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Abstract 

The electrohydrodynamic stability of a conducting incompressible stratified fluid topping a dielectric fluid layer is 
studied. The stability of the system is discussed theoretically and numerically. It is found that the normal electric field has 
a destabilising effect while the increase of the thickness of the layer has a stabilising influence. The special case of the 
Rayleigh-Taylor instability is also examined. 
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1. Introduction 

The stability of an interface separating two streaming fluids has received considerable attention 
of investigators due to its physical applications. A review of classical Kelvin-Helmholtz theory is 
provided in [5]. The theory is limited in that in most physical situations the two fluid components 
are not moving with constant velocities [1, 9, 29]. Thus one has to consider flows possessing 
velocity stratification and the results of the theory of stability of parallel flow I-3, 6, 27] are brought 
into action due to the velocity stratifications. Recent works on the stability of superposed fluids 
that are initially streaming with variable velocities [15, 20-25] show different results than those of 
the classical Kelvin-Helmholtz instability. 

On the other hand, increasing interest in the electrohydrodynamic stability is due to the 
important role played by electric fields in biophysics 1-32], chemical engineering [13, 14], and other 
domains of interest [-4, 8, 10, 11, 23, 28, 30]. The presence of an electric field produces electric 
stresses on the interface separating two dielectric fluids. In the linear stability theory, the tangential 
field has a stabilising effect [-13], while the normal field has a destabilising influence [13, 16, 19]. 
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However,  recent studies of the nonlinear  e lec t rohydrodynamic stability showed that  both  the 
normal  field and the tangential  field play roles in stability criterion [17, 18]. 

The  aim of this work is to study the effect of a normal  electric field on a dielectric fluid layer 
topped  by a s treaming conduct ing fluid with sinusoidal boundary  wave profile. The linear stability 
of the interface will be examined. 

2. Formulation of the problem 

The basic flow is assumed to be the steady flow of two inviscid incompressible fluids in 
a gravitat ional  field. A rectangular coordinate  system is used, the coordinate  axes x - y  as shown in 
Fig. 1, with origin at the interface. 

The upper  fluid is of density P2 (Y) and extends to infinity and it is assumed to be a conduct ing 
inviscid incompressible fluid whose density and velocity in the stationary state are given by 

p~)2) = P2(Y) = P0 e-By, b/~ 2) = U2(y) = Ay  and U~ 2) = 0, 

where u and v are the velocity componen ts  in the directions of increasing x and y and P o , / / a n d  
A are positive constants.  

The lower fluid is of density Pl and depth L, and it is assumed to be a dielectric inviscid 
incompressible fluid at rest. Thus  

p~l) = Pl = constant ,  u~) 1) = Ul = 0 and /)~1) = 0. 

The lower fluid is bounded  from below by a rigid conduct ing plane having potential  Vo at y = - L. 
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Fig. 1. Definition sketch of the problem. 
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In the stat ionary state, the interface is given by y = 0, and the lower fluid only is subjected to 
a constant  electric field Eo and directed perpendicular  to the interface, i.e. Eo = E o j ,  where 
Eo = V o / L .  Also the gravitat ional  force is taken into account  in the two regions, and there exist 
surface charges on the interface. The equat ions governing the mot ion  are the usual equat ions of 
fluid mechanics along with the equat ions governing the electric field. 

The equat ions of mot ion  are: 

[ c~u"~ c~u"~ v"l ~u"~7 c~/7"' 
p(l) L - ~  + U(t) ~X + --T-S-,, y _j = d x  ' (2.1) 

p(l) F ~v(I) tOY(t) ~v(l)] 
L-- ~ + U (l) ~ X  "~- V (l) --~-y 3 ~- OFt(l)~y p(/)g, (2.2) 

where the superscripts I = 1, 2 refer to the lower and upper  fluid, respectively, and the total pressure 
is defined by [12] 

1 E2 0~ /7 = p - ~ 7pp ~ p' (2.3) 

where t is the time, p is pressure and the subscript ~ means that  the derivation is evaluated at 
constant  temperature.  

