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Abstract

Continuous analogs of orthogonal polynomials on the circle are solutions of a canonical
system of differential equations, introduced and studied by Krein and recently generalized to
matrix systems by Sakhnovich. We prove that the continuous analogs of the adjoint polynomials
converge in the upper half-plane in the caseldf coefficients, but in general the limit can
be defined only up to a constant multiple even when the coefficients at ifor any p > 2,
the spectral measure is absolutely continuous and the Szegt—Kolmogorov—Krein condition is
satisfied. Thus, we point out that Krein's and Sakhnovich’s papers contain an inaccuracy, which
does not undermine known implications from these results.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Orthogonal polynomials on the unit circle have interesting features that relate
properties of their spectral measure to the properties of coefficients of generating recur-

* Research supported in part by the National Science Foundation (grant DMS-0071575).
E-mail address:teplyaev@math.uconn.edu

0022-1236/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2005.04.014


http://www.elsevier.com/locate/jfa
mailto:teplyaev@math.uconn.edu

258 A. Teplyaev/Journal of Functional Analysis 226 (2005) 257-280

sive formulas (see Sectidhfor more details). The present paper deals with continuous
analogs of such polynomials.

The one-dimensional analogs were introduced by Krein in [K]. They provide, in a
sense, a generalization of the Fourier transform frbAiR) to L%(R, 7). Here 7 is
a Borel spectral measure dR. In this generalization of the Fourier transform, the
usual exponentials’’* are replaced withp(r, 1), the continuous analog of orthogonal
polynomials. We consider only “one sided” situation, thatrisgs nonnegative and the
Fourier transform is from a half-line to the whole line (see Section 3).

Note that the Fourier transform itself is a continuous analog of the expansion into
the Fourier series, insofar as

{e’”’|r eRy, e R}
are analogous to
{"IneZy, |zl =1}

Similarly,
{pr,)r e Ry, 1€ R}

are analogous to

{p,(D)IneZy, |zl =1},

orthonormal polynomials of degree on the unit circle with respect to an arbitrary
probability Borel spectral measure To add one more analogy, note that(z) = 2"

are the orthogonal polynomials with the normalized Lebesgue measure as the spectral
measure.

In [S1,S2,S3,54,S5] Sakhnovich defined and studied matrix valued continuous analogs
of orthogonal polynomials on the unit circle, and generalized Krein's results for this
case (see Section 4).

The functionsp(r, 1), together with the continuous analqgf (r, ) of the adjoint
polynomials, are solutions of a canonical system of differential equations (3.1). The
spectral measureis uniquely determined by these differential equations. The Krein dif-
ferential equations are related to the study of the one-dimensional continuous
Schrodinger equation [D1,D5,DK2,K]. Also they can be used to solve an important
factorization problem in the theory of analytic functions [A,DK1,G,Sz,Si].

As an expository remark, we note that another way to defite ) and p*(r, 4) is
by the formulas

pr,A) = el (1 - / I (s, O)e”)') ds,
0

r

prir,A)=1- / [, (0, s)e'~* ds.
0
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HereT,(s, ) = I,(z,s) is the resolvent of a positive integral operaty, that is
(s, 1)+ /Or H(s —uw)p(u,t)du = H(s — 1),
where H (1) = H(—t) and
S0 = fo0+ [ He=nfwar

The coefficienta(r) of Eq. 3.1) isa(r) = I',(0,r). Usually, the accelerant/ (r) is
assumed to be continuous to construct the corresponding Krein system with continuous
coefficienta(r). In our work, we do not use such a construction, but defitie 1)
and p*(r, ) as solutions of Krein's canonical system of differential equations (3.1).

If 7’ is the density of the absolutely continuous component of the spectral measure,
then the Szegé—Kolmogorov—Krein condition

10871 41 < oo (1.1)
R 1+4
is satisfied if and only if
o0
f |p(r, )% dr < 0o (1.2)
0

for Im 42 > 0. Notice that no assumption on the singular part & made except3(2).
In the midst of our discussion is the existence of the limit

I2) = |Lmoo prr, ), (1.3)

whereII(2) is analytic for Imi > 0. Krein pointed out in[K] that if the coefficients
are square integrable, then limit (1.3) converges. In Section 5 we prove that this so
even in the matrix case, and therefdE/) is uniquely defined for square integrable
coefficients. Section 5 also contains other results related to the convergence of limit
(2.3) in the case of Sakhnovich differential equations.

An important relation, which follows from (3.1) and was noted by Krein in [K], is

1P (r, )12 = |p(r, )I? =2 |m,1/0 Ip(s, 2| ds. (1.4)

This a particular case of Lagrange identity, which is an analog of the Christoffel—
Darboux formula for orthogonal polynomials (see, for instanp&t]). Thus we
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must have
o0
ITI(A)|% = 2Im/l/ |p(r, )2 dr
0

if the integral converges and limitL(3) exists.

