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It is shown that for every c>0 there exists c$>0 satisfying the following condition.
Let S be a system of n straight-line segments in the plane, which determine at least cn2

crossings. Then there are two disjoint at least c$n-element subsystems, S1 , S2 /S, such
that every element of S1 crosses all elements of S2 . � 2001 Academic Press

1. INTRODUCTION, RESULTS

Given a system S of simple continuous curves (``strings'') in the plane,
we can define a graph GS as follows. Assign a vertex to each curve, and
connect two vertices by an edge if and only if the corresponding two curves
intersect. GS is called the intersection graph of S.

Not every graph is an intersection graph of a system of curves [EET76] (see
Fig. 1 for a simple example). This implies that only a very small fraction of all
the 2(n

2) labeled graphs on n vertices have this property. For systems of
segments, using standard techniques from real algebraic geometry (see [GP86,
AKS90, PPW90]), we obtain a fairly good quantitative result.

Theorem 1. The number of labeled graphs on n vertices which can be
obtained as the intersection graph of a system of segments in the plane is 2O(n log n).
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FIG. 1. A graph which is not the intersection.

The problem of recognizing intersection graphs of planar curves (the
so-called ``string graph problem'') is known to be NP-hard [K91], but it
is open whether this problem is decidable [KM91]. In some very special
cases, e.g., when S consists of segments, there are trivial recognition algo-
rithms [CGP98], [FMP95]. But even in these cases we do not know
much about the structure of intersection graphs. One of the most striking
examples illustrating our ignorance in the subject is the following simple
open

Problem. Is it true that every planar graph is the intersection graph of
a system of segments in the plane?

The aim of this paper is to prove some Ramsey-type results for intersec-
tion graphs of segments. In other words, we establish necessary conditions
for a graph to be the intersection graph of a system of segments. We recall
a simple observation from Ramsey theory. As usual, let V(G) and E(G)
denote the vertex set and the edge set of a graph G, respectively.

Theorem [EHP00]. Let H be a fixed graph of k vertices. Then every
graph G with n vertices, which does not contain an induced subgraph
isomorphic to H, has two disjoint sets of vertices, V1 , V2 /V(G), such that
|V1 |, |V2 |�n1�(k&1)�2 and

(i) either all edges between V1 and V2 belong to G,

(ii) or no edge between V1 and V2 belongs to G.

Note that the weaker result, with roughly log n in the place of n1�(k&1),
immediately follows from Ramsey's theorem [ES35]. Combining the last
theorem with Theorem 1 (or rather with the fact that there is at least one
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forbidden induced subgraph in the class of all segment intersection graphs,
say, the 15 vertex graph depicted in Fig. 1), we obtain the following.

Corollary. There exists a constant =�1�14 such that every system S

of n segments in the plane has two disjoint subsystems S1 , S2 /S such that
|S1 | , |S2 |�n=�2 and

(i) either every segment in S1 crosses all segments in S2 ,

(ii) or no segment in S1 crosses any segment in S2 .

Note that here, as well as in the sequel, we only consider systems of
segments in general position; i.e., we assume that no two segments are
parallel and no three endpoints are collinear.

The main result of this paper, formulated in the next two statements,
substantially strengthens the last Corollary. In all of these results, A stands
for an absolute constant smaller than 106.

Theorem 2. Any system S of n segments in the plane with at least cn2

crossings (c>0) has two disjoint subsystems, S1 , S2 /S, such that
|S1 | , |S2 |�((2c)A�660) n and every segment in S1 crosses all segments in S2 .

Theorem 3. Any system S of n segments in the plane with at least cn2

non-crossing pairs (c>0) has two disjoint subsystems, S1 , S2 /S, such that
|S1 | , |S2 |�((c�5)A�330) n and no segment in S1 crosses any segment in S2 .

A geometric graph is a graph whose vertices are points in general posi-
tion in the plane (i.e., no three points are on a line) and whose edges are
straight-line segments connecting these points. Our last two results are easy
corollaries to Theorems 2 and 3, respectively.