The  equat ion of continui ty is 

0u"~ 0v"~ 
- -  + - -  = 0. (2.4)  
c~x c~y 

Both the upper  and lower fluids are assumed to be incompressible, so that  

c~p.) c~p.) ~p(t) 
--cqt + u") --~-x + v") c~y = 0. (2 .5)  

It is assumed that  the quasi-static approximat ion  is valid for the problem on hand, and therefore 
Maxwell 's equat ions  reduce to 

V× E = 0, V. [ eE]  = 0, (2.6) 

where e is the dielectric constant  in the lower fluid. 

3. P e r t u r b a t i o n  e q u a t i o n s  

As usual, the mot ion  is resolved into pr imary mot ion  and perturbation.  Here the suffix 0 is used 
to denote  values in the undis turbed flow, while the subscript 1 will refer to the per turbat ions in 
various quantities, we may  assume: 

u = ug' + ut  v + v t ' ,  1-1t 

p(2) = p~o 2) + p]2), E = Eo + E1 

in which H~ ) is the total pressure for the pr imary flow. 
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The linearized equat ion  of continui ty allows the use of a stream function qJ(o, in terms of which 
u~ ° and v~ ° solving (2.4) can be expressed as follows: 

u(ll)= ill(1) ' Ui/)= _ ~u(0, (3.1) 

with subscripts indicating partial differentiation. 
We assume an exponential  t ime factor for all per turbat ion quantities, such that  

[w(o )-i(0 ,,(2)n = [01(Y), ft(Y), hE(y)] e i~(x-a) (3.2) ~t , ~ t l  , V I  J 

in which e = 2n/2 is the wave number ,  2 being the wavelength, and c = cr + ici is the wave velocity. 
The stability or instability is then decided by the sign of ci [19]. 

Fol lowing the usual procedure  [5], from Eqs. (3.1), (3.2) and the linearized form of Eqs. (2.1), (2.2) 
and (2.5) we obtain the following two equat ions for the upper  and lower fluid, respectively: 

d2O2(y) /~dOE(y) + _ ~2 + _ _  + 02(y) = O, (3.3) 
dy 2 dy (Ay - c) (Ay - -  C) 2 

d201(Y) e201(y)  = 0. (3.4) 
dy 2 

We can now imagine that  the equil ibrium interface separating the two fluids is per turbed and the 
surface of the deformed interface is given by 

y = ~ = 6e i~lx-al (3.5) 

where 6 is a smallness parameter  having the dimensions of a length. 
If n is the unit  normal  vector to the disturbed interface y = 3, then to the first order terms, n is 

given by 

n = - i ~ ¢ i  + j .  (3 .6 )  

F r o m  the linearized form of Eq. (2.6), E1 is an irrotat ional  vector, and therefore there exists an 
electric potential  q51 such that  E~ = - V~b~ and 

V2tkl = 0, (3.7) 

with the solution 

s inhe (y  + L) 
~bx = Eo ¢ (3.8) 

sinh(eL) 

Therefore, the total electric field is given by 

E = Eo{-kz~i + [1-ct~c°sh~(y + L)l } 
sinh(~L) j , (3.9) 

where the potential  tht vanishes at the rigid boundary  y = - L. 
Using the interfacial conditions: 

(i) The normal  componen t  of the velocity is cont inuous  at the interface y = 3, then it is required 
that  

01 (0) = 02 (0). (3.10) 
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F r o m  the linearized kinematic  condi t ions at the interface y = 4, 

04 a4 
v]')=Wr+ct U'~xx aty=O, (3.11) 

it follows that  

4 = 01 (0__~) el, Ix_c,). (3.12) 
C 

(ii) The normal  componen t  of the stress tensor is discont inuous across the surface of separation 
y = 4 by the surface tension T. Then, to the first-order terms, we obtain 

