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Abstract

The theoretical framework and closed-form stress intensity factor solutions in terms of the structural stresses for spot
welds under various types of loading conditions are presented based on elasticity theories and fracture mechanics. A
mechanics description of loading conditions for a finite plate with a rigid inclusion is first presented. The loading condi-
tions of interest are the resultant loads on the inclusion with respect to the center of the inclusion in a finite or infinite plate
and the surface tractions on the lateral surface of a finite or infinite plate. The surface tractions on the lateral surface of the
plate can be decomposed into a load-balanced part and a self-balanced part. The load-balanced part is statically in equi-
librium with the resultant loads acting on the inclusion. The self-balanced part can be represented by the resultant loads on
the lateral surface of the plate. The resultant loads on the inclusion and the self-balanced resultant loads on the lateral
surface are then decomposed into various types of symmetric and anti-symmetric parts. Based on the stress function
approach and the Kirchhoff plate theory for linear elastic materials, closed-form in-plane stress, moment and transverse
shear force solutions are derived for a plate with a rigid inclusion subjected to various types of resultant loads on the inclu-
sion and various types of resultant loads on the plate lateral surface. Based on the J integral for a strip model, closed-form
analytical stress intensity factor solutions for spot welds joining two sheets of equal thickness are derived in terms of the
structural stresses around a rigid inclusion in a plate under various types of loading conditions. The closed-form solutions
presented in this paper are used as the basis to develop new analytical stress intensity factor solutions for spot welds in
various types of specimens presented in a subsequent paper.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance spot welding is widely used to join sheet metals in the automotive industry. These spot welds are
subjected to complex multiaxial loads under service or crash conditions. The fatigue lives of spot welds in var-
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ious types of specimens have been investigated by many researchers, for example, see Zhang (1999). Since a
spot weld provides a natural crack or notch along the nugget circumference, fracture mechanics has been
adopted to investigate the stress intensity factors at the critical locations of spot welds in order to investigate
the fatigue lives of spot welds in various type of specimens (Pook, 1975, 1979; Radaj, 1989; Radaj and Zhang,
1991a,b, 1992; Sheppard, 1993; Swellam et al., 1994; Zhang, 1997, 1999, 2001; Wang et al., 2005a,b; Lin et al.,
2007). The stress intensity factors usually vary point by point along the circumference of spot welds in various
types of specimens. Pook (1975, 1979) gave the maximum stress intensity factors for spot welds in lap-shear
specimens, coach-peel specimens, circular plates, and other bending dominant plate and beam configurations.
Radaj (1989) and Radaj and Zhang (1991a,b, 1992) established the foundation to use the structural stresses to
determine the stress intensity factors for spot welds under various types of loading conditions. Based on a strip
model, the stress intensity factor solutions were determined in the form of the structural stress multiplied by
the square root of the thickness. Sheppard (1993) used a finite element model of spot welds based on the struc-
tural stress approach to estimate the fatigue life of spot welds for lap-shear and coach-peel specimens. Swellam
et al. (1994) proposed a stress index Ki by modifying their stress intensity factors to correlate their experimen-
tal results for various types of specimens. Zhang (1997, 2001) presented closed-form stress intensity factor
solutions for selected critical locations of spot welds in various types of specimens based on the analytical
stress solutions for a rigid inclusion in a plate under various types of loading conditions, and correlated the
solutions with the experimental results of spot welds in these specimens under cyclic loading conditions. Zhang
(2001) also developed a spot weld finite element model with a beam element connected by rigid spoke patterns
to represent a spot weld in specimens and automotive structures. Wang et al. (2005a,b) obtained the mode I
stress intensity factor solutions for spot welds in square-cup and lap-shear specimens based on their full three-
dimensional finite element models. The computational solutions were compared with the analytical solution of
Pook (1979) for circular-cup specimens and the new analytical solutions of Lin et al. (2007) for lap-shear
specimens.