Theorem 4. Any geometric graph G with n vertices and at least cn2

edges (c>0) has two disjoint sets of edges E1 , E2 /E(G) such that |E1 |,
|E2 |�(c�32)A+3 ( n

2) and every edge in E1 crosses all edges in E2 .

Theorem 5. Any geometric graph G with n vertices and at least cn2

edges (c>0) has two disjoint sets of edges E1 , E2 /E(G) such that |E1 |,
|E2 |�(c�34)A+3 ( n

2) and no edge in E1 crosses any edge in E2 .

The rest of the paper is organized as follows. In Section 2, we establish
Theorem 1. Theorems 2 and 3 are proved in Section 3. The last section
contains the proofs of Theorems 4 and 5, as well as some concluding
remarks.
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2. BOUNDING THE NUMBER OF INTERSECTION GRAPHS
OF SEGMENTS

The aim of this section is to prove Theorem 1.
Let S=[s1 , s2 , ..., sn] be a system of segments in general position in the

plane. Assume that si is not parallel to the y-axis and can be described by
the relations

si : y=aix+bi , ci�x�di (i=1, 2, ..., n).

Two segments, si and sj , cross each other if and only if

max[ci , cj]�
bj&bi

ai&a j
�min[di , dj].

Thus, whether or not si crosses sj , is determined by the sign of polynomials

P[i, j] :=ai&a j , Q[i, j] :=c i (ai&aj)+bi&bj ,

for any distinct i{ j # [1, 2, ..., n]. These are 2( n
2) polynomials of degree at

most 2 in the 4n variables [ai , bi , ci , di].
We use the following form of the Milnor�Thom theorem [M64, T65].

Theorem [W68]. The number of different sign patterns for m polyno-
mials of degree at most d in k variables is at most (4edm�k)k.

Applying this bound with m=2( n
2), d=2, and k=4n, we obtain that

there are at most (2e(n&1))4n=2O(n log n) different ways how the crossing
relationship can be defined among n segments in the plane.

3. PROOFS OF THEOREMS 2 AND 3

Three sets of points in the plane are said to be separable if each of them
can be separated from the other two by a straight line. Given three
separable sets, there is no straight line which intersects the convex hull of
all of them.

Lemma 3.1 [BE00]. Every set of n points in general position in the plane
has three separable subsets of size wn�6x.

Proof. Assume without loss of generality that n is divisible by 6, and let
P be an n-element point set. Choose two lines that divide the plane into 4
regions, containing n, 2n, n, and 2n points of P in their interiors, in this
cyclic order. Let P1 , P2 , P3 , and P4 denote the corresponding subsets of P.
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FIGURE 2

By the hamsandwich theorem, there is a line l which simultaneously cuts P2

and P4 into two halves of equal size (see Fig. 2). Then l avoids either the
convex hull of P1 or that of P3 . Assume, by symmetry, that P1 is ``above''
l. Then P1 and the parts of P2 and P4 ``below'' l are three separable sets.
(Similar arguments can be found, e.g., in [BV98].) K

Lemma 3.2. Let S and T be two systems of segments in general position
in the plane. Then there are two subsystems S*�S, T*�T such that
|S*|�w |S|�330x, |T*|�w |T|�330x , and

(i) either every segment in S* crosses all segments in T*,

(ii) or no segment in S* crosses any segment in T*.

Proof. Let |S|=m, |T|=n, and suppose, for simplicity, that both m
and n are multiples of 330. Let P be the set of endpoints of all segments
in S. By Lemma 3.1, there are three separable m�3-element subsets, P1 , P2 ,
P3 �P. Color a segment t # T with color i if its supporting line does not
intersect the convex hull of Pi (i=1, 2, 3). Let Ti denote the segments of
color i. At least one third of the elements of T get the same color, so we
can assume with no loss of generality that |T1 |�n�3.

If there are at least m�330 segments in S, both of whose endpoints
belong to P1 , then we are done, because these segments are disjoint from
all elements of T1 .

Hence, we can assume that at least (1�3&2�330) m=18m�55 elements of
S have precisely one of their endpoints in P1 . Let Q denote the set of other
endpoints of these segments. Let us choose three separable subsets Q1 , Q2 ,
Q3 �Q, each of size at least |Q|�6=3m�55. Just as before, color a segment
t # T1 with color i if its supporting line does not intersect the convex hull
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of Qi (i=1, 2, 3). Again, at least |T1 |�3�n�9 elements of T1 get the same
color, say color 1; they form a subsystem T11 �T1 .