The existence of limit (1.3) implies the convergence of integrals (1.1) and (1.2), but
the converse is not true in general. In Section 6, we prove that there are situations when
(1.1) and (1.2) hold, buFI(4) has to be defined as a limit of a convergent subsequence.
We show that this situation is not “pathological”, but can occur even if the spectral
measurer is absolutely continuous with positive continuous density (Theorem 2). In
another example (Theorem 3), this happens even though

lim |p*(r, D)% = TI())|?
r—00

and the coefficients are ih? for any p > 2. Moreover, the functiodI(4) cannot be
defined uniquely, but only up to a constant factor of absolute value one (up to left
multiplication by a unitary matrix in the case of the Sakhnovich theorem).

Note that results of SectioBb apply to the Krein system, since it is a particular
case of the Sakhnovich system. Two of the three results are new even for the Krein
system. At the same time results of Section 6 are stated for the Krein system, but are
applicable for the Sakhnovich system as well.

The fundamental paper [K] presents a number of important results, though it does
not contain proofs due to the type of the journal it was published in. Later proofs of
Krein's results were given independently by the author in 1990 (partly published in
[T1]) and Sakhnovich in 1998 ([S2—-S4]). The main subject of [T1] was to prove that
the spectral measure is absolutely continuous with probability one if the coefficient
a(r) is a random function satisfying certain conditions.

In [T1] the author noted and rectified an inaccuracy in the statement of Krein's
theorem, and gave a proof of the corrected main theorem (see Section 3 for more
details). Theorems 2 and 3 in Section 6 prove, in particular, that a part of the statement
of the Krein theorem in [K] needs to be revised.

In [S1-S5] Sakhnovich defined and studied matrix valued continuous analogs of
orthogonal polynomials on the unit circle, and proved matrix generalizations of Krein's
results. Unfortunately, these works contain the same kind of inaccuracy as [K]. In
Section 4, we present the corrected statement, and the corrected part of the proof.

We emphasize that the inaccuracy in the statement of Krein’s and Sakhnovich’s
theorems is not significant, and does not undermine known implications from these
important results. For instance, if (1.1) and (1.2) hold, then there is the funbtidin
which is analytic and has no zeros for fm- 0, and

1

T =S AR
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for Lebesgue almost all. € R (there is an analogous matrix version proved by
Sakhnovich in[S4]). This result remains unchanged even if limit (1.3) diverges, and
the nonuniqueness dfl(41) mentioned above takes place.

2. Orthogonal polynomials on the circle

If {¢,(2)};2, are polynomials of degree, orthonormal on the unit circle with
respect to a probability Borel measute then there exists a sequence of complex
numbers{a,};° ; such that the following recurrent relations hold:

71/2(

Pni1(2) = A= 1an1)V2(20,(2) — @n 9% (2)),

Pr11(@) = (L= lan?) 2 (9(2) — au29,(2)), (2.1)

with initial conditions

®o(2) = @p(z) = 1.

The auxiliary polynomlaISpn(z) are adjoint to the orthogonal polynomiajg (z) in the
sense that) (z) = coz"+---+c¢;z"~ T4 g, if ©,(2) =co+---+cj 4t
The so-called circular (reflection, Shur’s) parametgrsg > sat|sfy

lan| < 1 (2.2)

for all n if and only if the measure is not concentrated in a finite number of atoms.
Conversely, if conditions2.2) are satisfied, then there exists a unique Borel probability
measurer on the unit circle such that polynomial®, (z)},2,, defined by (2.1), are
orthonormal with respect to.

The theory of orthogonal polynomials on the circle was developed by Szegd,
Akhiezer, Geronimus et al. ([A,G,Sz]). The following theorem is a combination of
results of Szegd, Kolmogorov, Krein and Geronimus (see [G,Si]).

Theorem. The linear span of¢,(2)}2, is not dense ian if and only if any of the
following five equivalent statements hold

()
2n )
/ log7' (¢'?) dO > —oo, (2.3)
0

where 7’ is the density of the absolutely continuous component wfth respect
to the Lebesgue measure on the unit circle
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(I There exists at least ongin the unit diskD = {z : |z] < 1} such that
[e¢)
D g, @) < oo (2.4)
n=0

(I There exists at least onee D such that
lim inf |} (z)] < oo.
n—od

(IV) Series(2.4) converges uniformly on compact subsetsDof
(V) There exists a functiohl(z), analytic in D, such that the limit

M) = lIm ;) (2.5)

is uniformly convergent on compact subsetsiof
Moreover statementgl)—(V) are equivalent to the condition

o0
Z |a,,|2 < Q.

n=0

Note that in (I) the integral is always less thawo, and that there is no restrictions
on the singular part of.

3. Krein theorem

In [K] Krein studied the following canonical system of ordinary differential equations:

L p(r,2) =idp(r, 2) —a(r) p*(r, A,

L p*(r, ) = —a(r) p(r, 2), (3.1)

with the initial conditions
p0,2) = p*(0,2) =1

In our paper, we consider only the case whep is continuous or0, co).
There is a Borel measureon R, which is called the spectral measure, such that

1 ,
'A;md’f(/b) <0 (32)
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and the mag/ : L% ., — LZ? defined by

UFG) = /O FrYp( Dy dr (33)

is an isometry.