Pook (1979) indicated that for a class of transversely loaded configurations consisting of two thin plates or
beams joined over part of their common plane under symmetric loading conditions, the energy release rate or
the stress intensity factor at a crack tip depends on the bending moment acting to the beam or plate in the
vicinity of the crack tip. Wang et al. (2005a) conducted a three-dimensional finite element analysis of circular
plates with connection under opening loading conditions. The computational results indicate that the stress
intensity factor along the crack front can be correlated very well with the analytical solutions based on the
bending moments or the corresponding structural stresses for thin plates with connection. In this case, the cir-
cular plates with connection are subjected to axisymmetric loading conditions and the stress intensity factor
along the crack front is uniform. For spot welds in lap-shear specimens, the configuration is more complex and
the stress intensity factors vary along the crack front. Wang et al. (2005b) conducted a three-dimensional finite
element analysis of a nearly square large lap-shear specimen. The ratio of the specimen width to the nugget
diameter for the lap-shear specimen is very large so that the exact analytical solution for the infinite plate
model matches the approximate analytical solution for the finite plate model (Wang et al., 2005b). The com-
putational results indicated that the stress intensity factor at the critical locations agrees very well with the
analytical solution based on the bending moments and the membrane forces or the corresponding structural
stresses. For the nearly square lap-shear specimen, the stress intensity factors along the crack front are non-
uniform. The results of the three-dimensional finite element analyses of Wang et al. (2005a,b) suggest that
using the bending moments and the membrane forces or the corresponding structural stresses to obtain the
stress intensity factors for spot welds assumed as rigid inclusions in thin plates can be quite accurate.

The closed-form solutions for thin plates with rigid inclusions under shear, central bending, counter bend-
ing, and opening loading conditions were obtained by Muskhelishvili (1953), Reißner (1929), Goland (1943),
Timoshenko and Woinowsky-Krieger (1959), and Lin et al. (2007), respectively. These solutions except those
of Goland (1943) and Lin et al. (2007) were used by Zhang (1997, 1999, 2001) to obtain the structural stresses
at several critical locations of spot welds in various types of specimens and automotive structures, where the
spot welds were treated as rigid in the analytical or numerical solution procedures. Rupp et al. (1990, 1995)
used a beam element model whereas Salvini et al. (1997, 2000) and Vivio et al. (2002) used a spot weld assem-
bly finite element model to represent a spot weld to obtain the resultant forces and moments through the spot
weld for fatigue life estimations. Salvini et al. (2000) listed the analytical stress, moment, and transverse shear
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force solutions for a spot weld under the resultant forces and moments through the spot weld for determina-
tion of the structural stresses around the nugget. Their analytical solutions are obtained from those for a rigid
inclusion in a circular plate with clamped boundary conditions along the edge of the plate. The classical solu-
tions of Muskhelishvili (1953), Reißner (1929), Goland (1943), Timoshenko and Woinowsky-Krieger (1959)
were obtained from the complex variable approach and the Kirchhoff plate theory. In order to develop
new analytical solutions for spot welds in five types of commonly used specimens in a subsequent paper
(Lin and Pan, 2008a), all analytical solutions needed are derived again here using the stress function approach
and the Kirchhoff plate theory. From this viewpoint, this paper can be considered as a comprehensive review
paper where most of relevant closed-form analytical solutions for a plate with a rigid inclusion under various
types of loading conditions are derived and presented in a consistent manner. These analytical solutions are
useful for engineers to estimate the fatigue lives of spot welds under various types of loading conditions.

In this paper, we first present a detailed description of the loading conditions for a finite plate with a rigid
inclusion. We emphasize the decomposition of the traction on the lateral surface of the plate. The self-bal-
anced part of the traction has not received attention in the literature. Recently, Lin et al. (2007) obtained
an approximate analytical solution for a finite plate with a rigid inclusion under self-balanced counter bending
conditions in order to accurately model the computational results of the mode I stress intensity factor solu-
tions for spot welds in lap-shear specimens. This analytical solution becomes the most critical input for the
development of new stress intensity factor solutions for spot welds in various types of specimens. The analyt-
ical stress intensity factor solutions obtained by Zhang (1997, 1999, 2001) for various types of specimens were
obtained from the solution for a plate with a rigid inclusion under center bending conditions substituting for
the solution for a plate with a rigid inclusion under self-balanced counter bending conditions. The analytical
stress intensity factor solutions of Zhang (1997, 1999, 2001) are listed for the selected critical locations of spot
welds in various types of specimens. The new analytical stress intensity factor solutions of Lin and Pan
(2008a), in contrast, provide detailed stress intensity factor solutions around the entire nugget circumference
in various types of specimens. Most importantly, the new analytical solutions provide the size dependence of
the mode I stress intensity factor solutions for spot welds in various types of specimens to allow future con-
solidations of the fatigue test data obtained from specimens of different designs in the literature.

