostic specificity for this disease. ACh brain neurotransmission, however, mostly 
contributes to the modulation of nonspecific aspects of cognition, such as arousal or attention. 
Alzheimer's dementia results from complex neuron alterations [which also affect muscarinic 
receptors among other (sub)cellular structures] rather than simply reflecting ACh impoverish- 
ment. A substantial loss of retinal ganglion cells is documented in patients with Aizheimer's disease 
and is consistent with electrophysiological observations. However, it is unclear to what extent the 
dysfunction of the visual system observable in Alzheimer's dementia is qualitatively different from 
that occurring spontaneously during aging. The dissimilarities between the effect of acute 
muscarinic blocking (e.g. by scopolamine) and dementia outnumber the similarities. Accordingly, 
the conventional ACh agonist-antagonist model of dementia now appears questionable, and 
replacement treatment with compounds enhancing ACh function proved disappointing. It is 
suggested that (nonspecific) ACh action becomes function-specific, as determined by the 
architecture of local brain circuits in which it is involved. © 1997 Elsevier Science Ltd 
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INTRODUCTION 

Cholinergic cortical neurons and subcortical pathways 
projecting to the cortex are thought to mediate in the 
transfer of information in parallel and serial brain 
networks (Mesulam, 1995). In contrast with discrete 
projections from thalamic nuclei to corresponding 
cortical targets, relatively small cholinergic subcortical 
systems project to large portions of the cortex and 
modulate brain activity in ways that a re- - to  an extent - -  
nonspecific with respect to neuronal function. A degree 
of specificity of acetylcholine (ACh) action is, however, 
implicated in visual information processing and is also 
suggested for higher functions, notably memory, learning 
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and other cognitive processes (Kirby et al., 1986; Sato et 
al., 1987a,b; Steriade & Biesold, 1990; Fibiger, 1991; 
Sarter & Bruno, 1994; Sannita, 1995; Mesulam, 1995). A 
substantial decline in cholinergic markers is the pre- 
ponderant feature in Alzheimer's disease (a primary 
degenerative illness accounting for about 70% of cases of 
dementia; DAT) (Geldmacher & Whitehouse, 1996), and 
in animal "models" of DAT created by lesioning the basal 
forebrain structures (Willner, 1991). Accordingly, the 
pharmacological blocking of brain muscarinic neuro- 
transmission (e.g. by ACh-antagonist scopolamine) has 
been proposed as a suitable experimental model of 
geriatric memory impairment and, at large, of DAT and 
has been extensively used to test putative cholinergic 
drugs. Conspicuously, the circularity of this approach--  
using in vivo brain as an assay to test cholinergic drugs in 
the absence of detailed knowledge of sites and mechan- 
isms of ACh action--has been rarely questioned 
(Drachmann & Leavitt, 1974; Bartus et al., 1982; 
Kopelman & Corn, 1988; Ridley etal . ,  1991; Christensen 
et al., 1992; Muir et al., 1993). Cholinergic, agonists and 
antagonists have also been used as test conditions in the 
investigation of the role of ACh in visual information 
processing. The electrophysiology of the visual system 
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has been deemed of relevance in the diagnosis of DAT, 
on the grounds of the suggested ACh-specificity of 
components of cortical visual evoked responses (Wright 
et al., 1987; Daniels et al., 1994). 

ACH FUNCTION AND VISION 

Cholinergic neurons and postsynaptic receptors have 
been identified in several instances in the retina, lateral 
geniculate nucleus (LGN) and visual cortices of animals 
and man and appear to be arranged in subsystems, with 
roles encompassing a variety of functions (Neal, 1983; 
Kirby et al., 1986; Schliebs et al., 1989; Pasik et al., 
1990; Kageyama et al., 1990; Frey et al., 1992, among 
many others). There is evidence of early development of 
the brain ACh systems, which depends on experience and 
sensory input ACh systems may be interfered with by 
substantial visual deprivation and the role of ACh in the 
regulation of cortical plasticity is also known (Dinopou- 
los et al., 1989; Walch et al., 1989; Kageyama et al., 
1990; Schlumpf et al., 1991; Kumar & Schliebs, 1992; 
Rossner et al., i 993; Gu & Singer, 1993; Liu et al., 1994). 

Detailed accounts of ACh action in the retina have 
been given by Masland & Tauchi (1986); Schmidt et al. 
(1987), and Jurklies et al. (1996). There are known 
complex intermodulations among different classes of 
retinal cells, but there are also numerous discrepancies 
reported by different studies, that may possibly be due to 
methodological dissimilarities. Recordings from hori- 
zontal cells suggest the absence of cholinergic action in 
the outer retina (Niemeyer et al., 1981), whereas both 
muscarinic and nicotinic receptors have been identified in 
the inner retina of several mammals, including man 
(Puro, 1985; Pourcho, 1979; Hutchins & Hollyfield, 
1987). Two main populations of cholinergic amacrine 
cells project to the inner plexiform layer from the inner 
nuclear layer and ganglion cell layer, respectively 
(Famiglietti, 1983; Pourcho & Osman, 1986). This 
stratification may serve differential purposes. However, 
Schmidt et al. (1987) observed that ACh increases (and 
scopolamine decreases) the firing rate of both ON- and 
OFF-center ganglion cells irrespective of stimulus 
condition and with comparable effects on maintained 
discharge and light-induced activity during center, 
surround and whole-field stimulation. The ACh modula- 
tion on different types of ganglion cell proved unexpect- 
edly concentration-related, which suggests differential 
sensitivity, and is not as stereotyped as the report by 
Schmidt et al. (1987) may suggest. In fact, Schmidt et al. 
(1987) also described distinct effects of the nicotinic 
antagonist dihydro-fi-erythroidine on ON-center and 
OFF-center cells, and different effects of ACh on ON- 
center and OFF-center cells (as well as on sustained or 
transient cells) were described by others. Ikeda & 
Sheardown (1982) reported an ACh-induced increase of 
the light-evoked activity of Y cells but not of X cells; 
ACh-mediated inhibitory action on ON-center ganglion 
cells and excitatory effects on OFF-center cells have been 
also observed (Straschill & Perwein, 1973). Physostig- 
mine enhances the ACh excitatory effect in the cat retina, 