A simple example is the situation wheitr) = 0 and/ is the usual Fourier transform.
In this caser is the Lebesgue measure normalized by Bor a more detailed study
see[AR,R,D2-D5,DK2].

Theorem. The isometry/ is not onto if and only if any of the following five equivalent
statements hold

log7'(A) .
U /R 2 Yo (3.4)

where 7’ is the density of the absolutely continuous component wfth respect
to the Lebesgue measure &h
(Il) There exists at least ongin the domainC™ = {4 :Im A > 0} such that

/0 |p(r, M| dr < oo. (3.5)

() There exists at least onee C* such that

lim inf |p*(r, V)| < oo. (3.6)
r—00

(IV) Integral (3.5) converges uniformly on compact subsetsCof.
(V) There exists an analytic it* functionII(1) and a sequence, — oo such that
the limit

() = lm p*(a, 2) (3.7)

converges uniformly on compact subsetsCof.

Note that in (I) the integral is always less thawo, and that there is no restrictions
on the singular part of.

Remark 3.1. This theorem was stated by Krein jK] without a proof because of the
type of the journal it was published in. Parts (lll) and (V) of this theorem were not
stated in [K] correctly. Namely, it was written as if (1), (Il) and (IV) were equivalent
to:
(") There exists at least onee C* such that sup. o |p*(r, )| < oc.
(V) The limit II(A) = lim p*(r, A) converges uniformly on compact subsets®f.

r—0o0
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In Section6, we present two counterexamples. We refer to this theorem as the Krein
theorem because most of the results were stated correctly by Krein in [K], and the
rest is correct in spirit despite of a relatively minor mistake. The corrected statement
appeared first in [T1].

In [K] Krein noted that ifa € L[lo,oo) then (1)-(V) hold ancr is absolutely continuous

with positive continuous density. Also, he noted that i€ L[ZQOO) then ()—(V) as well
as (Il and (V) hold. The converse of this fact is not true, unlike the case of orthogonal
polynomials in Section 2.

In Section 5, we give a proof that i(r) € L?[0, co) then (1)—(V) hold, but the
result is sharp in the sense of Theorem 2 and Remark 5.1. We also prove two more
results related to convergence in (I)-(V). In Section 6, we prove that, in gefé¢a),

cannot be defined uniquely, but only up to a factor of absolute value one.

4. Sakhnovich theorem

In [S1-S5] Sakhnovich introduced and studied matrix analogs of the Krein system.
He considered a system of canonical differential equations

Ly (r, }) =iAJHEY(r, 1), r=0,

that can be transformed by a change of variables into a system

4 Py(r, 2) =1AD P1(r, 2) + As(r) Po(r, 2) + AS5(r) Pa(r, 2),

FPar, 2) = Aa(r) Pa(r, 2), (4.2)
with the initial conditions

P1(0, 1) = P2(0, A) = I,

wherer € [0,00), A € C, and I, is the m x m identity matrix. HereD, Pi(r, 1),
Py(r, 2), A1(r), A2(r) arem x m matrices. It is assumed that; (r) = —Aj(r), and D
is a constant diagonal matrix with positive diagonal entries. Functiorte) and Ax()

are assumed to be continuous [ o).
There is a Borel matrix valued measureon R such that

1 )
/R 1172 dt(A) < oo (4.2)

and the mag/ : L, .., — L? defined by

UfQ) = /O fr)Pi(r, A dr (4.3)

is an isometry.
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Theorem. The following five statements are equivalent

(h

/ log detr@) 43> . (4.4)
R 1+4

where 1’ is the density of the absolutely continuous component wfth respect
to the Lebesgue measure &
(Il) There exists at least onéin the domainC™ = {4 :Im A > 0} such that

o0
/O 1Lt D2 dr < oo, (4.5)

where || - || is a matrix norm
() There exists at least onee C* such that

liminf || Pa(r, 1) < oo. (4.6)
r—00

(IV) Integral (4.5) converges uniformly on compact subsetsCdf.
(V) There exists an analytic itC™ matrix valued functionII(1) and a sequence
r, — oo such that the limit

M) = lim P(ry, 2) 4.7)

converges uniformly on compact subsetsCof.

Remark 4.1. This important result was proved by Sakhnovich [82,S3,54].
Unfortunately, parts (lll) and (V) of this theorem were not stated in [S2,S3,S4] cor-
rectly in that it was written as if (1), (Il) and (IV) implied the existence of the limit

M) = lim_Pa(r, 7). (4.8)

Despite that, we refer to this theorem as the Sakhnovich theorem because most of the
results were stated correctly by Sakhnovich, and the rest is correct in spirit except for
a relatively minor mistake.

