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Abstract

Continuous analogs of orthogonal polynomials on the circle are solutions of a canonical
system of differential equations, introduced and studied by Krein and recently generalized to
matrix systems by Sakhnovich. We prove that the continuous analogs of the adjoint polynomials
converge in the upper half-plane in the case ofL2 coefficients, but in general the limit can
be defined only up to a constant multiple even when the coefficients are inLp for any p>2,
the spectral measure is absolutely continuous and the Szegö–Kolmogorov–Krein condition is
satisfied. Thus, we point out that Krein’s and Sakhnovich’s papers contain an inaccuracy, which
does not undermine known implications from these results.
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1. Introduction

Orthogonal polynomials on the unit circle have interesting features that relate
properties of their spectral measure to the properties of coefficients of generating recur-
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sive formulas (see Section2 for more details). The present paper deals with continuous
analogs of such polynomials.
The one-dimensional analogs were introduced by Krein in [K]. They provide, in a

sense, a generalization of the Fourier transform fromL2(R) to L2(R, �). Here � is
a Borel spectral measure onR. In this generalization of the Fourier transform, the
usual exponentialseir� are replaced withp(r, �), the continuous analog of orthogonal
polynomials. We consider only “one sided” situation, that is,r is nonnegative and the
Fourier transform is from a half-line to the whole line (see Section 3).
Note that the Fourier transform itself is a continuous analog of the expansion into

the Fourier series, insofar as

{eir� | r ∈ R+, � ∈ R}
are analogous to

{zn | n ∈ Z+, |z| = 1}.
Similarly,

{p(r, �) | r ∈ R+, � ∈ R}

are analogous to

{�n(z) | n ∈ Z+, |z| = 1},
orthonormal polynomials of degreen on the unit circle with respect to an arbitrary
probability Borel spectral measure�. To add one more analogy, note that�n(z) = zn

are the orthogonal polynomials with the normalized Lebesgue measure as the spectral
measure.
In [S1,S2,S3,S4,S5] Sakhnovich defined and studied matrix valued continuous analogs

of orthogonal polynomials on the unit circle, and generalized Krein’s results for this
case (see Section 4).
The functionsp(r, �), together with the continuous analogp∗(r, �) of the adjoint

polynomials, are solutions of a canonical system of differential equations (3.1). The
spectral measure� is uniquely determined by these differential equations. The Krein dif-
ferential equations are related to the study of the one-dimensional continuous
Schrödinger equation [D1,D5,DK2,K]. Also they can be used to solve an important
factorization problem in the theory of analytic functions [A,DK1,G,Sz,Si].
As an expository remark, we note that another way to definep(r, �) andp∗(r, �) is

by the formulas

p(r, �) = eir�
(
1−

∫ r

0
�r (s,0)e−is�

)
ds,

p∗(r, �) = 1−
∫ r

0
�r (0, s)eis� ds.
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Here�r (s, t) = �r (t, s) is the resolvent of a positive integral operatorSr , that is

�r (s, t)+
∫ r

0
H(s − u)�r (u, t)du = H(s − t),

whereH(t) = H(−t) and

Srf (x) = f (x)+
∫ r

0
H(x − t)f (t) dt.

The coefficienta(r) of Eq. (3.1) is a(r) = �r (0, r). Usually, the accelerantH(t) is
assumed to be continuous to construct the corresponding Krein system with continuous
coefficient a(r). In our work, we do not use such a construction, but definep(r, �)
andp∗(r, �) as solutions of Krein’s canonical system of differential equations (3.1).
If �′ is the density of the absolutely continuous component of the spectral measure,

then the Szegö–Kolmogorov–Krein condition

∫
R

| log�′(�)|
1+ �2

d� <∞ (1.1)

is satisfied if and only if

∫ ∞

0
|p(r, �)|2 dr <∞ (1.2)

for Im � > 0. Notice that no assumption on the singular part of� is made except (3.2).
In the midst of our discussion is the existence of the limit

�(�) = lim
r→∞ p∗(r, �), (1.3)

where�(�) is analytic for Im� > 0. Krein pointed out in[K] that if the coefficients
are square integrable, then limit (1.3) converges. In Section 5 we prove that this so
even in the matrix case, and therefore�(�) is uniquely defined for square integrable
coefficients. Section 5 also contains other results related to the convergence of limit
(1.3) in the case of Sakhnovich differential equations.
An important relation, which follows from (3.1) and was noted by Krein in [K], is

|p∗(r, �)|2 − |p(r, �)|2 = 2 Im�
∫ r

0
|p(s, �)|2 ds. (1.4)

This a particular case of Lagrange identity, which is an analog of the Christoffel–
Darboux formula for orthogonal polynomials (see, for instance,[At]). Thus we
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must have

|�(�)|2 = 2 Im�
∫ ∞

0
|p(r, �)|2 dr

if the integral converges and limit (1.3) exists.
The existence of limit (1.3) implies the convergence of integrals (1.1) and (1.2), but

the converse is not true in general. In Section 6, we prove that there are situations when
(1.1) and (1.2) hold, but�(�) has to be defined as a limit of a convergent subsequence.
We show that this situation is not “pathological", but can occur even if the spectral
measure� is absolutely continuous with positive continuous density (Theorem 2). In
another example (Theorem 3), this happens even though

lim
r→∞ |p∗(r, �)|2 = |�(�)|2

and the coefficients are inLp for any p > 2. Moreover, the function�(�) cannot be
defined uniquely, but only up to a constant factor of absolute value one (up to left
multiplication by a unitary matrix in the case of the Sakhnovich theorem).
Note that results of Section5 apply to the Krein system, since it is a particular