Let S11 denote set of all elements of S with one endpoint in P1 and the
other in Q1 . Clearly, we have |S11 |= |Q1 |�3m�55.

Let us repeat now the whole procedure with T11 in the place of S and
S11 in the place of T. We obtain two subsets, T$�T11 and S$�S11 ,
satisfying

|T$|�
3 |T11 |

55
�

n
165

, |S$|�
|S11 |

9
�

m
165

.

We can assume that at least half of the supporting lines of the elements
of T$ cross the convex hull of S$, for otherwise we would obtain two non-
crossing systems of at least |T$|�2 and |S$| segments. The set of of all
elements of T$, whose supporting lines cross the convex hull of S$ is
denoted by T*. Similarly, we can assume that the supporting lines of at
least half of the elements of S$ cross the convex hull of T*; otherwise, we
could find two non-crossing systems of at least |T*| and |S$|�2 segments.
Let S* denote the set of all elements of S$, whose supporting lines cross
the convex hull of T*. It follows from the definitions that every element of
S* crosses all elements of T* and that

|S*|�
|S|$

2
�

m
330

, |T*|�
|T|$

2
�

n
330

. K

Given any system of segments, S and T, in general position in the
plane, define their crossing density, $(S, T), as the number of crossing
pairs (s, t), s # S, t # T divided by |S| } |T|. Clearly, we have 0�$(S, T)�1.

Theorems 2 and 3 readily follow from the next result.

Theorem 3.3. There exists a constant A<106 satisfying the following
condition. Let S and T be any sets of segments in general position in the
plane, and suppose that their crossing density is at least c>0. Then there are
two disjoint subsystems S$�S, T$�T such that

|S$|�
cA

330
|S|, |T$|�

cA

330
|T| ,

and every segment in S$ crosses all segments in T$.

Proof. Let |S|=m, |T|=n, and suppose first that both m and n are
powers of 330. According to our assumption, $(S, T)�c.
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Applying Lemma 3.2, we obtain two subsystems, S*/S, T*/T,
such that |S*|=m�330, |T*|=n�330, and $(S*, T*) is either 1 or 0. In
the first case we are done, so assume $(S*, T*)=0. Then we have

c�$(S, T)=
329
3302 $(S, T&T*)+

329
3302 $(S&S*, T)

+
3292

3302 $(S&S*, T&T*).

Therefore, at least one of the crossing densities $(S, T&T*), $(S&S*,
T), $(S&S*, T&T*) exceeds

c1 :=c
3302

3302&1
.

In other words, there exist two subsystems, S1 /S, T1 /T, with |S1 |�
m�330, |T1 |�n�330 such that $(S1 , T1)�c1 .

Applying Lemma 3.2 to S1 and T1 , we obtain two subsystems S**/S1 ,
T**/T1 , such that |S**|�m�3302, |T**|�n�3302, and $(S**, T**)
is either 1 or 0. Again, we can assume that $(S**, T**)=0, otherwise we
are done. As before, we can find two subsystems, S2 /S1 , T2 /T1 , with
|S2 |�m�3302, |T2 |�n�3302 such that

$(S2 , T2)�c2 :=c \ 3302

3302&1+
2

.

Since the crossing density between any two sets is at most 1, after some

k�
log(1�c)

log(3302�(3302&1))

steps, this procedure will terminate. That is, when we apply Lemma 3.2 for
the k th time, we obtain two subsystems S$�S, T$�T such that |S$|�
m�330k, |T$|�n�330k, and $(S$, T$)=1. Thus, every element of S$
crosses all elements of T$, and |S$|�cAm, |T$|�cAn, where

A�
log 330

log(3302�(3302&1))
<106.