The precise location of the gap in Sakhnovich’'s papers is after the proof of the
fact that lim,_ o P1(t,, 4) = O for a sequence, — oo (see[S2, formula (1.35)]
and [S4, formula (2.10)]). The cited formulas do not imply (4.8). What may seem
more surprising is that it does not even imply }imy Po(z,, ) = II(4) but only
iMoo | P2(ty, )|l = ITI(A)||, as shown in Theorem 3.
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Since the Krein system is a particular case of the Sakhnovich system, the counterex-
amples of Sectior® apply to this situation as well. Also it is easy to construct “true”
matrix-valued counterexamples along the lines of Section 6.

In Section 5, show that ifA2(r) € L2[0, c0), then the finite limit (4.8) exists, and
so II(2) is unique. In Section 6 we prove that, in genel(.) cannot be defined
uniquely.

Below we give a corrected part of the proof of the Sakhnovich theorem. Following
the lines of [S2—-S4], we will show that statements (II)—(V) are equivalent. An alternative
approach can be found in [T1].

The following is a Lagrange identity, which is an analog of the Christoffel-Darboux
formula for orthogonal polynomials (see, for instance, [At]).

Lemma 4.2.
P5(r, 20) P2(r, 2) — P{(r, 20) P1(r, ) = i(lg—A) / P{ (s, 20)DP1(s, A) ds.
0

(4.9)

Proof. Note that the relation is clearly true fer= 0. Also, the derivatives with respect
to r of both sides of 4.9) coincide because of (4.1).

Proof of a part of the Sakhnovich theorem. Statements (ll) and (lll) are equivalent
because of the relation

Pj(r, ) Pa(r, ))— Py (r, ) P1(r, 2) = 21m /1/ P{ (s, YD Pi(s, 1) ds, (4.10)
0

which is a particular case o#(9).

Clearly, (IV)-(V) imply (I) and (lll) because of (4.10). So we have to show that
(I and (1IN imply (IV) and (V).

Now assume that (Il) and (lIl) hold for some= iy € C*. By (4.1) and (4.10), the
family {|| P2(r, A)|| : =0, 1 € S} is uniformly bounded from below for any compact
S c C*. By (4.6) and Montel's theorem, there exists a sequernce> oo such that
limit (4.7) converges uniformly on compact subsets @f. Thus (V) holds, and so
does (IV) because of (4.10). O

5. Some convergence results

All the results in this section apply to the Krein system if we get= 1, D = 1,
A1(r) =0, a(r) = —A2(r), p(r, 2) = P1(r, 4) and p*(r, 1) = Pa(r, A).

In what follows the matrix norm| - || is defined by|M| = ~TrM*M.

Note that, even under conditions (1) and (2) of the following theorem, the limit
lim,_ o P2(r,, 2) may not exist by Remark 5.1.
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Theorem 1. (i) (1) Suppose that the equivalent conditiofs-(V) of the Sakhnovich
theorem holdand

lim Pi(t,, 40) =0
n—oo

for sometr,, — oo and Zg in a nonempty open subs§tof C*. Then the limits

lim P (1, ©) Po(tn, 2) = I (OTI(A),
lim | Pa(tn, DIl = ITL(A)],
n—o0
lim Py(t,, 4) =0, (5.1)
n—o0
converge uniformly on compact subsets@f x C™ and C*, respectively Here
I1(4) is an analytic function orC*.

(2) Suppose that the equivalent conditiofiy-(V) of the Sakhnovich theorem hold
and

r+e
inf <sup [A2(r)|] dr) =0. (5.2)

e>0 r>0Jr
Then the limits

lim P (r, &) Pa(r, ) = IT*(OII(A),
r—00
lim | P2(r, DIl = LA,
r—00
lim Py(r, ) =0, (5.3)
r—00
converge uniformly on compact subsets@f x C* and C™, respectively

(3) Suppose thatt»(r) € L2[0, co). Then conditiongl)—(V) of the Sakhnovich theorem
hold and, moreoverthe limits

lim P(r, 1) =11(4),
r—00

lim Py(r, /) =0, (5.4)

r—00
converge uniformly on compact subsetsf.

Remark 5.1. This result is sharp in the sense that there is a €8alcoefficientAx(r),
which is in L? for any p > 2, such that statements (I)—(V) of the Sakhnovich theorem
do not hold.
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Also this result is sharp in a more delicate sense: by ThedBethere exists a
coefficient A>(r), which is again inL? for any p > 2, such that lim_, - P1(r, 1) =0,
statements (I)-(V) of the Sakhnovich theorem hold, but the limitligg, P2(r, 2) does
not exist. In fact, we show thakl(1) cannot be defined uniquely, but only up to a
constant factor, even though the limit limy || P2(r, 2)|| = |[I1(2)| exists by part 2
of Theorem 1.

Note that in this theorem there is no restriction on the skew-symmetric coefficient
A1(r), except for the usual assumption of continuity.