case of the Sakhnovich system. Two of the three results are new even for the Krein
system. At the same time results of Section 6 are stated for the Krein system, but are
applicable for the Sakhnovich system as well.
The fundamental paper [K] presents a number of important results, though it does

not contain proofs due to the type of the journal it was published in. Later proofs of
Krein’s results were given independently by the author in 1990 (partly published in
[T1]) and Sakhnovich in 1998 ([S2–S4]). The main subject of [T1] was to prove that
the spectral measure� is absolutely continuous with probability one if the coefficient
a(r) is a random function satisfying certain conditions.
In [T1] the author noted and rectified an inaccuracy in the statement of Krein’s

theorem, and gave a proof of the corrected main theorem (see Section 3 for more
details). Theorems 2 and 3 in Section 6 prove, in particular, that a part of the statement
of the Krein theorem in [K] needs to be revised.
In [S1–S5] Sakhnovich defined and studied matrix valued continuous analogs of

orthogonal polynomials on the unit circle, and proved matrix generalizations of Krein’s
results. Unfortunately, these works contain the same kind of inaccuracy as [K]. In
Section 4, we present the corrected statement, and the corrected part of the proof.
We emphasize that the inaccuracy in the statement of Krein’s and Sakhnovich’s

theorems is not significant, and does not undermine known implications from these
important results. For instance, if (1.1) and (1.2) hold, then there is the function�(�)
which is analytic and has no zeros for Im� > 0, and

�′(�) = 1

2�|�(�)|2
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for Lebesgue almost all� ∈ R (there is an analogous matrix version proved by
Sakhnovich in[S4]). This result remains unchanged even if limit (1.3) diverges, and
the nonuniqueness of�(�) mentioned above takes place.

2. Orthogonal polynomials on the circle

If {�n(z)}∞n=0 are polynomials of degreen, orthonormal on the unit circle with
respect to a probability Borel measure�, then there exists a sequence of complex
numbers{an}∞n=0 such that the following recurrent relations hold:

�n+1(z) = (1− |an|2)−1/2(z�n(z)− ān�∗
n(z)

)
,

�∗
n+1(z) = (1− |an|2)−1/2(�∗

n(z)− anz�n(z)
)
, (2.1)

with initial conditions

�0(z) = �∗
0(z) = 1.

The auxiliary polynomials�∗
n(z) are adjoint to the orthogonal polynomials�n(z) in the

sense that�∗
n(z) = c̄0zn+· · ·+ c̄j zn−j+· · ·+ c̄n if �n(z) = c0+· · ·+cj zj+· · ·+cnzn.

The so-called circular (reflection, Shur’s) parameters{an}∞n=0 satisfy

|an| < 1 (2.2)

for all n if and only if the measure� is not concentrated in a finite number of atoms.
Conversely, if conditions (2.2) are satisfied, then there exists a unique Borel probability
measure� on the unit circle such that polynomials{�n(z)}∞n=0, defined by (2.1), are
orthonormal with respect to�.
The theory of orthogonal polynomials on the circle was developed by Szegö,

Akhiezer, Geronimus et al. ([A,G,Sz]). The following theorem is a combination of
results of Szegö, Kolmogorov, Krein and Geronimus (see [G,Si]).

Theorem. The linear span of{�n(z)}∞n=0 is not dense inL2� if and only if any of the
following five equivalent statements hold:
(I)

∫ 2�

0
log�′(ei�)d� > −∞, (2.3)

where�′ is the density of the absolutely continuous component of� with respect
to the Lebesgue measure on the unit circle.
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(II) There exists at least onez in the unit diskD = {z : |z| < 1} such that

∞∑
n=0

|�n(z)|2 <∞. (2.4)

(III) There exists at least onez ∈ D such that

lim inf
n→∞ |�∗

n(z)| <∞.

(IV) Series(2.4) converges uniformly on compact subsets ofD.
(V) There exists a function�(z), analytic inD, such that the limit

�(z) = lim
n→∞ �∗

n(z) (2.5)

is uniformly convergent on compact subsets ofD.
Moreover, statements(I)–(V) are equivalent to the condition

∞∑
n=0

|an|2 <∞.

Note that in (I) the integral is always less than+∞, and that there is no restrictions
on the singular part of�.

3. Krein theorem

In [K] Krein studied the following canonical system of ordinary differential equations:

d
dr
p (r, �) = i�p(r, �)− a(r) p∗(r, �),

d
dr
p∗(r, �) = −a(r) p(r, �), (3.1)

with the initial conditions

p(0, �) = p∗(0, �) = 1.

In our paper, we consider only the case whena(·) is continuous on[0,∞).
There is a Borel measure� on R, which is called the spectral measure, such that

∫
R

1

1+ �2
d�(�) <∞ (3.2)
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and the mapU : L2[0,∞) → L2� defined by

Uf (�) =
∫ ∞

0
f (r)p(r, �) dr (3.3)

is an isometry.
A simple example is the situation whena(r) ≡ 0 andU is the usual Fourier transform.

In this case� is the Lebesgue measure normalized by 2�. For a more detailed study
see[AR,R,D2–D5,DK2].

Theorem. The isometryU is not onto if and only if any of the following five equivalent
statements hold:

(I)
∫

R

log�′(�)
1+ �2

d� > −∞, (3.4)

where�′ is the density of the absolutely continuous component of� with respect
to the Lebesgue measure onR.