Cpl I/I ~ (0) --  PO [C @2 (0) + A ~/2 (0)]  + [(Po - P ,  ),q --  0~2 T + aeEo 2 coth (~L)]  ~1 (0) _ 0. (3.13) 
c 

The vanishing of the normal  componen t  of the velocity v~ 1) at the rigid boundary  y - -  - L  
implies that  

$1 ( -  L) = 0. (3.14) 

4. The dispersion equation 

The solution of Eqs. (3.4) and (3.14) can be written in the form 

~1 (Y) -- G sinh c~(y + L), 

where G is an arbitrary constant.  
To obtain the solution of Eq. (3.3), we may use the t ransformation [5] 

@2(Y) = W (Y) e(1/2)~y. 

Then Eq. (3.3) can be written in the form 

f 1 k ¼ - -  m 2 --d2W(O + k - ~ + ~ + - - - ~ ) W ( O = 0 ,  
2 

where 

(4.1) 

(4.2) 

(4.3) 

( )112 (A) k = (40~ 2 + fl2)1/2' m = _ Q , ( = y _ (4~x2 + fl2)1/2 

and the Richardson number  Q is Q = gfl /A 2. 
We recognize in Eq. (4.3) Whit taker 's  s tandard form of the equat ion for the confluent hyper- 

geometric function. The condi t ion at infinity requires that  the solution of Eq. (4.3) appropria te  to 
the problem on hand be Whit taker 's  function. 

W = H W k ,  m (~), (4.4) 
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where H is an arbitrary constant. This solution has the asymptotic behaviour [21, 31]: 

Wk,m(~) ~" (ke-(1/2);, (~ ~ ) .  

From Eqs. (4.2) and (4.4), we get 

~t2 (y) = He (a/E)ar Wk,,,(~). (4.5) 

Using Eqs. (4.1) and (4.5), then the boundary condition (3.10) gives 

G sinh(eL) - HWk, m -- -~ (4e 2 + 32) 1/2 = 0 (4.6) 

and the boundary condition (3.13) gives 

G{cpxecosh(eL) + [ (po -  p l ) g - e 2 T  + eeEZ coth(eL)] sinh! eL)} 

- H  (A+½fiC)poWk,,. - ~ ( 4 ~  2 +  )1/2 

, i t  1}:o, + poc(4~ 2 + 32) 1/2 Wk,,~ _ A(4e2 + )1/2 

with respect to the unknowns G and H, then the system of Eqs. (4.6) and (4.7) has a solution 
different from zero, if the determinant of coefficients is equal to zero, and it then follows that 

- poc(4e 2 + 32) 1/5 sinh(eL) Wk,,, -- ~ (4e 2 + )1/2 

+ {cpl~COsh(eL) + [(Po -- Pl)O -- e2T - (A + ½ C) poC 

+ eeEo 2 coth(eL)] sin _eL) Wk,,, -- ~ ( 4 e  2 + 32) 1/2 = 0. (4.8) 

Eq. (4.8) is the dispersion equation characterising c. Accordingly the stability or instability is 
determined through the solutions for c resulting from the dispersion equation. Unfortunately, the 
above relation is rather complicated implicit transcendental equation. The relation can be simplifi- 
ed considerably for large wave numbers. It is well known that the behaviour for the Whittaker's 
function for large arguments has the property [25]: 

WL,,(Z) ~ - ½Wk,,,(Z), largZI < ~2rt (4.9) 

and therefore, the dispersion equation (4.8) reduces to the simplified form 

c2[½Po(4~2 + fl2)1/2 + pl~coth(eL)  -½flPo]  - cApo 

+ [(Po -- Px)g -- ~2T + e~E~coth(~L)] = 0. (4.10) 
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Eq. (4.10) is quadratic in c. From the nature of the roots, we find that the principal of 
overstability is valid. The marginal state is given by 