It was proved in [S2,S3] that ifix(r) € LY[0, o0), then conditions (I)—(V) of the
Sakhnovich theorem hold, and the limits (5.4) converge uniformly on compact subsets
of CTUR andC™, respectively. This fact and statement 3 of Theorem 1 were formulated
in [K] for the Krein system. Also, for the Krein system statements 2 and 3 of Theorem
1 are related to the results of [D2].

Proof of 1. Identity (4.9) implies that if (I)-(V) hold and
IimOo P (rn, 20) P1(rn, ) =0, (5.5)

then IT(J) satisfies

o0

(A =i(do — A) (H*()vo))_lfo P (s, 20) D Pi(s, 2) ds. (5.6)

Let /o € S and . € CT. Then using 4.10) at/g and ati we obtain

Py(ty, Z0) = 0 (Pa(tn. J0))

n—o0’
Py(1y, /L) = O(Pa(ty, /1)))1%00

and therefore

P (tn, 20) P1(tn, ) = 0 (P5 (tn, 20) P2(tn, 1))

n—oo °

Hence we have&(5) and

o 00
lim  PJ(ty, A0) P2(tn, A) = 1(Ao — A) / P{ (s, 20)DP1(s, A) ds (5.7)
n—o0 0

by (4.9).

By (4.10) and (5.7), the family of analytic functiongPi(z,, A)},>1 is locally
uniformly bounded and so is relatively compact. Thus, any its subsequence has a
convergent subsubsequence, and our assumptions imply that its limit has to be zero on
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C™ because it is an analytic function which is zero on an nonempty opefi. $¢¢nce
lim,— 0 P1(t,, 2) = 0 uniformly on compact subsets af.

Therefore, the sequende(z,, )}, >1 is bounded by 4.10) and (5.5), and so has
a convergent subsequence. Then we defif¢) as the limit of this subsequence. The
right-hand side of (5.7) does not depend on the choice of the subsequence, and so
(5.7) extends tolg, 4 € C* by analyticity. This implies the first and second limits in
(5.1). O

Proof of 2. From (4.1) we have that
FIPL DIZ =Tr LPIPy
= Tr(—2IMAP{DPy + P{A2P; + P A2P1)
> 2(Im DI P DI + 14211 P DI P2 D) (5.8)
and also

d * *
4 (pjPy+ Py P)
—dlo(P DI+ | P )L2>=T‘f’(1 2

dar g ” 1(F, )” +|| 2(!‘, )” r ||P1||2+||P2||2

—Im leDPl + PfAsz + P2*A2P1
P12 4 || P2)I?

=2Tr

<A A2l (5.9)

since ImA > 0.
Let us assume that limspp . || Pi(r, 2)|| > O for somei € C*. Then there is a
sequence,, — oo such that

lim || P1(ty, A)|| = 0 > 0.
n—o0

Relation @.10) implies that
lim || Pa(ta, )| =7 > 0.
n—oo

Then @.9) and (5.9) implies that for anyo, o > 0 there existC > 0 such that
2 2 2 tht+eo
IP1(r, D1 + (| Par, DIP< (0% + 7 )eXp</ 4| A2(r) |l dr) +do < C
tn

for all large enough: and anyr € [1,, t, + o]. Therefore, we can conclude frorb.8)
that there ared); > 0 ande1 > O such that

IP1(r, D]l > 01
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for all large enough: and anyr € [z,, t, + €1]. This is a contradiction with4(5), and
S0 lim, o P1(r, A) =0 for any . € C™.

Then the proof of (5.3) follows from statement (1) of this theoreni]

Proof of 3. Our first aim is to show that integral (4.5) converges for dny C*. Let
us assume thafy” || P1(r, 2)||2dr = oo for somei € C*. Then one can see that

r 2 r
1P2(r, DIP< </O ||A2(S)I|||P1(S,)~)|Id3) =0</0 ||P1(S,/1)||2d5) ;

which contradicts t04.10). Thus integral (4.5) converges for afy: C* and so
o0
1) = |imOo Po(r, ) =1, —l—/ A2(r)Pi(r, A dr
r— 0

holds, since A>(r) € L2[0,00). The rest of the proof follows from 4(10)
and (4.9). O

6. Two results on nonconvergence

Theorem 2. There exists a real-valued continuous functio@) such that the spectral
measurer is absolutely continuous with positive continuous densitgtementgl)—(V)
of the Krein theorem holdbut

liminf |p*(r, 2)| < limsup|p*(r, 1)| (6.1)
r—00

r—>o0

for any 4 € C". In addition the limsupin (6.1) can be either finite or identically-co
onCt.

Remark 6.1. In this theorem, by construction(r) can be chosen to be@>* function.

Before giving a detailed proof of Theore®) we describe a simple construction of
a functiona(r) such that (6.1) holds for a fixed € C™.