(II) There exists at least one� in the domainC+ = {� : Im � > 0} such that

∫ ∞

0
|p(r, �)|2 dr <∞. (3.5)

(III) There exists at least one� ∈ C+ such that

lim inf
r→∞ |p∗(r, �)| <∞. (3.6)

(IV) Integral (3.5) converges uniformly on compact subsets ofC+.
(V) There exists an analytic inC+ function�(�) and a sequencern → ∞ such that

the limit

�(�) = lim
n→∞ p∗(rn, �) (3.7)

converges uniformly on compact subsets ofC+.

Note that in (I) the integral is always less than+∞, and that there is no restrictions
on the singular part of�.

Remark 3.1. This theorem was stated by Krein in[K] without a proof because of the
type of the journal it was published in. Parts (III) and (V) of this theorem were not
stated in [K] correctly. Namely, it was written as if (I), (II) and (IV) were equivalent
to:
(III ′) There exists at least one� ∈ C+ such that supr�0 |p∗(r, �)| <∞.
(V′) The limit �(�) = lim

r→∞p
∗(r, �) converges uniformly on compact subsets ofC+.
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In Section6, we present two counterexamples. We refer to this theorem as the Krein
theorem because most of the results were stated correctly by Krein in [K], and the
rest is correct in spirit despite of a relatively minor mistake. The corrected statement
appeared first in [T1].

In [K] Krein noted that ifa ∈ L1[0,∞) then (I)–(V) hold and� is absolutely continuous

with positive continuous density. Also, he noted that ifa ∈ L2[0,∞) then (I)–(V) as well
as (III′) and (V′) hold. The converse of this fact is not true, unlike the case of orthogonal
polynomials in Section 2.
In Section 5, we give a proof that ifa(r) ∈ L2[0,∞) then (I)–(V) hold, but the

result is sharp in the sense of Theorem 2 and Remark 5.1. We also prove two more
results related to convergence in (I)–(V). In Section 6, we prove that, in general,�(�)
cannot be defined uniquely, but only up to a factor of absolute value one.

4. Sakhnovich theorem

In [S1–S5] Sakhnovich introduced and studied matrix analogs of the Krein system.
He considered a system of canonical differential equations

d
dr
Y (r, �) = i�JH(r)Y (r, �), r�0,

that can be transformed by a change of variables into a system

d
dr
P1(r, �)= i�DP1(r, �)+ A1(r) P1(r, �)+ A∗

2(r) P2(r, �),

d
dr
P2(r, �)=A2(r) P1(r, �), (4.1)

with the initial conditions

P1(0, �) = P2(0, �) = Im,

where r ∈ [0,∞), � ∈ C, and Im is the m × m identity matrix. HereD, P1(r, �),
P2(r, �), A1(r), A2(r) arem×m matrices. It is assumed thatA1(r) = −A∗

1(r), andD
is a constant diagonal matrix with positive diagonal entries. FunctionsA1(·) andA2(·)
are assumed to be continuous on[0,∞).
There is a Borel matrix valued measure� on R such that∫

R

1

1+ �2
d�(�) <∞ (4.2)

and the mapU : L2[0,∞) → L2� defined by

Uf (�) =
∫ ∞

0
f (r)P1(r, �) dr (4.3)

is an isometry.
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Theorem. The following five statements are equivalent:
(I)

∫
R

log det�′(�)
1+ �2

d� > −∞. (4.4)

where�′ is the density of the absolutely continuous component of� with respect
to the Lebesgue measure onR,

(II) There exists at least one� in the domainC+ = {� : Im � > 0} such that

∫ ∞

0
‖P1(r, �)‖2 dr <∞, (4.5)

where‖ · ‖ is a matrix norm.
(III) There exists at least one� ∈ C+ such that

lim inf
r→∞ ‖P2(r, �)‖ <∞. (4.6)

(IV) Integral (4.5) converges uniformly on compact subsets ofC+.
(V) There exists an analytic inC+ matrix valued function�(�) and a sequence

rn → ∞ such that the limit

�(�) = lim
n→∞P2(rn, �) (4.7)

converges uniformly on compact subsets ofC+.

Remark 4.1. This important result was proved by Sakhnovich in[S2,S3,S4].
Unfortunately, parts (III) and (V) of this theorem were not stated in [S2,S3,S4] cor-
rectly in that it was written as if (I), (II) and (IV) implied the existence of the limit

�(�) = lim
r→∞P2(r, �). (4.8)

Despite that, we refer to this theorem as the Sakhnovich theorem because most of the
results were stated correctly by Sakhnovich, and the rest is correct in spirit except for
a relatively minor mistake.

The precise location of the gap in Sakhnovich’s papers is after the proof of the
fact that limn→∞ P1(tn, �) = 0 for a sequencetn → ∞ (see [S2, formula (1.35)]
and [S4, formula (2.10)]). The cited formulas do not imply (4.8). What may seem
more surprising is that it does not even imply limn→∞ P2(tn, �) = �(�) but only
limn→∞ ‖P2(tn, �)‖ = ‖�(�)‖, as shown in Theorem 3.
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Since the Krein system is a particular case of the Sakhnovich system, the counterex-
amples of Section6 apply to this situation as well. Also it is easy to construct “true”
matrix-valued counterexamples along the lines of Section 6.
In Section 5, show that ifA2(r) ∈ L2[0,∞), then the finite limit (4.8) exists, and

so �(�) is unique. In Section 6 we prove that, in general,�(�) cannot be defined
uniquely.
Below we give a corrected part of the proof of the Sakhnovich theorem. Following

the lines of [S2–S4], we will show that statements (II)–(V) are equivalent. An alternative
approach can be found in [T1].
The following is a Lagrange identity, which is an analog of the Christoffel-Darboux

formula for orthogonal polynomials (see, for instance, [At]).