2* = [2po(4C¢ 2 + fl2)~/2 + 4pl~coth(0cL) - 2/~po][(po - P , ) g  - ~ 2 T  

+ cteEo 2 coth(~L)] - A Z p ~  = O. (4.11) 

The system is stable if 2" <~0. The equality of the relation (4.11) can be expressed in the 
form 

E~2 = Eo 2 _ tanh(~L) { A Z p ~  

ue [2pox/4u2 +/~2 + 4pl cZ coth(ccL) - 2/~po] 

- [(po - p , ) g  - T ] } .  (4.12) 

For  values of the field such that Eo ~< E~', the system is stable. The values of the critical 
field E* depends on the ratio of the densities, the wave number and the thickness of the layer L. 
The surface tension plays a stabilising role. If Po > Pl, then stability is possible if Eo < E~' 
up to a critical value of the difference (Po - P t ). If the difference (Po - P 1 ) is very large, then the 
term - (Po - Pl ) in Eq. (4.12) dominates and stability is not possible for any value of the electric 
field. Thus if 

(po - p,) > [g{2po 
A 2 p  ~ + -- , 

x/4~2 +/~2 + 4p ,~  coth(~L) - 2/3po} 

the system is unstable regardless of the value of Eo. If the lower fluid is denser, then (Po - Pl) is 
negative and one can always find an electric potential such that Eo < E~' and stability is achieved. 

5. Numerical discussion 

From Eq. (4.12) we calculate the values of the electric field square Eo 2 corresponding to some 
given values of the wave number  ~ from ~ = 10 -2 to ~ = 3000 for various constant values of the 
thickness L of the lower fluid. The other parameters are taken to be: g = 9.8 m/s 2, Po = 1.2 kg/m 3, 
pl = 998.2 kg/m 3, T = 0.0728 N/m, e = 78.54, A = 1.0 and fl = 1.1 x 10 -6. 

The relation (4.12) is drawn between the electric field square E~ and the wave number ~ for given 
values of the thickness L of the lower fluid. The resulting curves in Figs. 2 - 4  represent the neutral 
curves or the marginal state separating the stable and unstable regions. For  a given curve, we 
observe that the stable region is decreased by the increase of ~ till a critical point (~c, E~c) after 
which the stable region is increased by the increase of 7, e.g. fo r  L >/0.03; ~ ~ 366.14 and 
EoZ¢ ~ 0.6714958, and as L decreases the values ~¢ and Eo2¢ also decrease. We observe from the 
figures that there are stable regions under the curves. Thus there are small values of Eo 2 for which 
instability is not possible: as E(] increases an unstable region is reached; and the system can be 
brought into the unstable state for values of Eo 2 > EoZc. We also observe that the stable areas 
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Fig. 2. Variation of E0 z with the wave number ~ for various values of the liquid depth L for a system having O = 9.8 m/s 2, 
Po = 1.2 kg/m 3, Pl = 998.2 kg/m 3, T = 0.0728 N/m, s = 78.54, A = 1.0 and fl = 1.1 x 10- 6. U and S denote unstable and 
stable regions above and under each curve, respectively, where (a) the solid, dashed, dotted-dash, dotted, 3 dotted-dash 
curves correspond to the values L = 2,4, 6, 8, 10, respectively, (b) all the above curves coincide• 
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Fig. 3. For the system considered in Fig. 2, but with the solid, dashed, dotted-dash, dotted, 3 dotted-dash curves 
corresponding to the values L = 0.1,0.2,0.3,0.4,0.5, respectively, and by increasing ~, we can get a curve similar to that in 
Fig. 2(b). 