with a prevalent action on center-dominated responses 
(Schmidt et al., 1987), and increases both the sponta- 
neous activity and response to stimulation of rabbit 
ganglion cells, with changes in receptive :field properties 
that depend, in part, on the type of cells (Ariel & Daw, 
1982). 

ACh-modulated components of the electroretinogram 
(ERG) and optic nerve response (ONR) were identified in 
the isolated, arterially perfused cat eye (Jurklies et  al., 
1996). Notably, ACh and ACh-agonists induce a long- 
lasting decrease of the rod- and cone-driven ONR and 
enhance the b-wave (particularly of the cone-driven 
response), whereas scopolamine decreases it. An early, 
transient increase of ONR was observed after high doses 
of ACh-agonists in the cone-driven response, as well as 
after scopolamine in the rod-driven response. The time 
dynamics of these effects differed. The nicotinic 
antagonist mecamylamine showed a biphasic effect on 
the ERG b-wave, depending on time after administration 
(rod-driven b-wave) or dose (cone-drive:a b-wave), and 
had opposite effects on rod- and cone-driven ONR 
(Jurklies et al., 1996). Based on this evidence, the 
complexity of ACh retinal modulation suggests differ- 
ential action, related to properties of cel]ls and neuronal 
circuitry, and the existence of ACh-selective compo- 
nents. Further heterogeneity also may result from 
selective interaction of muscarinic agents with ml and 
m2 binding sites (Watson et al., 1986) or from feedback 
mechanisms also involving other neurotransmitters (Neal 
& Cunningham, 1994). Additional investigation in these 
areas is required. 

In the visual cortex (as well as in hippocampus), ACh 
is a potent and long-lasting excitatory agent (McCor- 
mick, 1989) modulating the level and temporal patterns 
of neuronal activation through a direct, postsynaptic 
effect on pyramidal cells. It reduces three distinct 
potassium currents (muscarine-sensitive IM; IAHP; and 
In,l), the increase of which inhibits the discharge rate of 
pyramidal neurons. Although muscarinic function is 
prominent (Spehlmann, 1963), nicotinic and muscarinic 
receptor subsystems are partly complementary, in that 
they yield an early excitation of short duration and a later. 
long-lasting excitation, respectively (McCormick, 1989, 
1990; McCormick & Prince, 1987). Microionophoretic 
application of ACh in the cat striate cortex increases the 
firing rate in response to receptive field stimulation of the 
majority of ACh-sensitive cells and exert:~ a fast, transient 
inhibitory effect of the remaining cells (Sato et al., 
1987a). Muscarinic, but not nicotinic antagonists sup- 
press the facilitatory effect of ACh while enhancing the 
response of ACh-inhibited cells. The facilitating effect is 
also suppressed after unilateral lesion of cholinergic 
nucleus basalis magnocellularis, while ACh counter- 
balances this effect of lesion (Sillito & Kemp, 1983; Sato 
et al., 1987a,b). The inhibitory effect occurs via ACh- 
induced activation of GABAergic interneurons (notably 
GABAA-receptors) (Mtiller & Singer, 1989; McCormick, 
1989), consistent with the ACh-GABA interaction, 
reciprocal "tuning" and complementary roles that appear 
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tO serve as a widespread mechanism of regulation in the 
CNS (Sillito, 1975; McCormick & Prince, 1986; Sarter & 
Bruno, 1994). Evidence from studies on retinal amacrine 
cells suggests that this interaction depends on neuronal 
loops and feedback mechanisms rather than on pre- or 
postsynaptic inhibitory muscarinic receptors (Cunning- 
ham et al., 1983). It is still unclear whe.ther such 
mechanisms are operative in the cortex as well. Besides 
interacting with GABAergic neurons, ACh also mod- 
ulates glycine- and glutamate-dependent NMDA currents 
(Ben-Aft et al., 1992). 

Microionophoretic ACh administration increases the 
spontaneous firing of ACh-inhibited cells (Mtiller & 
Singer, 1989), whereas the spontaneous firing of ACh- 
facilitated cells is virtually unaffected and remains very 
low (Sato et  al., 1987a). In functional terms, the result of 
ACh application is the improvement of the "signal-to- 
background ratio" for ACb-activated cells.* This effect 
appears congruent with the reduction of interference from 
synapsing collaterals that is caused by presynaptic ACh 
action in CA1-CA3 regions of hippocampus (McCor- 
mick, 1989; Hasselmo & Bower, 1993). Evidence from 
studies on the somatosensory cortex suggests that ACh 
enhances responsiveness by lowering the threshold to 
stimulation and possibly by increasing the receptive field 
size (Lamour et al., 1988). Receptive field effects of ACh 
on visual cortical ceils have also been postulated. 
However, a selective cortical effect of ACh on preferred 
and non-preferred stimulus directions has been observed 
in some studies (e.g. Sillito & Kemp, 1983), but denied in 
others (e.g. Sato et al., 1987a,b; Mtiller & Singer, 1989). 