For various types of laboratory specimens under cyclic loading conditions, the critical material elements of
interest are usually under proportional cyclic loading conditions. Therefore, the stress intensity factor solu-
tions for selected critical locations of spot welds are sufficient to examine the fatigue lives of spot welds in these
specimens (Zhang, 1997, 1999, 2001). However, for spot welds in structural components under complex service
loads, the material elements around the nugget may be subject to non-proportional cyclic loading conditions.
Therefore, the stress and stress intensity factor solutions under various types of loading conditions need to be
expressed in terms of the angular location along the nugget circumference in order to determine the critical
locations for fatigue crack initiation. For example, Rupp et al. (1990, 1995), Salvini et al. (1997, 2000,
2007) and Vivio et al. (2002) used their spot weld finite element models to obtain the resultant forces and
moments through a spot weld and then to determine the critical locations for fatigue crack initiation. It is clear
that the detailed stress and stress intensity factor solutions along the nugget circumference are needed to pre-
dict the fatigue lives of spot welds under non-proportional cyclic loading conditions. It should be emphasized
that the resultant forces and moments through the nugget can only be used to obtain a partial contribution of
the structural stresses around the nugget circumference. In order to obtain the full structural stresses around
the nugget circumference, the contributions of the self-balanced resultant loads on the lateral surface of the
plate as emphasized in this paper are needed to be considered.

In this paper, the theoretical framework and closed-form stress intensity factor solutions in terms of the
structural stresses for spot welds under various types of loading conditions are presented based on elasticity
theories and fracture mechanics. A mechanics description of loading conditions for a finite plate with a rigid
inclusion is first presented. The loading conditions of interest are the resultant loads on the inclusion with
respect to the center of the inclusion in a finite or infinite plate and the surface tractions on the lateral surface
of a finite or infinite plate. The surface tractions on the lateral surface of the plate can be decomposed into a
load-balanced part and a self-balanced part. The load-balanced part is statically in equilibrium with the resul-
tant loads acting on the inclusion. The self-balanced part can be represented by the resultant loads on the lat-
eral surface of the plate. The resultant loads on the inclusion and the self-balanced resultant loads on the
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lateral surface are then decomposed into various types of symmetric and anti-symmetric parts. Based on the
stress function approach and the Kirchhoff plate theory for linear elastic materials, closed-form in-plane stress,
moment and transverse shear force solutions are derived for a plate with a rigid inclusion subjected to various
types of resultant loads on the inclusion and various types of resultant loads on the plate lateral surface. Based
on the J integral for a strip model, closed-form analytical stress intensity factor solutions for spot welds joining
two sheets of equal thickness are derived in terms of the structural stresses around a rigid inclusion in a plate
under various types of loading conditions. The closed-form solutions presented in this paper are used as the
basis to develop new analytical stress intensity factor solutions for spot welds in various types of specimens
presented in a subsequent paper (Lin and Pan, 2008a).

2. A spot weld in a finite plate under general loading conditions

Fig. 1(a) schematically shows two metal sheets of equal thickness joined by a spot weld. As shown in
Fig. 1(a), the surface tractions TU and TL are applied on the lateral surfaces of the upper and lower
sheets, respectively. In this investigation, we idealize the weld nugget as a circular cylinder as shown
in Fig. 1(a). Next, we consider the upper half of the weld nugget in the upper sheet as shown in
Fig. 1(b) without loss of generality. Fig. 1(b) shows that the surface traction TS is on the bottom surface
of the upper half nugget.