S increase  wi th  the  increase  o f  the  th i cknes s  L. T h u s  the  increase  o f  the  th i cknes s  y ie lds  a s tabi l i s ing  
inf luence .  T h e  u p p e r  b o u n d s  o f  the  electric field required  for stabi l i ty  are increased  by  the  increase  
o f  L for f ixed ~. T h e  upper  va lues  o f  the  electric  field and  the  c o r r e s p o n d i n g  va lues  o f  L are g iven  in 
T a b l e  1 for ~ = 1 0 - 2 .  
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Fig. 4. For the system considered in Fig. 2, but with the solid, dashed, dotted-dash, dotted, 3 dotted-dash curves 
corresponding to the values L = 0.01,0.02, 0.03, 0.04, 0.05, respectively, in (a), and the values L = 0.001,0.002, 0.003, 0.004, 
0.005, respectively, in (b), and it shows the destabilising influence of the electric field and the stabilising effect of the liquid 
depth. 

Table 1 
The table shows the upper values of a stable field E 2 corres- 
ponding to the thickness of the fluid layer L for a given 
~ =  10 -2 

L Eo21~=~0 2 L EZl~=lo  2 

0.00001 0.0012440 0.05 6.2201420 
0.0005 0.0622014 0.1 12.4402809 
0.001 0.1244029 0.2 24.8805389 
0.002 0.2488057 0.3 37.3207428 
0.003 0.3732086 0.4 49.7608734 
0.004 0.4976114 0.5 62.2009094 
0.005 0.6220142 2.0 248.7725830 
0.01 1.2440285 4.0 497.3462402 
0.02 2.4880569 6.0 745.5229492 
0.03 3.7320854 8.0 993.1054688 
0.04 4.9761135 10.0 1239.8986328 

The analysis becomes more obvious when we discuss the system in the L-~ plane for fixed E 2. 
The curve is multibranched and the determination of the asymptote to the curve is necessary. The 
procedure is to solve the equality of (4.12) for coth(~L) and hence for L. The asymptotes are 
obtained by letting coth(~L) = 1 which results in the sixth-order algebraic equation: 

Alo~ 6 + A2 ~5 + A3 ~4 + A4 ~3 + A 5 ~  2 + A 6 ~  + A7 = 0, (5.1) 
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where 

A~ = 4 T 2 ( 0 2  - 0 2 ) ,  

A2 = 4 T {[3T pop~ - 2e Eg (p~ - 02)}, 

A 3  = - -  8 T ~PoP,  8E2 - 4(02 - P 2 ) { 2 T ( p o  - P , ) g  - 82Eg}, 

A4 = 808E~(po  - 0,)2(00 + 01) - 2 T A 2  p2p~ - 4~pop~ { 2 T ( 0 o  - 01)0 - ~2Eo4}, 

As = 402(00 - 0 , )3 (00  + P1) + T A 2 0 ~  + 20o01~E2o {A20o + 41~(0o -- Pl )0} ,  

A6 = 2 p o p l g ( p o  - p l ) { A 2 p o  + 213(po - P l ) g }  - ~A2R3oeE~, 

A7 = - ¼A2p~ {A2po + 4/~(po - 01)0}. 

The above equation admits two positive real roots, and Table 2 shows the computed values of 
the roots e = eA,, UA2 (corresponding to the asymptotes) for a given value of Eo 2. The other 
parameters  of the system are as tabulated before. Figs. 5 and 6 show the system in the L - e  plane for 
different values of E g, and from which, we observe that for a given value of Eo 2, the stable region S is 
reduced (or increased) by the increase of u < CA1 (or e > CA2). For  e > eA, and e < CA, stability is 
not possible for this value of the electric field, and the value of CA, (or CA2) decreases (or increases) 
with the increase of Eo 2 allowing more unstable regions to appear as shown in Figs. 5 and 6. This 
emphasises the destabilising influence of the electric field. 