Subcortical ACh-mediated subsystems regulate the 
level and coordinated temporal patterns of cortical 
activation through diffuse projections from the basal 
forebrain or via thalamocortical loops (Kayama et al., 
1986; Robbins et al., 1989; McCormick, 1989; Mesulam, 
1995). In the thalamus, ACh has either an excitatory or 
inhibitory effect depending on the type and the location 
of the postsynaptic cell; it serves as a "gate" system in the 
transfer of sensory information to the cortex by adjusting 
the functional state of thalamic nuclei. Both s:hort-lasting 
nicotinic and long-lasting muscarinic excitatory effects 
on the relay neurons of dorsal LGN (mediated by the 
increase in cation conductance and decrease in K 
conductance, respectively) have been described (McCor- 
mick & Prince, 1987; Curro-Dossi et al., 1991); the 
effects of ACh on GABAergic local-circuit thalamic 
interneurons are qualitatively opposite to those on relay 
neurons (McCormick & Pape, 1988). Local application 
of ACh or stimulation of brainstem cholinergic neurons 
both result in increased responsiveness of principal 

*The term "signal-to-noise ratio" or "signal-to-background ratio" is 
ambiguous in this context. Background spontaneous activity of 
neurons is unstationary and incompletely defined as a signal; it may 
be regarded as functionally irrelevant ("noise") in respect to 
stimulus-related events, but conceivably also reflects a role in the 
modulation of the response of target neurons (Ryan, 1989). 
"Signal-to-noise ratio" or comparable definitions have been used 
elsewhere (e.g. Sato et al., 1987a) and are used here in a practical 
sense and with due approximation. 

neurons in the LGN that project to the visual cortex 
(Sillito & Kemp, 1983). Nonretinal inputs to the LGN 
from either the ascending cholinergic pathway or the 
descending pathway from layer VI of the visual cortex 
affect membrane properties and regulate refinogeniculate 
signal transmission (Guido & Lu, 1995). No direct 
cholinergic projection to the visual cortex from the 
mesencephalic reticular formation has been identified, 
and this structure is thought to transiently fac, ilitate visual 
cortex excitability indirectly, through the cholinergic 
system of basal forebrain (MiJller et al., 1993). 
Detectable levels of glutamate immunoreactivity were 
identified in a substantial portion of cortical synaptic 
targets for cholinergic projecting terminals, and there is 
evidence of intermodulation between ACh and glutamate 
release at postsynaptic sites (Aoki & Kabak, 1992). 
Activity in cholinergic (as well as in ad]renergic and 
glutamatergic) pathways, ACh-GABA interaction, 
changes in thalamic firing patterns or mode, and 
significant shifts in arousal concur in controlling sensory 
input to the cortex as a result of thalarnic circuitry 
(BrOcher et al., 1992; Wang & McCormick, 1993). 
Heterogeneous effects depend on structure, functional 
state and stimulus condition. For instance, the electric 
stimulation of nucleus basalis magnocellularis or me- 
sencephalic nucleus cuneiformis affect the rat flash- 
evoked cortical responses (VEP) differentially, while the 
nucleus basalis modulates the early and late., components 
of VEP, depending on the stimulus intensity and temporal 
rate of stimulation (Bringmann & Klingberg, 1989). It 
should also be emphasised that the action of ACh- 
agonists or antagonists on cortical neurons appears to be 
state-dependent (Kirby et al., 1986; Arakawa et al., 
1993), as indicated by the diverging action of anesthetics 
on excitatory and inhibitory neurons in the visual 
thalamus (Pape & Eysel, 1988). 

Conspicuously, several known modalities of ACh 
action at a cellular level or on neuronal (sub)systems 
appear consistent with the effects of ACh agonists/ 
antagonists on the visual responses, as these,, are recorded 
by macroelectrodes in animals or in man. ~[lais congruity 
allows research on (ACh function in) vision to encompass 
a wide range of experimental approaches from in vitro 
models to clinical studies, with comparable methods and 
comprehensible results. Retinal electroph~ysiology is an 
example in this regard. Discrepancies among studies are 
likely to reflect dissimilarities in the experimental 
conditions (especially in the physical properties of 
stimulus) (Bodis-Wollner et al., 1986) or to depend on 
functional interactions with other neurotransmitter- 
receptor systems (e.g. Imamura & Kasamatsu, 1989; 
Daniels et  al., 1994). Scopolamine has been used as a 
pharmacological model to study ACb-dependent visual 
functions. Its acute administration to healthy subjects 
affects the "late" waves (P2 and N3) of cortical responses 
to luminance (flash-VEP) (Fig. 1), while exerting 
negligible effects on VEP to patterned stimulation under 
stimulus conditions yielding minimal variations of 
luminance (Bajalan et al., 1986; Sannita et  al., 1993; 
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FIGURE 1. (a) Flash-VEP recorded from a young healthy volunteer in baseline condition (thick line) and after acute 
intramuscular administration of scopolamine, 0.50 mg (thin lines). The amplitudes of waves P2 and N3 are significantly 
reduced, while wave N2 is enhanced. (b) Postdrug differences from baseline of the P2-N3 amplitude; mean across subjects and 
standard error after log transformation. The P2-N3 amplitude (8.9-32.1 pV in baseline; mean 20.6 + 5.3/~V) was reduced (25- 
80% of the corresponding baseline value; approximately 0.15-1.3 log units) in all 10 young healthy subjects to whom 
scopolamine was administered at doses of 0.25-0.75 mg. Postdrug values at any administered dose were significantly different 
from both baseline determinations and the corresponding placebo at each postdrug control (at levels ranging from P < 0.02 to 
P < 0.0001; paired t-test). Maximum reduction was at 90-120 min from administration depending on dose. Amplitude changes 
after placebo were never consistent across subjects or significant compared with baseline. The reduction of P2-N3 amplitude 
proved dose-related (regression analysis; P < 0.00001 ). The increase of wave N2 amplitude was observed in five subjects. Right 