Fig. 1(c) shows a Cartesian coordinate system where x and y represent the in-plane coordinates and z rep-
resents the out-of-plane coordinate. The origin of the Cartesian coordinate system is located at the center of
the upper weld nugget, which is on the middle plane of the plate. As shown in Fig. 1(c), the surface traction TS

in Fig. 1(b) can be represented by a resultant force F and a resultant moment M acting at the origin of the
Cartesian coordinate system. On the lateral surface of the upper sheet, the surface traction TU in Fig. 1(b)
can be decomposed into a load-balanced part TLoad

U and a self-balanced part TSelf
U . Note that the load-balanced

part TLoad
U is statically in equilibrium with the resultant loads F and M. The self-balanced part TSelf

U satisfies
self-equilibrium and has no contribution to the resultant loads F and M.
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Fig. 1. (a) Two metal sheets are joined by a spot weld. The metal sheets are under surface traction TU and TL. (b) The upper sheet with the
upper half nugget. The upper sheet is under the surface tractions TU and TS. (c) The upper sheet is under the surface tractions TLoad

U and
TSelf

U and the resultant loads F and M. (d) The upper nugget is under surface tractions TLoad
C and TSelf

C and the resultant loads F and M.
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Fig. 1(d) shows only the upper half nugget. The surface traction TC along the nugget circumferential sur-
face can be decomposed into the load-balanced part TLoad

C and the self-balanced part TSelf
C as shown in the fig-

ure. The resultant loads F and M should be statically in equilibrium with the load-balanced part TLoad
C . The

self-balanced part TSelf
C is statically equivalent to the self-balanced part TSelf

U on the plate lateral surface as
shown in Fig. 1(c). The self-balanced surface tractions TSelf

U and TSelf
C cannot be derived in any way from

the resultant loads F and M. This suggests that when the resultant forces or moments from a beam or spring
finite element model are used to infer the surface traction and the structural stresses on the nugget circumfer-
ential surface and the stress intensity factors along the nugget circumference, the contributions from the self-
balanced surface traction on the nugget surface or the plate lateral surface cannot be accounted for.

Most researchers approximate the general loading condition of spot welds by using the resultant loads
applied to the interfacial circular cross section of the weld nugget, for example, Swellam et al. (1994), Rupp
et al. (1995) and Salvini et al. (2000). However, Zhang (1997, 2001), Wang et al. (2005b) and Lin et al. (2007)
indicated that the closed-form stress solutions for a rigid inclusion under the self-balanced surface tractions of
the plate are important to obtain the analytic solutions of the stress intensity factors for spot welds. In order to
consider both the resultant loads and self-balanced surface tractions, Fig. 2 shows again the free body diagram
of Fig. 1(c) for the upper sheet with the upper half nugget. The upper sheet has the thickness t and the nugget
has the diameter 2a. The Cartesian coordinate system is centered at the center of the upper half nugget located
on the middle plane of the sheet. As shown in Fig. 1(c), the resultant loads on the lower surface of the upper
half nugget are denoted as F and M. The surface tractions in equilibrium with F and M are shown as TLoad

U . As
shown in Fig. 2, the resultant force F and the resultant moment M acting at the origin of the Cartesian coor-
dinate system are now decomposed into three resultant forces Fx, Fy and Fz and three resultant moments Mx,
My and Mz, respectively. The self-balanced resultant force Fs and the self-balanced resultant moment Ms due
to the self-balance traction TSelf

U on the plate lateral surface can now be decomposed into two uniform tensile
forces eF s

x and eF s
y , two uniform shear forces eF s

xy and eF s
yx, two uniform bending moments ~Ms

x and ~Ms
y , and two

uniform twisting moments eM s
xy and eM s

yx.
Note that the lateral shear forces eF s

xy and eF s
yx or the lateral twisting moments eM s

xy and eM s
yx can be elimi-

nated if the directions of the x and y axes coincide with the directions of the principal resultant forces or
the principal resultant moments, respectively. However, the directions of the principal resultant forces in gen-
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Fig. 2. The upper sheet with the upper half nugget is shown with the surface traction TLoad
U , the resultant loads F and M, and the self-

balanced resultant loads Fs and Ms. The upper sheet has the thickness t and the nugget has the diameter 2a.
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eral may not coincide with those of the principal resultant moments. Therefore, we consider both lateral shear
forces and lateral twisting moments in this paper. Also note that the forces eF s

x, eF s
y , eF s

xy , and eF s
yx and the

moments eM s
x, eM s

y , eM s
xy , and eM s

yx represent the uniformly distributed forces and moments applied to the lateral
surface of the sheet. The units of the forces and moments with tilde signs are force per unit length and moment
per unit length, respectively. In the following sections, we investigate the stresses, moments and transverse
shear forces near a spot weld in a sheet under various types of loading conditions based on elasticity theories.
Note that in the following sections, the spot weld is assumed as a rigid inclusion.
3. Elasticity theories