We observe from the figures that there are unstable regions under the curves, and these regions 
are not the same for the same value of Eo 2, but  it depends on whether e < Ca, or e > Ca2, where the 
curves corresponding to a given value of E 2 with e > CA2 are too close to the e-axis more than the 

Table 2 
The table gives the positive real 
Eq. (5.1) for some given values of E ] 

roots of 

E~ (~At ~A2 

1.0 143.4865 935.3597 
2.0 64.0885 2093.5862 
3.0 42.0298 3194.5251 
4.0 31.3328 4284.0565 
5.0 25.0065 5366.9495 

10.0 12.4580 10776.0078 
20.0 6 .2244 21570.7016 
30.0 4 .1473 32371.7926 
40.0 3.1103 43150.7385 
50.0 2 .4877 53934.6911 
60.0 2 .0725 64723.2651 
70.0 1.7761 75512.7952 
80.0 1.5539 86292.3223 
90.0 1.3808 97068.8351 

100.0 1.2427 107868.3414 
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Fig. 5. Stability diagram in the (L-c 0 plane for various values of the electric field square Eo z for a system having 
0 = 9.8m/s2, P0 = 1.2 kg/m3, Pl = 998-2kg/m3, T = 0.0728 N/m, ~ = 78.54, A = 1.0 and /~ = 1.1 × 10 -6. The solid, 
dashed, dotted-dash, dotted, 3 dotted-dash curves correspond to the values E02 = 1,2,3,4,  5, respectively, where (a) 
represents the curves in the region ~ < ~a, (before the first asymptote to each curve), and (b) represents the same curves in 
the region ~ > ~a2 (after the second asymptotes), where the values ~A, and ~a2 are given in Table 2. 
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Fig. 6. Stability diagram for the same system considered in Fig. 5, but with the solid, dashed, dotted-dash, dotted, 
3 dotted-dash curves corresponding to Eo 2 = 10, 20, 30, 40, 50, and figures (a) and (b) are drawn for the values of ~ < C~A, 
and ~ > ~a2, respectively, and they show also that the electric field has a destabilising effect and the liquid depth has 
a stabilising effect. 

same curves correspond ing  to the same value of  Eo 2 with ~ < ~a,.  Thus  there are small  values of  
L for which  stabil ity is not  possible,  and as L increases a stable region is reached (for ~ > ~A2 more  
quickly  than for ~ < ~a, with the same value of  E0Z); and the system can be brought  into  a stable 
state for a given ~ < ~a, or ~ > ~A2" 
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6. The Rayleigh-Taylor instability 

It is interesting to examine the above system when the upper fluid is at rest (i.e. the 
Rayleigh-Taylor instability), and this can be done by letting A ~ 0. Unfortunately, the transforma- 
tion for ( breaks down when A - .  0 and consequently the Whittaker equation as given by Eq. (4.3) 
is not appropriate for the problem. Thus the dispersion equation (4.8) and its consequences are not 
valid for the Rayleigh-Taylor instability. 

However, the analysis can be restarted at a stage earlier to Eq. (4.2). If we let A ~ 0 in Eq. (3.3), we 
get 

d2~2(y)  fl d~2(y)  ~2(1 g f l }  
dy E d ~  (~c)2 ~2(Y) -- 0. (6.1) 

The general solution of Eq. (6.1) is [26] 

~2 (Y) -- H1 e ~'+y + HE e m-y, y > 0, (6.2) 

where H1 and H 2 a r e  arbitrary constants, and 

m +  = + + : 1  ':2 
_ _ ( c)2 j • 

Boundary conditions disallow disturbances which increase exponentially as the outer bound of the 
fluid is approached. Thus, 

~O2(y) = H2e m-r, y > 0 (6.3) 

with the requirement that 

+ (Z 2 1 -- gfl "(11/2 fl (6.4) 
( c)2jj />  

using Eqs. (4.1) and (6.3), then the boundary condition (3.10) gives 

G sinh(~L) = H2 (6.5) 

and the boundary condition (3.13) gives 

G[plcccosh(~L) + { (po - Pl)g - cc2T + cceE2o coth(ccL)} sinh-(c~L) ] 