eye stimulation; electrode derivation: O2-Fpz. 

Ray  et  al., 1991; Danie ls  et  al., 1994). Reduced  
ampl i tude  is the p rominen t  effect  at doses  compa t ib le  
with substant ial  receptor  occupancy  (Sannita,  1995; 
Sanni ta  et al., 1993), and occurs  with tempora l  dynamics  
that para l le l  the es t imated  [C l l ] s copo lamine  kinet ics  in 
man (Frey et al., 1992). This  ampl i tude  reduct ion p roved  
independent  of  d rug- induced  modif ica t ions  of  back-  
ground  E E G  (therefore suggest ing a poss ib le  change in 
the "s ignal - to-noise  rat io")  and the magni tude  of  this 

effect  is a funct ion of  base l ine  VEP ampl i tude ,  i.e. it is 
greater  for predrug VEP of  larger  ampl i tude  than for 
those of  lower  ampl i tude  (Sannita,  1995; Sanni ta  et al., 
1993) (Fig. 1, Fig.  2). This  lat ter  f inding is in agreement  
with comparab le  observat ions  in park insonian  pat ients  
t reated with L -DOPA (Stanzione et  al., 1991) and with 
reports  o f  acute scopo lamine  affect ing the VEP of  young  
volunteers ,  but  not those of  D A T  pat ients  with impai red  
ACh  funct ion (Ray et  al., 1991). It should  also be noted in 
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this regard that the interfering effect of scopolamine on 
cognitive functions has been described in DAT patients at 
lower doses than in age-matched controls (Sunderland et  
al., 1987). Opposite changes (namely increased ampli- 
tude of flash-VEP "late" waves in the absence of sizeable 
effect on pattern-VEP) were induced under comparable 
experimental conditions by the acetylcholinesterase 
inhibitor galanthamine administered to healthy volun- 
teers (Holl et  al., 1992) and by physostigmine in cats 
(Arakawa et  al., 1993). Some ACh-specificity of the 
mechanisms modulating "late" components of the VEP is 
indicated in the same studies (Holl et  al., 1992; Arakawa 
et  al., 1993; Sannita, 1995); consistent with such a result 
is the evidence that distinct structures and neurotransmis- 
sion systems eventually combine to generate and 
modulate the VEP components. In this respect, "earlier" 
(e.g. flash-VEP P1 and N2 and pattern-VEP PI00) and 
"later" (e.g. flash-VEP P2 and N3) waves are (over)- 
schematically suggested to refect information processing 
in striate and extrastriate structures differentially 
(Schwartz & Cheney, 1966; Jeffreys & Axford, 1972; 
Maier et  al., 1987; Regan, 1989; Wright et  al., 1987). 

The amplitude of P1 and N2 waves of flash-VEP 
reportedly increase in healthy volunteers after scopola- 
mine (Sannita et  al., 1993) and decrease systematically in 
the cat after physostigmine (Arakawa et  al., 1993). A fast, 
GABA-mediated action of ACh on cortical cells (Mtiller 
& Singer, 1989) may account for this effect, as also 
suggested by the increase of the early VEP waves after 

administration of GABA antagonist bicucu]~line in the cat 
(Zemon et al., 1980). Interaction between cortical- 
subcortical ACh modulation and the carrier systems that 
mediate in the transfer of sensory inforraation to and 
within the sensory cortex (e.g. stimulus-related oscilla- 
tory potentials) (Singer, 1993; Jefferys et  al., 1996) and 
are a suggested mechanism of higher brain function 
(Ribary et al., 1995) has been recently postulated. 
Preliminary human data indicate that scopolamine 
increases the synchronization of the cortical oscillatory 
response to full-field luminance stimulation, while 
reducing it when single spots of small diameter (1- 
3 cm) serve as the stimulus (Lopez et  al., 1996). This 
observation may implicate some local ACh control in the 
cortex eventually resembling that of dopamine in the 
retina (Mangel & Dowling, 1985; Bodis-Wollner, 1990). 