This completes the proof of Theorem 3.3 in the case when m and n are
powers of 330. Otherwise, using an easy averaging argument, we can find
S0 �S, T0 �T, whose sizes are powers of 330, |S0 |�m�330, |T0 |�n�330,
and $(S0 , T0)�c. Applying the above argument to S0 and T0 , the result
follows. K
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Proof of Theorem 2. Assume, for simplicity, that n is even. Given a
system of n segments in general position in the plane, which determine at
least cn2 crossings, one can partition it into two equal parts so that the
crossing density between them is at least 2c (because every graph has a
bipartite subgraph containing at least half of its edges). Applying Theorem
3.3 to these parts, the result follows. K

Theorem 3 can be established analogously, by repeated application of
Lemma 3.2. However, here we deduce it from Theorems 2 and 3.3.

Proof of Theorem 3. Let S be a set of n segments in general position
in the plane with at least cn2 non-crossing pairs. For any s # S, let l(s)
denote the supporting line of s. The set l(s)"s consists of two half-lines;
denote them by h1(s) and h2(s). Let H1 :=[h1(s): s # S], H2 :=[h2(s):
s # S], T :=S _ H1 _ H2 . Further, for any h # H1 _ H2 , let s(h) be the
unique segment s # S, for which h1(s) or h2(s) is equal to s.

Note that if two segments s, t # S do not cross each other, then the crossing
between their supporting lines, l(s) and l(t), gives rise to a crossing
between a pair of elements of T, involving at least one half-line. Therefore,
the number of crossing pairs in T involving at least one half-line is at least
cn2. There are three possibilities:

(1) for some i=1, 2, the number of crossing pairs in Hi is at least
cn2�5;

(2) the number of crossing pairs between H1 and H2 is at least cn2�5;

(3) for some i=1, 2, the number of crossing pairs between Hi and S

is at least cn2�5.

In Case (1), applying Theorem 2 to Hi , we obtain two subsystems, Hi1 ,
Hi2 /H, whose sizes are at least ((2c�5)A�660) n>(c�5)A�330, and every
half-line in Hi1 crosses all half-lines in Hi2 . Then S1 :=[s(h): h # Hi1] and
S2 :=[s(h): h # Hi2] meet the requirements in Theorem 3.

In Case (2), apply Theorem 3.3 to obtain H$1 �H1 , H$2 �H2 , whose
sizes are at least ((c�5)A�330) n, and every element of H$1 crosses all
elements of H$2 . Setting S1 :=[s(h): h # H$1], and S2 :=[s(h): h # H$2], the
result follows. Case 3 can be treated similarly. K

4. CONCLUDING REMARKS

First we show how Theorems 4 and 5 follow from the previous results.

Proof of Theorem 4. Let G be a geometric graph with n vertices and at
least cn2 edges. The next result of Ajtai et al. [ACNS82] and, independently,
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Leighton [L83] (see also [PA95], [PT97]) implies that there are at least
c

64e2 crossings pairs of edges.

Lemma A. Let G be a geometric graph with n vertices and e>4n edges,
for some c>0. Then G has at least e3�(64n2) crossing pairs of edges.

Thus, we can apply Theorem 2 to the system S=E(G). We obtain two
subsets E1 , E2 # E(G) such that every edge in E1 crosses all edges in E2 ,
and |E1 |=|E2 |�((c�32)A�336) cn2>(c�32)A+2 ( n

2). K

Theorem 5 can be proved similarly. The only difference is that, instead
of Theorem 2 and Lemma A, we have to use Theorem 3 and

Lemma B [P91]. Let G be a geometric graph with n vertices and
e�3n�2 edges, for some c>0. Then G has at least 4e3�(27n2) pairs of edges
that do not cross and do not share an endpoint.

The above theorems can also be established using Szemere� di's Regularity
Lemma [S78]. However, then the dependence on c of the sizes of the
homogeneous subsystems whose existence is guaranteed by our results gets
much worse.

According to an old theorem of Ko� va� ri, So� s, and Tura� n [KST54], every
graph with n vertices and at least cn2 edges has a complete bipartite sub-
graph with c$ log n vertices in its classes, where c$>0 is a suitable constant
depending on c. This immediately implies that Theorem 2 holds with the
much weaker bound c$ log n instead of c$n.

For some computational aspects of recognizing intersection graphs of
segments, see [KM94].
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