Lemma 4.2.

P ∗
2 (r, �0)P2(r, �)− P ∗

1 (r, �0)P1(r, �) = i(�0 − �)
∫ r

0
P ∗
1 (s, �0)DP1(s, �) ds.

(4.9)

Proof. Note that the relation is clearly true forr = 0. Also, the derivatives with respect
to r of both sides of (4.9) coincide because of (4.1).

Proof of a part of the Sakhnovich theorem.Statements (II) and (III) are equivalent
because of the relation

P ∗
2 (r, �)P2(r, �)−P ∗

1 (r, �)P1(r, �) = 2 Im�
∫ r

0
P ∗
1 (s, �)DP1(s, �) ds, (4.10)

which is a particular case of (4.9).
Clearly, (IV)–(V) imply (II) and (III) because of (4.10). So we have to show that

(II) and (III) imply (IV) and (V).
Now assume that (II) and (III) hold for some� = �0 ∈ C+. By (4.1) and (4.10), the

family {‖P2(r, �)‖ : r�0, � ∈ S} is uniformly bounded from below for any compact
S ⊂ C+. By (4.6) and Montel’s theorem, there exists a sequencern → ∞ such that
limit (4.7) converges uniformly on compact subsets ofC+. Thus (V) holds, and so
does (IV) because of (4.10). �

5. Some convergence results

All the results in this section apply to the Krein system if we setm = 1, D = 1,
A1(r) = 0, a(r) = −A2(r), p(r, �) = P1(r, �) andp∗(r, �) = P2(r, �).
In what follows the matrix norm‖ · ‖ is defined by‖M‖ = √

TrM∗M.
Note that, even under conditions (1) and (2) of the following theorem, the limit

limn→∞ P2(rn, �) may not exist by Remark 5.1.
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Theorem 1. (i) (1) Suppose that the equivalent conditions(I)–(V) of the Sakhnovich
theorem hold, and

lim
n→∞P1(tn, �0) = 0

for sometn → ∞ and �0 in a nonempty open subsetS of C+. Then the limits

lim
n→∞ P ∗

2 (tn, �)P2(tn, �) = �∗(�)�(�),

lim
n→∞ ‖P2(tn, �)‖ = ‖�(�)‖,
lim
n→∞P1(tn, �) = 0, (5.1)

converge uniformly on compact subsets ofC+ × C+ and C+, respectively. Here
�(�) is an analytic function onC+.

(2) Suppose that the equivalent conditions(I)–(V) of the Sakhnovich theorem hold,
and

inf
ε>0

(
sup
r�0

∫ r+ε

r

‖A2(r)‖ dr
)

= 0. (5.2)

Then the limits

lim
r→∞ P ∗

2 (r, �)P2(r, �) = �∗(�)�(�),

lim
r→∞ ‖P2(r, �)‖ = ‖�(�)‖,
lim
r→∞ P1(r, �) = 0, (5.3)

converge uniformly on compact subsets ofC+ × C+ and C+, respectively.
(3) Suppose thatA2(r) ∈ L2[0,∞). Then conditions(I)–(V) of the Sakhnovich theorem

hold and, moreover, the limits

lim
r→∞ P2(r, �) = �(�),

lim
r→∞ P1(r, �) = 0, (5.4)

converge uniformly on compact subsets ofC+.

Remark 5.1. This result is sharp in the sense that there is a realC∞ coefficientA2(r),
which is inLp for any p > 2, such that statements (I)–(V) of the Sakhnovich theorem
do not hold.
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Also this result is sharp in a more delicate sense: by Theorem3 there exists a
coefficientA2(r), which is again inLp for anyp > 2, such that limr→∞ P1(r, �) = 0,
statements (I)–(V) of the Sakhnovich theorem hold, but the limit limr→∞ P2(r, �) does
not exist. In fact, we show that�(�) cannot be defined uniquely, but only up to a
constant factor, even though the limit limr→∞ ‖P2(r, �)‖ = ‖�(�)‖ exists by part 2
of Theorem 1.
Note that in this theorem there is no restriction on the skew-symmetric coefficient

A1(r), except for the usual assumption of continuity.
It was proved in [S2,S3] that ifA2(r) ∈ L1[0,∞), then conditions (I)–(V) of the

Sakhnovich theorem hold, and the limits (5.4) converge uniformly on compact subsets
of C+∪R andC+, respectively. This fact and statement 3 of Theorem 1 were formulated
in [K] for the Krein system. Also, for the Krein system statements 2 and 3 of Theorem
1 are related to the results of [D2].

Proof of 1. Identity (4.9) implies that if (I)–(V) hold and

lim
n→∞ P ∗

1 (rn, �0)P1(rn, �) = 0, (5.5)

then�(�) satisfies

�(�) = i(�0 − �)
(
�∗(�0)

)−1
∫ ∞

0
P ∗
1 (s, �0)DP1(s, �) ds. (5.6)

Let �0 ∈ S and � ∈ C+. Then using (4.10) at�0 and at� we obtain

P1(tn, �0) = o (P2(tn, �0))n→∞ ,

P1(tn, �) = O(P2(tn, �))n→∞

and therefore

P ∗
1 (tn, �0)P1(tn, �) = o (P ∗

2 (tn, �0)P2(tn, �)
)
n→∞ .