A C H  D Y S F U N C T I O N  I N  ( A L Z H E I M E R ' S  T Y P E )  
D E M E N T I A  

Substantial pharmacological evidence has steadily 
accumulated over two decades suggesting some role of 
ACh-mediated brain circuitry in higher brain function 
(e.g., learning, memory and cognition) and a preponder- 
ant impairment in Alzheimer' s dementia of the choliner- 
gic subcortical systems projecting to the cortex (Steriade 
& Biesold, 1990; Fibiger, 1991; Mesulam, 1995; Reiner 
& Fibiger, 1995, for references). In this respect, DAT is 
often labelled as a disorder of cholinergic innervation to 
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the cortex. Electrophysiological observations at increas- 
ing levels of neuronal organization (from single cell to 
event-related potentials) appear quite consistent in 
suggesting a common role of ACh in sensory (visual) 
information processing and cognition (Bartus et  al., 
1982; Kopelman & Corn, 1988; Muir et  al., 1993). 
Single-cell studies in monkeys indicate sensitivity of 
cholinergic neurons of the nucleus basalis to stimuli that 
are novel or otherwise of behavioral relevance (Wilson & 
Rolls, 1990); this observation adds an essential feature to 
any model of ACh function. Cholinergic modulation of 
event-related potentials (e.g. originating upon the sig- 
nificant convergence, interaction, association or omis- 
sion, or uneven incidence of events or sensory stimuli, 
such as the P300) has been documented in man and 
nonhuman primates. ACh agonists and antagonists affect 
visual P300 and visual processing in parallel, with 
qualitatively opposite effects (Hammond et al., 1987; 
Wilson & Rolls, 1990; Brandeis et  al., 1992; Stanzione et  
al., 1991; Antal et al., 1993, 1994). Intraventricular 
administration of physostigmine and intracortical neural 
grafts of embryonic basal forebrain cells reverse the 
impairment of visual attentional performance induced by 
administration of the choline uptake blocker hemicho- 
lium or by quisqualate lesions of the basal forebrain 
(Muir et  al., 1992). Cholinergic grafts in the neocortex or 
hippocampus of rats or monkeys partially restore a 
variety of functional deficits (including the more complex 
discrimination learning tasks suitable for primates) that 
are associated with experimentally induced lesions or 
aging (Dunnett, 1991; Ridley & Baker, 1991; Ridley et 
al., 1994), provided that appropriate interaction between 
grafts and host tissue is achieved. Recovery after neural 
transplant appears to depend upon cholinergic reinnerva- 
tion and replacement (Dunnett, 1991; Nilsson et  aI., 
1987) and the potential use in DAT treatment therefore 
depends on the functional specificity of ACh impover- 
ishment in this disease. 

VISION AND ALZHEIMER'S DEMENTIA 

Both temporal and spatial functional visual modes are 
significantly impaired in Alzheimer's dementia (Celesia 
et  al., 1993; Tobimatsu et  al., 1994). Though widespread, 
neuronal degeneration in DAT is prevalent in the 
neocortex, hippocampus, and subcortical cholinergic 
structures projecting to the cortex, such as the basal 
forebrain. However, these neuronal networks are affected 
by DAT with significant differences in topography and 
evolution that eventually result in qualitatively different 
clinical and pathophysiological conditions; such differ- 
ences may be particularly evident in the early stages of 
the disease (Whitehouse et al., 1983; Coyle et  al., 1983). 
Neuropathological and histochemical studies have shown 
differences in the distribution of tan proteins in the retina 
and brain and an age-related increase of the immunor- 
eactivity of amyloid precursor protein in ganglion cells of 
the elderly (Loftier et  al., 1995). A significantly increased 
level of MHC cell II expression was detected in the 
retinas of DAT in the absence of lymphocytic infiltrates 

(Liew et al., 1994), therefore suggesting that the 
pathogenesis of Alzheimer's disease as observable in 
the retina may be distinct from that observed in some 
brain areas. Neuronal degeneration is reportedly less 
severe in the retina, optic nerve, geniculostriate pathway, 
primary visual cortex and corticocortical outflow from 
area 17 than it is in visual associative areas (Mountjoy et  
al., 1983; Morrison e ta l . ,  1991; Lewis etal.,. 1987; Hof& 
Morrison, 1990; Rizzo et al., 1992). Accordingly, visual 
dysfunction includes deficits in color discrimination 
(notably tritanomalus) and impairment of spatial and 
temporal resolution, stereoacuity, visual acuity, contrast 
sensitivity (especially at low frequencies):, visuospatial 
functions, (homogeneous and pattern) backward mask- 
ing, etc. Significant, central and peripheral reductions in 
global sensitivity were detected in DAT by visual field 
topography, while no significant change in the critical 
flicker-fusion frequency or evidence of retinocalcarine 
abnormality specific to DAT have been reported (Cronin- 
Golomb et  al., 1991, 1993, 1995; Uhlmann et al., 1991; 
Bassi et  al., 1993; Hutton et  al., 1993; 'Wolin, 1994; 
Kaskie & Storandt, 1995; Filoteo et al., 199:5; Trick et  al., 
1995; Butter et  al., 1996). 