= HaPocm-, (6.6) 

with respect to the unknowns G and Ha. The system of Eqs. (6.5) and (6.6) has a solution different 
from zero if the determinant of coefficients is equal to zero, and it then follows that 

'~1 £5 -- )'2 ¢3 -- "~3 ¢2 "~- 24C + '~'5 = 0, (6.7) 
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where 

21 ~- 

2 2 = 

2 3 = 

24 = 

25 =- 

{Pofl - 2p1~ coth(~L)} 2, 

4 {Pofl - 2p1~ coth(aL)} {(Po - Pl )g  - ~ 2 T  + ~eE2o coth (aL)}, 

po2(4a2 + f12), 

4{(po - P , )g  - ~2T + ~eEo2coth(aL)} 2, 

4p~gfl. 

The stability of the system depends on the properties of the roots of Eq. (6.7). For stability it is 
necessary and sufficient that all the roots of Eq. (6.7) should be real and distinct [5]. In order to 
examine the nature of the roots we construct the Sturm functions [2] f (c) ,  f t  (c), fz(c), f3(c), f4(c) 
and f5 (c) (see the Appendix). 

The roots of an equation of order n are real and distinct, if and only if two conditions are 
satisfied: 

(i) The number of Sturm's functions must be (n + 1). 
(ii) The leading coefficients of all these functions must be positive. 
Now, for the Eq. (6.7), the first condition (i) is satisfied, and the second condition (ii) leads to a set 

of inequalities. The details of these inequalities are very lengthy [7] and will not be included here 
(and they are available from the author on request). The first inequality is trivially satisfied, and the 
second one gives 

{Pofl - 2pt acoth  (aL) } {(Po - Pl )g - ~ 2 T + aeE~ coth(aL)} > 0. (6.8) 

Either 

tanh(~L) 
Eo 2 < {(Pt - Po)g + o~2T} (6.9) 

and 

fl < 2(pl~lPo)Coth(aL) (6.10) 

o r  

tanh(~L) 
Eo z < {(P, - Po)g + ~ 2 T }  (6.11) 

and 

fl > 2(pt~/po)coth(~L) .  (6.12) 

The latter is inconsistant with condition (6.4), and therefore the stability is only governed by Eq. 
(6.9) or Eq. (6.10). For the classical Rayleigh-Taylor instability where the upper density is constant, 
i.e. fl = 0, the stability is governed by Eq. (6.9) only. 
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7. Summary and conclusions 

From the preceding, it is quite clear that we have studied the effect of a normal electric field on 
a dielectric fluid layer topped by a streaming conducting fluid with sinusoidal boundary wave 
profile. The linear stability of the interface between the two fluids is examined. In Section 2, we 
formulated the problem and wrote down the equations of motion. In Section 3, we put these 
equations in the perturbed form and by introducing the stream function 7/, we obtained two 
differential equations (one of them is Whittaker's standard form of the equation for the confluent 
hypergeometric function) for the upper and lower fluids. We then expressed the form of the normal 
electric field E and wrote down the perturbed form of the relevant boundary conditions to our 
model. In Section 4, we derived the dispersion equation in a simple form by using the properties of 
the Whittaker function, and from the nature of the roots of this equation, we studied the stability of 
the system theoretically and numerically. The results obtained from the present study can be 
summarized as follows: 

(i) The increase of the normal electric field has a destabilising effect, while the increase of the 
thickness L of the lower layer yields a stabilising influence. There are small values of L and E 2 for 
which instability is not possible. The value of the critical field E~' (above which the system is 
unstable) depends on the ratio of the densities, the wave number, and the thickness of the lower 
layer. 

(ii) In the ~-E 2 plane, the stable region (for a given curve) is decreased by the increase of ~ till 
a critical point (oct, E2c) after which the stable region is increased by the increase of ~. 