A sketch of the proof of Theorem 2. We choose positive constangs and r, such
thate, — 0 andr, — r,_1 — o0 asn — oo, and then define

1

_8’1’

r € [ry, raten),
r € [rpten, rt+2e,),
r € [rp42e,, Tntl),

a(r) =14+
07
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assuming the intervals involved do not intersect each otherrgng 0. Note that
p*(r, 2) is constant andp(r, 1)| decreases exponentially where [r,+2¢,, r,+1). SO
we can assumep(r,, A)| are arbitrarily small ifr, — r,_1 are large enough. Then
it is easy to see that, if, are small enoughp*(r,+¢,, 4) are arbitrarily close to
cosh(l) p*(r,, 2) and p*(r,+2¢,, ) are arbitrarily close top*(r,, A). To justify it
formally, see 6.14) and consider the change of variable- r/¢,. Thus, ifr, —r,_1
are large enough ang, are small enough, then limipf, o | p*(r, A)| is arbitrarily close
to 1 and limsup,, ., |p*(r, A)| is arbitrarily close to cosfl). O

Before the proof of Theorem 2, we need the following lemma.

Lemma 6.2. Let b(r) be any real continuous function such that

1
/ b(r)ydr =0.
0

For 0 < e < 1 let p.(r, 1) and p}(r, 1) be the solutions of3.1) with
a(r) = a.(r) = 2% p(r)

and initial conditionsp; (0, 1) = ¢, pi(0, ) = c¢*.
Then

De (€, ) =c+ 0(\/5)£—>0,
p:(s, /1) =c"+ O(N/E)a—>07 (62)

where the limits are uniform fo¥, ¢, ¢* in any compact subset @. In addition, if
¢ # —c* and

1
/ “b(rydr >0, (6.3)
0
then
Proof. First, we consider differential equations

L Ge(r) = —a:(r) g (r),

L g (r) = —as(r) gs (1), (6.5)
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with initial conditionsg,(0) = ¢, ¢(0) = ¢*. Then we have

Cls(r)—q:(r)=(c—0*)e><p{/o ae(")dr}y

qe(r) + g (r) = (c + ") eXp{—/o ae(r)dr} . (6.6)

Henceg,(¢) = ¢ andg; (¢) = ¢*. Thus our aim is to show that for<Qr <e we have
|pe(r, ) —qe(N) = 0(Ve)eso  and |pi(r, 2) — g} (r)| = o(J&)eo.

To show this, we use Gronwall's lemma:dfr) is a nonnegative integrable function
such that

a(r)<e /r a(s)ds + c2 (6.7)
0

for some constantsy, c» >0, then

a(r) <cpet
First, we use Gronwall's lemma with

c1 = M, = |2 + 9llogel max [b(s)|

\Y\

and cz2 = |c| + |c*| to estimatex(r) = |pe(r, )| + |pi(r, A)|. Thus, by 8.1) and the
definition of p,(r, 1) and p}(r, ) we have

|pe(r, D+ 1pE(r DI (el + |e*eer. (6.8)
Then we use Gronwall’s lemma once more to estimate
a(r) = |pe(r, 2) — qe(N)| + |pz(r, 2) — g7 (r)].
Using the previous estimate3.() and (6.6) we obtain (6.7) witty = M, and
c2 = elZl(el + |c*DeMes > 712 pe(s, 2]
for any 0<r <e. Then by estimate6(8) we have
pe(r. 2) = qe (V)] + |pi(r. 1) — qF () <elAl (el + ¥ e = 0(Ve)ems0

for any 0<r<e.
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Moreover, by 6.3) and (6.6)
£ % g 1 * %
qe(5) = q: (5) + 0(De—o = §(c+c ) eXp Iogllogsl~/O b(rydr ¢ +o(De—o0,

which completes the proof. [J

Proof of Theorem 2. In this proofn — oo means that the limit is taken over positive
integers, and- — oo means that the limit is taken over positive reals.

We fix a functionb(r) which satisfies all the conditions of Lemn@2. Also we
assume thab(r) =0 if r ¢ [0, 1]. Let a(r) be defined by

o o
a(r) = — Z(Z" log n)b(2'r — n2") = Zagn (r —n),
n=1 n=1
where a.(-) is defined as in Lemm&.2, andeg, = 27". This sum is a continu-

ous function since for any the sum contains at most one nonzero term. Then by
Lemma 6.2 we have

1p*(n, 2) — p*(n +27", 1) = 027?00

Note that p*(r, A) does not change when is in an interval[n + 27", n + 1] since
a(r) = 0 on such intervals. Therefore b®.1) we have

Ip*(n, 2) — p*(n+ 1, )| = 027"?), 5 0. (6.9)

Hence a finite limit lim_ ~ p*(n, 1) exists for anyl € C. Note that lim p*(n, 1) # 0
n— oo
for Im A>0 since, by 8.1),

d
- (|p*(r, M2 = pGr, ).)|2) — 2Im 2| p(r, 2)[2=0. (6.10)

By the same argument, for amy> 0 and Im4 > 0 we havep(r, 1) # —p*(r, 1). Then
Lemma6.2 implies that

lim |p(n+27""1 ) = lim |p*G+27""1, 1) = cc.
n—00 n—00
Note that if in Lemma6.2 we definea,(r) = —%b(g), then

liminf |p*(r, 2)| < limsup|p*(r, A)| < o0
r—00

r—00

for any large enoughy1.
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In order to complete the proof we need to show that the spectral measize
absolutely continuous with positive continuous density. Estima@eé® and Lemma 6.2
shows that the IimitlI(1) = lim p*(n, 4) converges uniformly on compact sets of

n— oo

A€ C. As a byproduct we have proved thHt(/) is continuous forl € C and has no
zeros in the closed half-plane I3 0. In particular, this is so for real.