Remarkably, visual impairment seems to have a 
prominent functional impact on specific cognitive 
domains in DAT and to significantly predict the risk 
and clinical severity of cognitive dysfunction, although 
the progression of cognitive decline appears unpredict- 
able on the basis of visual dysfunction (Uhlmann et  al., 
1991; Cronin-Golomb, 1995; Cronin-Golomb et  al., 
1995). In this respect, visual impairment as it is observed 
in DAT is suggested to be mostly cortical and to reflect 
the loss of corticocortical systems (with "visual dis- 
connection" involving e.g. peristriate and inferotemporal 
visual cortices) rather than retinal or optic :nerve damage 
(Cronin-Golomb et  al., 1991, 1993; Morrison et al., 
1991; Hof & Bouras, 1991). This view is consistent with 
the DAT patients demonstrating visuospalial deficits or 
impaired performance in visual cognitive tasks as often 
as, or more often than, they are found to have impaired 
elementary visual functions. The patients' complaints 
have generally been understood as reflecting cognitive 
impairment and dysfunction resulting from pathology 
affecting the associative rather than the lc~rimary visual 
areas (Brun & Englund, 1981; Mountjoy et  al., 1983; 
Mendez et al., 1990; Parasuraman et  al., 1992; Kaskie & 
Storandt, 1995). DAT patients whose flash- and pattern- 
VEP were within the normal range were found to perform 
poorly in visual and memory tasks compared with 
controls (Mielke et  al., 1995). Reduced regional glucose 
metabolic rate in both primary and secondary visual 
cortices was observed in these patients; however, their 
psychometric performance in visual tasks correlated with 
glucose rate reduction in secondary but not in primary 
visual cortex (Mielke et  al., 1995). Based on these 
observations and on the described correlation between 
VEP alteration and disease severity, the observation of 
abnormal waves P2 and N3 ("late") of flash-VEP in the 
absence of sizeable alterations of earlier waves and of the 
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pattern-VEP was given relevance in the diagnosis of 
DAT, as being indicative of progressive (ACh-related) 
impairment in visual associative areas (Wright et  al., 
1987; Philpot et  al., 1990; Brodie et al., 1992; Rizzo et  
al., 1992; Daniels et  al., 1994). This hypothesis appears 
congruent with the suggested dichotomy of earlier and 
later components of cortical responses and with the effect 
of ACh agonists/antagonists on these waves (Wright et  
al., 1987; Philpot et  al., 1990; Swanwick et  al., 1996). 

The real scenario of visual impairment in DAT, 
however, is more complex than the above summary 
would suggest. The extent to which the electrophysiolo- 
gical observations allegedly indicating DAT actually 
reflect ACh impoverishment and differential striate/ 
extrastriate impairment remains unclear. Electrophysio- 
logical studies indicate that both primary and secondary 
auditory cortical functions are impaired in demented 
patients and suggest associated dysfunction of the 
reticular activating system (O'Mahony et al., 1994). 
Similarly, patients with even mild DAT display several 
abnormal visual features attributable only in part to 
cognitive deterioration (Sekuler et  al., 1980; Schlotterer 
et  al., 1984; Nissen et  al., 1985). Significant damage in 
the retina and retinocortical pathway has been also 
described (Hinton et  al., 1986; Trick et  al., 1989; Bassi et  
al., 1987; Tsai et  al., 1991; Brodie et  al., 1992). Notably, 
morphometric analyses in DAT patients indicate a 
significant (approximately 50% on average compared 
with age-matched controls) reduction in number and 
density of ganglion cells and ganglion cell axons that is 
selective for large ganglion cells (with soma perimeter of 
approximately 35-60/~m). A disproportionate (or earlier) 
degeneration in the type A ganglion cells and the 
magnocellular pathway has been suggested and appears 
plausible (Hinton e ta l . ,  1986; Bassi e ta l . ,  1987; Sadun & 
Bassi, 1990). Accordingly, widespread neurorml degen- 
eration of the magnocellular layer of LGN has been 
observed (Johnson et  al., 1987). These morphometric 
observations were matched by electrophysiological 
investigation (pattern-ERG) under experimental condi- 
tions minimizing contribution from the p-cells (Barris et  
al., 1988; Trick et  al., 1989). The results obtained suggest 
altered parallel processing and appear consistent with the 
observed discrepancies between VEP responses to flash 
or patterned stimulation to the extent these stimuli may 
trigger the m- and p-pathways differentially. However, 
ERG alterations proved restricted to the steady-state 
pattern-ERG in a group of patients with Alzheimer's 
disease (Nesher & Trick, 1991), while the ERG responses 
to both pattern and flash stimuli were reportedly normal 
in a group of DAT patients (Strenn et  al., 1991). 

The existing inconsistencies among studies may 
depend on methodological differences e.g., of the 
physical characteristics (spatial frequency, contrast, 
adaptation, luminance, etc.) of stimuli used to test visual 
function (Bodis-Wollner et  al., 1986). Whether DAT- 
related changes in the visual system are qualitatively 
different from those that occur spontaneously during 
aging or whether these are enhanced in DAT also remains 

to be defined. Contingent abnormalities of retina, LGN, 
visual pathways, and cortex need to be taken into account 
as well, when trying to comprehend the patlhophysiolo- 
gical processes underlying visual impairment in DAT and 
in the attempt to identify disease-specific abnormalities. 
Age-related loss of ganglion cells, for instance, was 
observed in non-demented subjects (Dolman et al., 1980; 
Balazsi et  al., 1984), but was not reported for the control 
group in the study by Sadun & Bassi (1990). Curcio & 
Drucker (1993) did not observe any evidence for 
substantial reduction in ganglion cell density within the 
central 43 deg of the visual field in DAT patients 
compared with age-matched controls; the density of 
ganglion cells subserving the central 11 deg of vision, by 
contrast, was reduced in both DAT and aged controls 
compared with retinas from young adults. Aging effects 
may be a confounding variable in retinal and cortical 
electrophysiology (Peterson, 1968; Weleber, 1981; 
Allison et  al., 1984; Trick et  al., 1985; Celesia et  al., 
1987; Schoon et  al., 1989; Sannita et  al., 1989); complex 
trends of variation throughout the entire life span (from 
childhood to senescence) were described to depend on 
gender or stimulus condition, to differ among ERG/VEP 
individual waves, and conceivably also to reflect 
interactions of metabolic and hormonal factors (Peterson, 
1968; Allison et aI., 1984; Sannita et  al., 1989). 