Hence we have (5.5) and

lim
n→∞ P ∗

2 (tn, �0)P2(tn, �) = i(�0 − �)
∫ ∞

0
P ∗
1 (s, �0)DP1(s, �) ds (5.7)

by (4.9).
By (4.10) and (5.7), the family of analytic functions{P1(tn, �)}n�1 is locally

uniformly bounded and so is relatively compact. Thus, any its subsequence has a
convergent subsubsequence, and our assumptions imply that its limit has to be zero on
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C+ because it is an analytic function which is zero on an nonempty open setS. Hence
limn→∞ P1(tn, �) = 0 uniformly on compact subsets ofC+.
Therefore, the sequence{P2(tn, �)}n�1 is bounded by (4.10) and (5.5), and so has

a convergent subsequence. Then we define�(�) as the limit of this subsequence. The
right-hand side of (5.7) does not depend on the choice of the subsequence, and so
(5.7) extends to�0, � ∈ C+ by analyticity. This implies the first and second limits in
(5.1). �

Proof of 2. From (4.1) we have that

d
dr

‖P1(r, �)‖2 = T r d
dr
P ∗
1P1

= T r(−2 Im�P ∗
1DP1 + P ∗

1A2P2 + P ∗
2A2P1)

� 2
(
Im �‖D‖‖P1(r, �)‖2 + ‖A2(r)‖‖P1(r, �)‖‖P2(r, �)‖

)
(5.8)

and also

d
dr

log
(
‖P1(r, �)‖2 + ‖P2(r, �)‖2

)
= T r

d
dr

(
P ∗
1P1 + P ∗

2P2
)

‖P1‖2 + ‖P2‖2

= 2T r
−Im �P ∗

1DP1 + P ∗
1A2P2 + P ∗

2A2P1

‖P1‖2 + ‖P2‖2 �4‖A2(r)‖ (5.9)

since Im� > 0.
Let us assume that lim supr→∞ ‖P1(r, �)‖ > 0 for some� ∈ C+. Then there is a

sequencetn → ∞ such that

lim
n→∞ ‖P1(tn, �)‖ = � > 0.

Relation (4.10) implies that

lim
n→∞ ‖P2(tn, �)‖ = � > �.

Then (4.9) and (5.9) implies that for any�0, ε0 > 0 there existC > 0 such that

‖P1(r, �)‖2 + ‖P2(r, �)‖2�(�2 + �2)exp
(∫ tn+ε0

tn

4‖A2(r)‖ dr
)

+ �0 < C

for all large enoughn and anyr ∈ [tn, tn+ ε0]. Therefore, we can conclude from (5.8)
that there are�1 > 0 andε1 > 0 such that

‖P1(r, �)‖ > �1
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for all large enoughn and anyr ∈ [tn, tn + ε1]. This is a contradiction with (4.5), and
so limr→∞ P1(r, �) = 0 for any � ∈ C+.
Then the proof of (5.3) follows from statement (1) of this theorem.�

Proof of 3. Our first aim is to show that integral (4.5) converges for any� ∈ C+. Let
us assume that

∫∞
0 ‖P1(r, �)‖2 dr = ∞ for some� ∈ C+. Then one can see that

‖P2(r, �)‖2�
(∫ r

0
‖A2(s)‖‖P1(s, �)‖ ds

)2
= o

(∫ r

0
‖P1(s, �)‖2 ds

)
r→∞

,

which contradicts to (4.10). Thus integral (4.5) converges for any� ∈ C+ and so

�(�) = lim
r→∞ P2(r, �) = Im +

∫ ∞

0
A2(r)P1(r, �) dr

holds, since A2(r) ∈ L2[0,∞). The rest of the proof follows from (4.10)
and (4.9). �

6. Two results on nonconvergence

Theorem 2. There exists a real-valued continuous functiona(r) such that the spectral
measure� is absolutely continuous with positive continuous density, statements(I)–(V)
of the Krein theorem hold, but

lim inf
r→∞ |p∗(r, �)| < lim sup

r→∞
|p∗(r, �)| (6.1)

for any � ∈ C+. In addition, the lim sup in (6.1) can be either finite or identically+∞
on C+.

Remark 6.1. In this theorem, by construction,a(r) can be chosen to be aC∞ function.

Before giving a detailed proof of Theorem2, we describe a simple construction of
a functiona(r) such that (6.1) holds for a fixed� ∈ C+.

A sketch of the proof of Theorem 2.We choose positive constantsεn and rn such
that εn → 0 and rn − rn−1 → ∞ as n→ ∞, and then define

a(r) =



− 1
εn
, r ∈ [rn, rn+εn),

1
εn
, r ∈ [rn+εn, rn+2εn),

0, r ∈ [rn+2εn, rn+1),
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assuming the intervals involved do not intersect each other andr0 = 0. Note that
p∗(r, �) is constant and|p(r, �)| decreases exponentially whenr ∈ [rn+2εn, rn+1). So
we can assume|p(rn, �)| are arbitrarily small if rn − rn−1 are large enough. Then
it is easy to see that, ifεn are small enough,p∗(rn+εn, �) are arbitrarily close to
cosh(1) p∗(rn, �) and p∗(rn+2εn, �) are arbitrarily close top∗(rn, �). To justify it
formally, see (6.14) and consider the change of variables = r/εn. Thus, if rn − rn−1
are large enough andεn are small enough, then lim infr→∞ |p∗(r, �)| is arbitrarily close
to 1 and lim supr→∞ |p∗(r, �)| is arbitrarily close to cosh(1). �

Before the proof of Theorem 2, we need the following lemma.