Within the context of elasticity theories, the stresses, moments and transverse shear forces around the cir-
cumference of a rigid inclusion in a plate can be used to derive the stress intensity factor solutions for a spot
weld in a sheet under various types of loading conditions (Zhang, 1997, 2001; Lin et al., 2007). A rigid inclu-
sion in a plate under in-plane loading conditions can be idealized as a two-dimensional plane stress problem.
In this case, the Airy stress function approach can be used to derive closed-form analytical solutions. How-
ever, a rigid inclusion in a plate under bending, twisting and/or out-of-plane loading conditions is in general
considered as a three-dimensional problem. Nevertheless, the classical Kirchhoff plate theory can be used to
reduce the problem to be two-dimensional in the sense that the resultant forces/moments and deflections are
now expressed in terms of the in-plane coordinates. It should be mentioned that for various types of specimens
of interest (Lin and Pan, 2008a,b), the boundary conditions or the applied loading conditions are usually
expressed in terms of the Cartesian coordinates since the shapes of the plate sections of interest in these spec-
imens are either rectangular or square. However, the polar coordinates are adopted for the closed-formed
solutions presented in the following since the rigid inclusion is circular and the closed-form solutions of inter-
est are along the circumference of the rigid inclusion.
3.1. Airy stress function approach

First, we consider a rigid inclusion in a plate under in-plane loading conditions. The general solution is well
known for this two-dimensional plane stress problem and is briefly summarized in the following. Fig. 3(a)
shows the polar and Cartesian coordinate systems where the origins of both systems are located at the center
of the rigid inclusion. The shaded region represents the rigid inclusion. According to the Airy stress function
approach, the governing equation for the plate with a rigid inclusion can be written as a bi-harmonic equation
of the Airy stress function /. The governing equation in terms of the polar coordinates r and h is
r4/ � o2

or2
þ 1

r
o

or
þ 1

r2

o2

oh2

� �
o2/
or2
þ 1

r
o/
or
þ 1

r2

o2/

oh2

� �
¼ 0 ð1Þ
where $4 = ($2)2 represents the bi-harmonic operator. In the polar coordinate system, the normal and shear
stresses in terms of r and h are
rrr ¼
1

r
o/
or
þ 1

r2

o2/

oh2
ð2aÞ

rhh ¼
o

2/
or2

ð2bÞ

rrh ¼ �
o

or
1

r
o/
oh

� �
ð2cÞ
The general solution of Michell (1899) for Eq. (1) is
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Fig. 3. (a) A top view of a differential element in a polar coordinate system, (b) a differential plate element with the radial bending moment
Mr, the tangential bending moment Mh, the twisting moments Mrh and Mhr, the radial transverse shear force Qr, the tangential transverse
shear force Qh, and the distributed load p, (c) a top view of a differential plate element and the associated moments and transverse shear
force.
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/ ¼ C0
1r2 þ C0

2r2 ln r þ C0
3 ln r þ C0
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1r ln r þ B4
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þ
X1
n¼2

C1
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nr�nþ2 þ C3
nrn þ C4

nr�n
� �

sin nh ð3Þ
where Bi
n and Ci

n are the unknown coefficients which can be determined to satisfy the boundary conditions for
each particular case.
3.2. Kirchhoff plate theory

Now we consider a rigid inclusion in a plate under bending, twisting and/or out-of-plane loading condi-
tions. Fig. 3(a) can be used to represent a top view of a rigid inclusion in a plate with both polar and Cartesian
coordinate systems centered at the center of the inclusion on the mid-plane of the plate. Fig. 3(b) shows a dif-
ferential plate element with the radial bending moment Mr, the tangential bending moment Mh, the twisting
moments Mrh and Mhr, the radial transverse shear force Qr, the tangential transverse shear force Qh, and the
distributed load p. Fig. 3(c) shows a top view of a differential plate element and the moments and transverse
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shear forces. The symbols ‘‘cross” and ‘‘dot” indicate the direction in the positive z and negative z directions,
respectively.