In general, DAT-related abnormalities in the visual 
system are as multiform as the disease itself and 
conceivably reflect individual differences as well as 
dissimilarities in the rate of progression (see e.g. Butters 
et  al., 1996), that eventually may lead to peculiar clinical 
variants dominated by visual disturbances (Levine et al., 
1993; Graff-Radford et  al., 1993) or to conditions with 
overlapping visual dysfunction due to aging or DAT. 
Despite the available evidence, the clinical or physiolo- 
gical (visual) "markers" of Alzheimer's dementia and 
predictors of disease progression and severit~y still remain 
to be defined. 

COMMENTS, CRITIQUE AND WORKING 
HYPOTHESES 

A coordinated role of ACh in neuromodulation appears 
established and models matching the available physiolo- 
gical evidence have been contrived. In this framework, 
ACh would improve the "signal-to-background ratio" of 
ACh-facilitated cells and prevent activation of neurons 
not receiving afferent input, while enhancing synaptic 
interconnections among cells receiving input (Hasselmo 
& Bower, 1993). This mechanism would suit to some 
extent both sensory and cognitive processes ;and provides 
possible ways to understand storage, retrieval and 
association of complex patterns of neuronal activity in 
the brain. There is hardly any question that pharmaco- 
logically induced impairment of ACh brain activity may 
affect higher brain functions with characteristics compar- 
able with those of Alzheimer's dementia (e,.g. Baker & 
Giacobini, 1988; Christensen et  al., 1992). However, 
experimental studies failed to provide valid proof of a 
behavioral role of cortical cholinergic afferents from the 
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basal forebrain (Everitt et  at., 1987; Robbins et  al., 1989). 
Accordingly, the specificity of ACh action in cognition is 
still unproven and the agonist/antagonist muscarinic 
model appears questionable (Oken et al., 1994). Many 
nonspecific endogenous aspects of cognitive functions 
(e.g., arousal, attention, alertness) are tonically modu- 
lated by several neurotransmitter systems projecting to 
the cortex (Foote, 1987; McCormick, 1989; Steriade et  
at., 1993; Oken et  al., 1996). Therefore, it would be 
simplistic to underestimate the existing functional 
interactions among both cholinergic and noncholinergic 
neurotransmitter/receptor systems or neuronal and non- 
neuronal (metabolic, neuroendocrine) factors and their 
impairment as it occurs in DAT and in other pathological 
conditions. 

In spite of the increasing sophistication of unitary 
models (Ridley et  at., 1991; Sarter & Bruno, 1994), there 
are serious limitations to the hypothesis of selective ACh- 
related brain malfunctioning leading to dementia. These 
are the widespread cholinergic innervation of nearly the 
entire CNS and the observation that ACh release 
following neuronal activation varies considerably de- 
pending on procedural, situational and, largely, "beha- 
vioral" conditions (Fibiger, 1991; Pineda, 1995). Positron 
emission tomography studies in man (Frey et  al., 1992) 
also showed local differences (in kinetics, affinity and 
distribution) of ACh cortical receptors, with distinct 
topographic and laminar patterns. This heterogeneous 
distribution should be expected to serve functional 
purposes rather than being casual. However, no "func- 
tional anatomy" of cognitive processes has been 
tentatively outlined to match it (Fibiger, 1991; Sarter & 
Bruno, 1994), and whatever the specific cholinergic 
dysfunction resulting in cognitive impairment in DAT 
may be, its identity remains unknown. The concept itself 
of DAT as simply resulting from impoverished muscari- 
nic transmission is contradicted by data suggesting some 
higher degree of complexity of brain impairment. Post- 
mortem samples of DAT patients show unchanged 
numbers of cortical postsynaptic muscarine receptors 
(Mash et  al., 1985; Hynn et  al., 1991). By contrast, 
substantial qualitative regional changes have been 
documented in receptor affinity, receptor subtypes and 
receptor-G protein, while abnormalities in membrane 
composition have been described in both age-related 
diseases and DAT. These changes result in abnormal 
coupling and affinity properties and therefore in receptor 
inability to form, or shift from, high affinity agonist 
binding sites; as well as in defective postsynaptic signal 
transduction (Flynn et  al., 1991; Svensson et  al., 1992; 
Ladner et al., 1995; Roth et  at., 1995). It should be noted 
in this regard that cholinergic neurons conspicuously use 
choline both to produce ACh and to synthesize 
membrane phosphatidylcholine (Wurtman, 1992). The 
hypothesis that altered membrane composition may be a 
primary cause of the cellular abnormalities resulting in 
impaired signal transduction and DAT needs to be tested. 
Accordingly, the potentialities of molecular biology of 

ACh receptors in providing future therapeutic tools need 
to be verified. 