(iii) For a given value of E 2 in the ~-L plane, the values ~al, ~A2 correspond to the asymp- 
totes, and the stable region is reduced or increased by the increase of ~ < ~a~ or ~ > (ZA2. Outside 
these regions stability is not possible for this value of the electric field, and the unstable regions 
under the curves are not the same for the same value of E2; that depends on whether ~ < eta, or 

Finally, the case of Rayleigh-Taylor instability is also investigated by using the Sturm functions 
to examine the nature of the roots of the resulting equation and to obtain the conditions for 
stability in the case of stratified fluids with the influence of a normal electric field. 
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Appendix 

The Sturmian functions for Eq. (6.7) are: 

f(c) = 21 c5 -- ,~2 c3 -- ,~.3 C2 -~- ,~4c --~ "~-5, 

fl(c) --- 5'~1 c4 -- 3~2 c2 -- 22ac + )~4, 

(A.1) 

(A.2) 
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f2(c) = z 22c 3 + ~ 23C2 __ ~ 2, ,C - -  25, (A.3) 

1 {42223 + 3021232` , _ 2 5 2 1 2 2 2 5 } c  1 { 1 2 2 3 _ 4 5 2 1 2 3 2 _ 4 0 2 , 2 2 2 , , } c 2  + 2--~22 f3 (c) = 

1 
+ ~22 {752,2225 -- 42222,,}, (A.4) 

f4(c) = [{{482~ - 1802122232 - 160212224 + 150212225 - 8232,,} {1223 - 4521232 - 4021222,,} 

- -{2022323-  2 4 0 2 1 2 2 2 3 2 4 -  13521 23 --I- 100212225}{82223 -4 -60212324-  50212225}}C 

+ {5 25 {1223 - 4 5  21232 - 402122 2 4 }2 __ { 2 0 2 3  23 __ 2402122 2324. - -  135  21233 -Jr- 1002122225 } 

x {75212225 - -  42224}} ] /5  {1223 - 452 ,22  - 4021222 ,}  2, (A.5) 

fs(c)  = [ { { S 2 2 2 3  --I-- 602 ,232 , ,  - 50212225}({48224 - 1802 ,2222  - 1602,222, ,  + 1502 ,2225  

- 823 2,, } {1223 - 45 21232 - 402122 2,, } - {2023 - 2402122 232,, - 1352, 23 + 1002,222 25 } 

x {82223 + 60212 3 2 4 - -  5021222s })(525 {1223 - 452122 - 40212224} 2 

- { 2 0 2 2 2 2 3  - 2 4 0 2 , 2 2 2 3 2 , ,  - 1 3 5 2 , 2 ~  + 1 0 0 2 , 2 ~ 2 5 }  { 7 5 2 , 2 2 2 5  - 4 2 2 2 2 , , } )  

- { 1223 - 45 21 2 2 - -  402,222, ,  }(5 25 { 1223 -- 45 2122 -- 40212:  2,, }2 

- {202323 - 2402 ,22232 , ,  - 135212~ + 1002122225} {75212225 - 42~2, ,})  2} 

- { {75 2, 2225 - 4222 24 }( {4824 - 180212222 - 1602, 222 2,, + 1502, 222 25 - 823 24.} 

× {1223 - 452122 - 4021222`*} - { 2 0 2 3 2 3 -  2 4 0 2 , 2 2 2 3 2 ` * -  1352,23  + 100212225} 

~2 X {822223 Jr- 602 ,  23 24 -- 50212225 })2 }] /422 [{482~ -- 1802122A 3 - -  1602,  2224 

+ ~50212~25 - 8232`*}{1223 - 4 5 2 , 2 3 2  - 402,,~22`*} - {202323 - 2402122232,,  

-- 1352 ,23  + 100212225} {822223 " 4 - 6 0 2 1 2 3 2 , , -  5 0 2 1 2 2 2 5 } ]  2. (A.6) 
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