According to the Kirchhoff plate theory (Timoshenko and Woinowsky-Krieger, 1959), the governing equa-
tion for a plate without a distributed load p on the plate surface can be written as a bi-harmonic equation of
the plate transverse deflection x. The governing equation in terms of the polar coordinates r and h is
r4x � o2
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r
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o2

oh2
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In the polar coordinate system, the moments and transverse shear forces in terms of r and h are
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where D is the flexural rigidity of the plate and m is the Poisson’s ratio. The flexural rigidity of the plate D is
defined as
D ¼ Et3

12ð1� m2Þ ð6Þ
where E is the Young’s modulus and t is the thickness of the plate. The corresponding normal and shear stres-
ses as functions of the out-of-plane coordinate z are
rrr ¼
Mrz

I
ð7aÞ

rhh ¼
Mhz

I
ð7bÞ

srh ¼
Mrhz

I
ð7cÞ
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2I
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4
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2I
t2

4
� z2

� �
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where I (=t3/12) is the moment of inertia per unit length. The general solution of x in Eq. (4) is
x ¼ R0 þ
X1
m¼1

Rm cos mhþ
X1
m¼1

R0m sin mh ð8Þ
where R0, Rm and R0m are functions of the radial distance r. Here, R0 and R1 are
R0 ¼ A0 þ B0r2 þ C0 ln r þ D0r2 ln r ð9Þ
R1 ¼ A1r þ B1r3 þ C1r�1 þ D1r ln r ð10Þ
where A0, B0, C0, D0, A1, B1, C1, and D1 are unknown coefficients. The general form of the function Rm for
m > 1 is
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Rm ¼ Amrm þ Bmr�m þ Cmrmþ2 þ Dmr�mþ2 ð11Þ
where Am, Bm, Cm and Dm are unknown coefficients. Similar expressions can be written for the function R0m.
Substituting Eqs. (9)–(11) for the functions Rm and the corresponding equations for the functions R0m into Eq.
(8), we can obtain the general solution of x. The unknown coefficients Am, Bm, Cm, Dm, A0m, B0m, C0m, and D0m
can be determined to satisfy the boundary conditions for each particular case.
4. Closed-form solutions for resultant forces and moments on inclusions

Closed-form solutions for plates with inclusions under different resultant forces and moments are summa-
rized in this section. The solutions are needed to derive the new closed-form stress intensity factor solutions for
spot welds in five commonly used specimens as detailed in a subsequent paper (Lin and Pan, 2008a).
4.1. Shear forces Fx and Fy

Fig. 4(a) shows a two-dimensional model of an infinite plate with a rigid inclusion subjected to a resultant
shear force Fx to the rigid inclusion. This model represents a spot weld under shear loading conditions. In this
figure, the shaded circle represents a rigid inclusion of the radius a. As shown in the figure, a Cartesian coor-
dinate system is centered at the center of the inclusion. The shear force Fx, marked as an arrow in the positive
x direction, represents the resultant force acting to the inclusion. The shear force Fx moves the rigid inclusion
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A plate with a rigid inclusion subjected to various types of resultant loads to the inclusion and subjected to different types of
ary conditions. (a) A shear force Fx, (b) an opening force Fz and a clamped edge, (c) an opening force Fz and a simply supported
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by a displacement d in the positive x direction. The rigid inclusion represents the spot weld nugget and the
infinite plate represents the sheet surrounding the spot weld nugget. Here, the inclusion is assumed to be per-
fectly bonded to the plate at r = a and the stresses and strains are assumed to be zero at infinity. For all models
considered in this paper, the inclusion is assumed to be perfectly bonded to the neighboring plate.

A polar coordinate system centered at the center of the rigid inclusion is also considered here for conve-
nience. The displacement boundary conditions along the inclusion circumference give the displacements at
r = a as
ur ¼ d cos h ð12Þ
uh ¼ �d sin h ð13Þ
where ur and uh represent the displacements in the radial and tangential directions, respectively, and d is the
rigid-body displacement in the positive x direction. The weak boundary condition along the circumference of
the rigid inclusion at r = a gives the equilibrium equation as
Z 2p