Diseases other than DAT (e.g. familial olivoponto- 
cerebellar atrophy--OPCA) can cause a loss of ACh 
neurons as prominent as that which occurs in clinically 
disabling DAT. The resulting cognitiw~ impairment, 
though qualitatively similar, is, however, less disabling 
in OPCA than in DAT and has different neuropsycho- 
logical features (Kish et  al., 1988). In this respect, 
memory defects in DAT may therefo~re depend on 
hippocampal degeneration (i.e., on the loss of function- 
dedicated structures) rather than reflect inadequate ACh 
availability at selective sites of action. This hypothesis is 
also supported by recent findings of the association of 
apolipoprotein E e4 allele with medial temporal lobe 
atrophy and memory impairment in both DAT patients 
and non-demented elderly subjects (Soininen & Riekki- 
nen, 1996). Based upon these considerations, DAT stands 
as a heterogeneous disease and the role of ACh in 
memory processes appears restricted to facilitation of 
nonspecific functional characteristics of neurons (e.g., 
suppression of normal adaptation of pyramidal cell firing; 
long-term potentiation; reduced interference from col- 
lateral synapses) (Hasselmo & Bower, 1993). The 
evidence of the multifactorial pathogenesis of DAT 
contrasts with the scopolamine/physostigmine model of 
cognitive impairment and dementia (Fibiger, 1991) and 
the therapeutic rationale derived from it (Baker & 
Giacobini, 1988). Accordingly, substitutive treatments 
attempting to restore cognitive function in demented 
patients by means of compounds enhancing ACh 
availability or activating cholinergic function have been 
thus far disappointing (Flynn et al., 199D. Transplanta- 
tion of fetal brain tissue rich in cholinergic neurons is 
now foreseen as an unpromising therapeutic approach 
compared with the promise of fetal transplantation in 
Parkinson's disease (Dunnett, 1991; Olanow et  at., 1996). 
The future potentialities of grafting genetically modified 
cells onto the brain (Gage et  at., 1987) will depend on the 
identification of genetic abnormalities peculiar to DAT, 
rather than aiming at counterbalancing ACh loss 
(Dunnett, 1991). 

There is no evidence of a peculiar action of ACh in 
visual cortex. The specificity of cholinergic function in 
vision, therefore, should be regarded as inferential. 
especially when considering both the multiplicity of 
VEP generators and how little is understood about the 
neuronal basis and neuromodulation of visual function. 
ACh has been reported to depress neuronal responses to 
nonpreferred stimulus directions while., enhancing re- 
sponses to the preferential direction (Sillito & Kemp, 
1983). This observation, however, is questioned by 
experimental data (e.g., Sato et  al., 1987a,b; MiJller & 
Singer, 1989) suggesting that ACh facilitates the firing of 
cells irrespective of stimulus properties, much as 
cholinergic neurons in nucleus basalis axe facilitated by 
ACh when responding to novel stimuli (Wilson & Rolls, 
1990). To a good approximation, the modulatory effect of 
subcortical ACh structures on cortex appears nonspecific 
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as well .  However ,  some ACh-spec i f ic i ty  needs to be 
contr ived,  if  the avai lab le  ev idence  pers is tent ly  support-  
ing it in the retina, L G N  and visual  cor tex  is taken into 
account.  E lec t rophys io log ica l  observat ions  at dif ferent  
levels  of  neuronal  complex i ty  appear  congruent  in this 
regard  ( Ikeda  & Sheardown,  1982; Ar ie l  & Daw,  1982; 
Ki rby  et al., 1986; Sato et al., 1987a,b; Schmidt  et al., 
1987; Mti l ler  & Singer ,  1989; McCormick ,  1989, 1990; 
Sanni ta  et al., 1993; Sannita ,  1995; Jurkl ies  et al., 1996), 
A prac t icable  hypothes is  wou ld  be that  A C h  act ion 
becomes  funct ion-speci f ic  as a direct  consequence  o f  the 
archi tecture of  spec ia l -purpose  brain (micro-  or  macro-)  
circuits  ded ica ted  to visual  informat ion process ing  in 
which  it functions.  This would  p roper ly  suit  the concept  
o f  neural  c i rcui t ry  as a templa te  of  function,  i.e., a 
mechan i sm t ransforming s imple  discrete  events  into 
complex  activity.  Such a concept  is fundmnental  for 
neural  ne twork  mode l l ing  and is suppor ted  by  intr iguing 
para l le l i sms  in archi tecture and opera t ion  be tween  some 
artificial  ne tworks  for  d is t r ibuted pattern recogni t ion/  
associa t ion  and the cerebra l  cor tex  they are a t tempt ing to 
mode l  (e.g. Ander son  & Rosenfe ld ,  1988; Haber ly  & 
Bower ,  1989). The olfactory cor tex is an example  in this 
regard  o f  a mode l  circui t  for  the s tudy o f  ol fact ion and, 
largely,  of  (associa t ive)  m e m o r y  (Haber ly  & Bower ,  
1989; Nakanishi ,  1995). It should  be noted that remark-  
able s imilar i t ies  exis t  in the organiza t ion  of  the re t ina and 
olfactory bulb,  as wel l  as in the recep tor  and (second-  
order)  neuron mechan i sms  of  informat ion process ing  in 
the visual  and ol fac tory  sys tems (Nakanishi ,  1995). This  
conceptual  f r amework  m a y  be ex tended  to the funct ional  
in terpreta t ion of  the visual  cor tex as well,  though at 
different  levels  o f  sophis t icat ion o f  the neuronal  
organizat ion.  A specific role for  A C h  can be dev i sed  as 
a regula tor  of  mechan i sms  de te rmined  by  structure and 
t r iggered  by  sensory input, owing  to the strict corre la t ion  
be tween  neural  c i rcui t ry  and funct ion that is a p rominen t  
feature in the visual  system.  
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