For the rest of the proof we assumiec R. Let 7, be the measure absolutely
continuous with respect to the Lebesgue measure with the density

dt.(J) 1
di  2u|p*(r, |2

Thent, converges weakly ta asr — oo (see, for instance,T1]). From the previous
paragraph,

() _ 1 __ 1
di.— n—oo 2mlp*(n, 2 2m|TI(A)[2

is a positive continuous function oR, which completes the proof. [J

Theorem 3. There exists a continuous functian(r) such that(l)-(V) of the Krein
theorem hold but the functionII(4), which is analytic inC*t = {4 : Im /. > 0}, is
not unique in the following senséor any complexy of absolute value one there is a
sequence,, — oo such that

lim p*(t,, 1) = OI1(A). (6.11)
n—o0

In addition we can have the following conditions satisfiedr) € L?[0, co) for any
p>2, lima(r) =0, and for any/ e C:
r—00

lim p(r, 1) =0,
r—00

Aim 1p*(r, A = [TL(A)]. (6.12)

Remark 6.3. In this theorem, by construction(r) can be chosen to be @ function.

Proof. We will construct a functiorz(r) which is piecewise constant, and then can be
approximated by continuous functions that still have the desired properties.
First, note that the system of differential equations:
Lq(r) = —a(r) q* (),

Lg*(r) = —a(r) q(r), (6.13)
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with constant coefficient(r) = —C has a matrix solution

_ (cosh|Cr| D sinh|Cr|
Q) = (D sinh|Cr| coshiCcr| ) (6.14)
where D = \C_I
Now let b be positive real and
—b for 0<r<e,
ap ¢ o(r) =\ &b, for e<r<2e, (6.15)
0, for r>2e,
where the constant e C is such that|{] = 1. Let qg(r) = gp¢.(r) and

q*(r) = q;é’g(r) be the solutions of the system of Eq6.13) witha(r) = ay ¢ . (r),
and initial conditionsg(0) = 0, ¢*(0) = 1. Then

qp.c ¢ (e) =sinhbe, qp ¢ (26) = %(l — &) sinh Pe,

qy :.(e) =coshbe, g . (26)=1+(1—9) sink? be. (6.16)

Let py ¢ (r,2) and p}’;’é.g(r, A) be the solutions of the system of Eq=S.1) with
a(r) = ayp ¢ .(r), and initial conditionsp,, ¢ .(0, 1) = 0 and p;;’é’g(o, A) = 1.

To estimate these solutions we use the following form of Gronwall’s lemmariX
is a nonnegative integrable function such that

a(r)<c /r a(s)ds + p@r) (6.17)
0

for somec and f(r) >0, then

a(r)<c / ' U B(s) ds + B(r). (6.18)
0

In the following estimates we assume that C is fixed. We write ‘tonst” for a
constant, different in different inequalities, which depends/piut is independent of
e, r andb provided O< ¢,r,b < 1.

First, we use Gronwall's lemma with(r) = |p, ¢ . (r, 2)| + |pZ.é.8(r, A)|. Then @.1)
implies (6.17) withf(r) =1 andc = |A| + b and so (6.18) implies

(|Al+byr

|Pp.ce(r, D] + |p;é’8(r, M| <e < const.
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Second, we apply this form of Gronwall's lemma withv) = [p;, ¢ . (r, 4)|. Then @.1)
and the previous estimate imply (6.17) with= |A] and

p(r) = const - br > /0 |b PZ,g,g(& A)lds.
Therefore 6.18) implies

|pp.e(r, A)| < const - br.

Using the same form of Gronwall’s lemma the third time with= |1| + b,

B(r) = const - br® > /Or |4 py.c.c(s, )| ds
and
our) = 1pp.eer. ) = qpee +1py (A —ay e (P,
we obtain
1Pb.ce(rn 2 = Qb ee (O +1py 2 (1) — g 2 ()] < const - br? (6.19)
by (3.1), (6.13) and the previous estimates. This implies
Py A) —qy ()] < const - b2r3 (6.20)

by (3.1) and (6.13).
We define

1 b_logzn
T logZn’ " n

&n
for n>3. Also we define, as a unique complex number such that
. 1
|£n|=17 |1_gn|=@ and |m€” > 0.