Lemma 6.2. Let b(r) be any real continuous function such that

∫ 1

0
b(r) dr = 0.

For 0< ε < 1 let pε(r, �) and p∗
ε (r, �) be the solutions of(3.1) with

a(r) = aε(r) = − log | logε|
ε

b( r
ε
)

and initial conditionsp∗
ε (0, �) = c, p∗

ε (0, �) = c∗.
Then

pε(ε, �) = c + o(√ε)ε→0,

p∗
ε (ε, �) = c∗ + o(√ε)ε→0, (6.2)

where the limits are uniform for�, c, c∗ in any compact subset ofC. In addition, if
c �= −c∗ and

∫ 1
2

0
b(r) dr > 0, (6.3)

then

lim
ε→0

|pε( ε2, �)| = lim
ε→0

|p∗
ε (
ε
2, �)| = ∞. (6.4)

Proof. First, we consider differential equations

d
dr
qε(r) = −aε(r) q∗

ε (r),

d
dr
q∗
ε (r) = −aε(r) qε(r), (6.5)
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with initial conditionsqε(0) = c, q∗
ε (0) = c∗. Then we have

qε(r)− q∗
ε (r) = (c − c∗)exp

{∫ r

0
aε(r) dr

}
,

qε(r)+ q∗
ε (r) = (c + c∗)exp

{
−
∫ r

0
aε(r) dr

}
. (6.6)

Henceqε(ε) = c and q∗
ε (ε) = c∗. Thus our aim is to show that for 0�r�ε we have

|pε(r, �)− qε(r)| = o(√ε)ε→0 and |p∗
ε (r, �)− q∗

ε (r)| = o(√ε)ε→0.

To show this, we use Gronwall’s lemma: if	(r) is a nonnegative integrable function
such that

	(r)�c1
∫ r

0
	(s) ds + c2 (6.7)

for some constantsc1, c2�0, then

	(r)�c2ec1r .

First, we use Gronwall’s lemma with

c1 = Mε = |�| + log | logε|
ε

max
0� s�1

|b(s)|

and c2 = |c| + |c∗| to estimate	(r) = |pε(r, �)| + |p∗
ε (r, �)|. Thus, by (3.1) and the

definition of pε(r, �) andp∗
ε (r, �) we have

|pε(r, �)| + |p∗
ε (r, �)|�(|c| + |c∗|)eMεr . (6.8)

Then we use Gronwall’s lemma once more to estimate

	(r) = |pε(r, �)− qε(r)| + |p∗
ε (r, �)− q∗

ε (r)|.

Using the previous estimate, (3.1) and (6.6) we obtain (6.7) withc1 = Mε and

c2 = ε|�|(|c| + |c∗|)eMεε�r|�pε(s, �)|

for any 0�r�ε. Then by estimate (6.8) we have

|pε(r, �)− qε(r)| + |p∗
ε (r, �)− q∗

ε (r)|�ε|�|(|c| + |c∗|)e2Mεε = o(√ε)ε→0

for any 0�r�ε.
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Moreover, by (6.3) and (6.6)

qε(
ε
2) = q∗

ε (
ε
2)+ o(1)ε→0 = 1

2
(c + c∗)exp

{
log | logε| ·

∫ 1
2

0
b(r) dr

}
+ o(1)ε→0,

which completes the proof. �

Proof of Theorem 2. In this proofn→ ∞ means that the limit is taken over positive
integers, andr → ∞ means that the limit is taken over positive reals.
We fix a functionb(r) which satisfies all the conditions of Lemma6.2. Also we

assume thatb(r) = 0 if r /∈ [0,1]. Let a(r) be defined by

a(r) = −
∞∑
n=1

(2n log n)b(2nr − n2n) =
∞∑
n=1

aεn(r − n),

where aε(·) is defined as in Lemma6.2, and εn = 2−n. This sum is a continu-
ous function since for anyr the sum contains at most one nonzero term. Then by
Lemma 6.2 we have

|p∗(n, �)− p∗(n+ 2−n, �)| = o(2−n/2)n→∞.

Note thatp∗(r, �) does not change whenr is in an interval[n + 2−n, n + 1] since
a(r) = 0 on such intervals. Therefore by (3.1) we have

|p∗(n, �)− p∗(n+ 1, �)| = o(2−n/2)n→∞. (6.9)

Hence a finite limit limn→∞ p∗(n, �) exists for any� ∈ C. Note that lim
n→∞p

∗(n, �) �= 0

for Im ��0 since, by (3.1),

d

dr

(
|p∗(r, �)|2 − |p(r, �)|2

)
= 2 Im�|p(r, �)|2�0. (6.10)

By the same argument, for anyr > 0 and Im� > 0 we havep(r, �) �= −p∗(r, �). Then
Lemma6.2 implies that

lim
n→∞ |p(n+ 2−n−1, �)| = lim

n→∞ |p∗(n+ 2−n−1, �)| = ∞.

Note that if in Lemma6.2 we defineaε(r) = −M
ε
b( r
ε
), then

lim inf
r→∞ |p∗(r, �)| < lim sup

r→∞
|p∗(r, �)| <∞

for any large enoughM.
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In order to complete the proof we need to show that the spectral measure� is
absolutely continuous with positive continuous density. Estimates (6.9) and Lemma 6.2
shows that the limit�(�) = lim

n→∞p
∗(n, �) converges uniformly on compact sets of

� ∈ C. As a byproduct we have proved that�(�) is continuous for� ∈ C and has no
zeros in the closed half-plane Im��0. In particular, this is so for real�.
For the rest of the proof we assume� ∈ R. Let �r be the measure absolutely

continuous with respect to the Lebesgue measure with the density

d�r (�)
d�

= 1

2�|p∗(r, �)|2 .