Note that

Ch=1+ ! +0< 1) . (6.21)
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Let a(r) be defined by

o0
a(r) =) ap, &,.6,(r —1ra),
n=3

wherea, ¢ . (-) is defined by §.15), andr, are as follows. We fix anyp € C*. Then
we chooser, = 0 and eachr, — r,—1 to be large enough so that

1
5 ) . (6.22)
nlogn n—00

This is possible sincép(r,, 1o)| — 0 exponentially as,_1 is fixed and(r,, —r,—1) —
oo. Therefore, we can usé.@0), (6.21), and the fact that

p*(r}1+2<9ns 40) _ [
p*(rn.40)  ~  nlogn

6. 26 ) =1+ (19 (bzsz n 0(17484),,840)

by (6.16).
We have thatp*(r, A) is constant forr € [r,, + 2¢,, ry+1], in particular,

P*(rn + 28}1’ }') = P*(rn+lv /’L)

Hence 6.22) imply that

’ P*(rns1, 20)
p* (rnv /10)

1
nlog® n n—00

and so the limit lim|p*(r,, A0)| = |I1(4g)| converges, since
n—o0

S 1

2
n log n

Thus statements (I)—(V) of the Krein theorem hold dy4) and (3.6).
If eachr, — r,—1 is large enough, then the sum that defirgs) is a sum of the
functions with disjoint support. Therefore

o
la()lz, =2 =2 1og?2n
n=3

and soa(r) € LP[0, 0c0) if and only if p > 2. In particular, this means that part 2 of
Theoreml implies (6.12).
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To complete the proof note that the limit ljm, p*(r,, Z0) does not exists because

p*(rn + 2e5, /0) i N
= O\ —% 6.23
P*(”n,/lo) exp[Yl'Ogl’l + ("|092”>n—>oo } ( )
by (6.22), and the serie} 2 5 ;e diverges, whiled2 5 @ < o00. At the same

time lim,_ o ﬁ = 0 and so for any compleX of absolute value one there is a
sequencey , — oo, which is a subsequence af, such that

lim p*(19,,. 40) = 0|T1(o)|.
n—o0

Note that|I1(/)| is well defined for anyl € C* since lim_. o |p*(r, 1) = |T1(1)]
converges byH.3). Also using (5.3) we can define a functibh(1), which is analytic
in C*, by

() = o)~ im  p*(trn, Dp* (v 70) = M p* (1. 2).

Then lim,— o p*(tg.,, ) = OI1(2) for any . € C* because off.3). [

Proposition 6.4. If r, —r,_1 are large enough in the proof of Theore3nthen for all
/. € CT we have(6.22) as well as estimates

p(r, 1) const
6.24
’p*(r,,, 2) = Jnlogn (6.24)
for r, + 2¢, <r <ry41, and
‘ p(r, i} _ 1‘ - const ‘ p(r, )V)ﬂ const (6.25)
P*(rnvﬂ) n P*(rna/h) \/ﬁ

for r, <r<r, + 2¢,. This givesin particular, a constructive proof o{3.5) and (6.12).

Proof. We can demonstrate (6.24) and (6.25) foe /¢ using estimates

q;';és(r, 28)‘ < const - be|]l — |
and, for 0<r < 2¢,
|qb’5)8(r, i)| < const - be, ‘qgf L(r,A) = 1| < const - b2e2,

which follows from 6.14) and (6.16).
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We also can obtain6(25) and (6.22) for ali € C* if the sequence;, is chosen
as follows. It is easy to see that estimates like (6.19) and (6.20) can be established
uniformly in A in a compact subsets df. Also |p(r,, 4)| — 0 uniformly in 4 in a
compact subsets ot t asr,_; is fixed and(r, — r,_1) — oo. Thus for any compact
subsetH of C* there is a sequence’ such that (6.22), (6.24) and (6.25) hold for
rn =rH, and also forr, that is any subsequence of’. We can represent™ as an
increasing union of compact subséfs. Without loss of generality we can assume that
r,',q"+l is a subsequence of* for eachk. Then we defines, by the “diagonal process"
ra=rin. O

Conjecture 6.5. We conjecture that itz(r) is a real-valuedfunction and conditions
(D-(V) of the Krein theorem holdthen I1(4) is unique in the following sensef
t, — oo andlim, . p(t,, A) = 0, then the limitlim,_, o, p*(#,, ) = I1(L) converges
uniformly on compact subsets 6f". If true, this conjecture implies that the original
form of Krein’s theorem holds i&(r) is real and“locally uniformly integrabl® in the
sense of par(2) of Theoreml.

Conjecture 6.6. We conjecture that it:(r) € Lﬁ)c is real, and conditions(l)—(V) of
the Krein theorem holdthen T1(Z) is the limit in average ofp*(z,, 4), that is

I1(A) = lim 1' /l pH(s, N ds
0

r—-o0 r

uniformly on compact subsets @f". Here a(r) € Li,, if

r+1
sup la(s)|ds < oo.
r=0Jr

If true, this conjecture also implies the uniquenesdl@f). Note that in the situation
of Theorem3 the limit in average ofp*(z,, ) does not exists if,.1 — r, are large
enough.

These two conjectures may be related to the results of [D2].
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