Then �r converges weakly to� as r → ∞ (see, for instance,[T1]). From the previous
paragraph,

d�(�)
d�

= lim
n→∞

1

2�|p∗(n, �)|2 = 1

2�|�(�)|2

is a positive continuous function onR, which completes the proof. �

Theorem 3. There exists a continuous functiona(r) such that (I)–(V) of the Krein
theorem hold, but the function�(�), which is analytic inC+ = {� : Im � > 0}, is
not unique in the following sense: for any complex� of absolute value one there is a
sequencetn → ∞ such that

lim
n→∞ p∗(tn, �) = ��(�). (6.11)

In addition, we can have the following conditions satisfied: a(r) ∈ Lp[0,∞) for any
p > 2, lim

r→∞ a(r) = 0, and for any� ∈ C+:

lim
r→∞p(r, �) = 0,

lim
r→∞ |p∗(r, �)| = |�(�)|. (6.12)

Remark 6.3. In this theorem, by construction,a(r) can be chosen to be aC∞ function.

Proof. We will construct a functiona(r) which is piecewise constant, and then can be
approximated by continuous functions that still have the desired properties.
First, note that the system of differential equations:

d
dr
q(r) = −a(r) q∗(r),

d
dr
q∗(r) = −a(r) q(r), (6.13)
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with constant coefficienta(r) = −C has a matrix solution

Q(r) =
(
cosh|Cr| D sinh|Cr|
D sinh|Cr| cosh|Cr|

)
, (6.14)

whereD = C
|C| .

Now let b be positive real and

ab,�,ε(r) =



−b for 0�r�ε,
�b, for ε�r�2ε,
0, for r�2ε,

(6.15)

where the constant� ∈ C is such that |�| = 1. Let q(r) = qb,�,ε(r) and
q∗(r) = q∗

b,�,ε(r) be the solutions of the system of Eqs. (6.13) with a(r) = ab,�,ε(r),
and initial conditionsq(0) = 0, q∗(0) = 1. Then

qb,�,ε(ε) = sinhbε, qb,�,ε(2ε) = 1
2(1− �) sinh 2bε,

q∗
b,�,ε(ε) = coshbε, q∗

b,�,ε(2ε) = 1+ (1− �) sinh2 bε. (6.16)

Let pb,�,ε(r, �) and p∗
b,�,ε(r, �) be the solutions of the system of Eqs. (3.1) with

a(r) = ab,�,ε(r), and initial conditionspb,�,ε(0, �) = 0 andp∗
b,�,ε(0, �) = 1.

To estimate these solutions we use the following form of Gronwall’s lemma: if	(r)
is a nonnegative integrable function such that

	(r)�c
∫ r

0
	(s) ds + 
(r) (6.17)

for somec and 
(r)�0, then

	(r)�c
∫ r

0
ec(r−s)
(s) ds + 
(r). (6.18)

In the following estimates we assume that� ∈ C is fixed. We write “const” for a
constant, different in different inequalities, which depends on�, but is independent of
ε, r and b provided 0< ε, r, b < 1.
First, we use Gronwall’s lemma with	(r) = |pb,�,ε(r, �)| + |p∗

b,�,ε(r, �)|. Then (3.1)
implies (6.17) with
(r) = 1 andc = |�| + b and so (6.18) implies

|pb,�,ε(r, �)| + |p∗
b,�,ε(r, �)|�e(|�|+b)r < const.
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Second, we apply this form of Gronwall’s lemma with	(r) = |pb,�,ε(r, �)|. Then (3.1)
and the previous estimate imply (6.17) withc = |�| and


(r) = const · br >
∫ r

0
|b p∗

b,�,ε(s, �)| ds.

Therefore (6.18) implies

|pb,�,ε(r, �)| < const · br.

Using the same form of Gronwall’s lemma the third time withc = |�| + b,


(r) = const · br2 >
∫ r

0
|�pb,�,ε(s, �)| ds

and

	(r) = |pb,�,ε(r, �)− qb,�,ε(r)| + |p∗
b,�,ε(r, �)− q∗

b,�,ε(r)|,

we obtain

|pb,�,ε(r, �)− qb,�,ε(r)| + |p∗
b,�,ε(r, �)− q∗

b,�,ε(r)| < const · br2 (6.19)

by (3.1), (6.13) and the previous estimates. This implies

|p∗
b,�,ε(r, �)− q∗

b,�,ε(r)| < const · b2r3 (6.20)

by (3.1) and (6.13).
We define

εn = 1

log2 n
, bn = log2 n√

n

for n�3. Also we define�n as a unique complex number such that

|�n| = 1, |1− �n| = 1

log n
and Im�n > 0.

Note that

�n = 1+ i
log n

+O
(

1

log2 n

)
n→∞

. (6.21)
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Let a(r) be defined by

a(r) =
∞∑
n=3

abn,�n,εn(r − rn),

whereab,�,ε(·) is defined by (6.15), andrn are as follows. We fix any�0 ∈ C+. Then
we chooser2 = 0 and eachrn − rn−1 to be large enough so that

p∗(rn + 2εn, �0)
p∗(rn, �0)

= 1+ i
n logn

+O
(

1

n log2 n

)
n→∞

. (6.22)

This is possible since|p(rn, �0)| → 0 exponentially asrn−1 is fixed and(rn− rn−1)→
∞. Therefore, we can use (6.20), (6.21), and the fact that

q∗
b,�,ε(2ε, �) = 1+ (1− �)

(
b2ε2 +O(b4ε4)bε→0

)

by (6.16).
We have thatp∗(r, �) is constant forr ∈ [rn + 2εn, rn+1], in particular,

p∗(rn + 2εn, �) = p∗(rn+1, �).

Hence (6.22) imply that

∣∣∣∣p∗(rn+1, �0)
p∗(rn, �0)

∣∣∣∣− 1= O
(

1

n log2 n

)
n→∞

and so the limit lim
n→∞ |p∗(rn, �0)| = |�(�0)| converges, since

∞∑
n=3

1

n log2 n
<∞.

Thus statements (I)–(V) of the Krein theorem hold by (1.4) and (3.6).
If each rn − rn−1 is large enough, then the sum that definesa(r) is a sum of the

functions with disjoint support. Therefore

‖a(r)‖pLp = 2
∞∑
n=3

n−p/2 log2p−2 n

and soa(r) ∈ Lp[0,∞) if and only if p > 2. In particular, this means that part 2 of
Theorem1 implies (6.12).
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To complete the proof note that the limit limn→∞ p∗(rn, �0) does not exists because

p∗(rn + 2εn, �0)
p∗(rn, �0)

= exp
{ i
n logn

+O
(

1
n log2 n

)
n→∞

}
(6.23)

by (6.22), and the series
∑∞
n=3

1
n logn diverges, while

∑∞
n=3

1
n log2 n

<∞. At the same

time limn→∞ 1
n logn = 0 and so for any complex� of absolute value one there is a

sequencet�,n → ∞, which is a subsequence ofrn, such that

lim
n→∞ p∗(t�,n, �0) = �|�(�0)|.

Note that|�(�)| is well defined for any� ∈ C+ since limr→∞ |p∗(r, �)| = |�(�)|
converges by (5.3). Also using (5.3) we can define a function�(�), which is analytic
in C+, by

�(�) = |�(�0)|−1 lim
n→∞ p∗(t1,n, �)p∗(t1,n, �0) = lim

n→∞ p∗(t1,n, �).

Then limn→∞ p∗(t�,n, �) = ��(�) for any � ∈ C+ because of (5.3). �

Proposition 6.4. If rn− rn−1 are large enough in the proof of Theorem3, then for all
� ∈ C+ we have(6.22) as well as estimates∣∣∣∣ p(r, �)p∗(rn, �)

∣∣∣∣ < const√
n logn

(6.24)

for rn + 2εn�r�rn+1, and∣∣∣∣ p∗(r, �)
p∗(rn, �)

− 1

∣∣∣∣ < const

n
,

∣∣∣∣ p(r, �)p∗(rn, �)

∣∣∣∣ < const√
n

(6.25)

for rn�r�rn+2εn. This gives, in particular, a constructive proof of(3.5) and (6.12).

Proof. We can demonstrate (6.24) and (6.25) for� = �0 using estimates∣∣∣q∗
b,�,ε(r,2ε)

∣∣∣ < const · bε|1− �|

and, for 0�r�2ε,

∣∣qb,�,ε(r, �)∣∣ < const · bε, ∣∣∣q∗
b,�,ε(r, �)− 1

∣∣∣ < const · b2ε2,
which follows from (6.14) and (6.16).
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We also can obtain (6.25) and (6.22) for all� ∈ C+ if the sequencern is chosen
as follows. It is easy to see that estimates like (6.19) and (6.20) can be established
uniformly in � in a compact subsets ofC. Also |p(rn, �)| → 0 uniformly in � in a
compact subsets ofC+ as rn−1 is fixed and(rn − rn−1) → ∞. Thus for any compact
subsetH of C+ there is a sequencerHn such that (6.22), (6.24) and (6.25) hold for
rn = rHn , and also forrn that is any subsequence ofrHn . We can representC+ as an
increasing union of compact subsetsHk. Without loss of generality we can assume that
r
Hk+1
n is a subsequence ofrHkn for eachk. Then we definern by the “diagonal process"
rn = rHnn . �

Conjecture 6.5.We conjecture that ifa(r) is a real-valuedfunction, and conditions
(I)–(V) of the Krein theorem hold, then �(�) is unique in the following sense: if
tn → ∞ and limn→∞ p(tn, �) = 0, then the limitlimn→∞ p∗(tn, �) = �(�) converges
uniformly on compact subsets ofC+. If true, this conjecture implies that the original
form of Krein’s theorem holds ifa(r) is real and “ locally uniformly integrable" in the
sense of part(2) of Theorem1.

Conjecture 6.6.We conjecture that ifa(r) ∈ L1loc is real, and conditions(I)–(V) of
the Krein theorem hold, then�(�) is the limit in average ofp∗(tn, �), that is,

�(�) = lim
r→∞

1

r

∫ r

0
p∗(s, �) ds

uniformly on compact subsets ofC+. Here a(r) ∈ L1loc if

sup
r�0

∫ r+1

r

|a(s)| ds <∞.

If true, this conjecture also implies the uniqueness of�(�). Note that in the situation
of Theorem3 the limit in average ofp∗(tn, �) does not exists ifrn+1 − rn are large
enough.
These two conjectures may be related to the results of [D2].
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