0

ðrrr cos h� rrh sin hÞrtdh ¼ �F x ð14Þ
It is straightforward to solve the two-dimensional elastic boundary valued problem by the Airy stress func-
tion approach using the general solution of Michell (1899). The stresses in the infinite plate are given as
rrr ¼ F x �
ð3þ mÞ

4prt
þ ð1þ mÞa2

4pr3t

� �
cos h ð15aÞ

rrh ¼ F x
ð1� mÞ

4prt
þ ð1þ mÞa2

4pr3t

� �
sin h ð15bÞ

rhh ¼ F x
ð1� mÞ

4prt
� ð1þ mÞa2

4pr3t

� �
cos h ð15cÞ
The closed-form solutions of this model were also presented in Muskhelishvili (1953) based on the complex
variable approach and Lin et al. (2006) based on the Airy stress function approach. Zhang (1997) used this
solution to obtain the mode II and III stress intensity factors for spot welds in lap-shear specimens. As shown
in Wang et al. (2005b) and Lin et al. (2006), this solution is applicable for a lap-shear specimen with the ratio
of the specimen width to the nugget diameter as small as 5. An approximate closed-form solution for a finite
circular plate containing a rigid inclusion with a clamped edge was presented by Salvini et al. (2000). Note that
the stresses for the spot weld under the resultant shear force Fy can be obtained by substituting h + p/2 for h in
Eq. (15).
4.2. Opening force Fz

Fig. 4(b) shows an axisymmetric model of a finite circular plate with a clamped edge. The plate contains a
rigid inclusion subjected to a resultant opening force Fz. This model represents a spot weld under opening
loading conditions. The opening force Fz, marked as an arrow in the positive z direction, represents the resul-
tant force acting on the inclusion. Note that the specimen width is important to the structural stresses for spot
welds under opening loading conditions (Wang et al., 2005a). Therefore, we take a finite circular plate here
instead of an infinite plate. In this figure, the circular plate with a diameter 2b represents the bottom sheet
of the upper cup or the top sheet of the lower cup of a circular-cup specimen (Wang et al., 2005a). The edge
of the circular plate is considered to be clamped due to the sharp flange along the edge of the circular bottom
and top sheets of the upper and lower cups, respectively.

The displacement boundary condition along the inclusion circumference at r = a is given as
ox
or

� �
r¼a

¼ 0 ð16Þ
The displacement boundary conditions along the plate circumference at r = b are given as
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ðxÞr¼b ¼ 0 ð17Þ
ox
or

� �
r¼b

¼ 0 ð18Þ
The boundary condition gives the equilibrium equation for any given r as
eQr ¼
�F z

2pr
ð19Þ
It is straightforward to derive the closed-form solutions for this model based on the classical Kirchhoff plate
theory. The moments and shear forces in the plate are given as
eM r ¼
�F z

4pr2ða2 � b2Þ
fb2½�a2ð�1þ mÞ þ r2ð1þ mÞ� lnðb=aÞ ð20aÞ

þ ða2 � b2Þr2½1þ ð1þ mÞ lnðr=aÞ�geM rh ¼ 0 ð20bÞ

eM h ¼
�F z

4pr2ða2 � b2Þ
fb2½a2ð�1þ mÞ þ r2ð1þ mÞ� lnðb=aÞ

þ ða2 � b2Þr2½mþ ð1þ mÞ lnðr=aÞ�g ð20cÞeQr ¼
�F z

2pr
ð20dÞeQh ¼ 0 ð20eÞ
The corresponding stresses can be derived by substituting Eq. (20) into Eq. (7). This solution was listed in
Young and Budynas (2002). Pook (1979) and Wang et al. (2005a) used this solution to derive the mode I stress
intensity factor solution for circular plates with connection and circular-cup specimens.

Fig. 4(c) shows an axisymmetric model of a circular plate with a simply supported edge. The plate contains
a rigid inclusion subjected to a resultant opening force Fz. The displacement boundary condition along the
inclusion circumference at r = a and the weak boundary condition for equilibrium are identical to those in
Eqs. (16) and (19). With consideration of the simply supported edge, the boundary conditions along the cir-
cumference of the plate at r = b are given as
ðxÞr¼b ¼ 0 ð21Þ
ðMrÞr¼b ¼ 0 ð22Þ
Based on the classical Kirchhoff plate theory, the moments and shear forces of this model are given as
eM r ¼
F z

4pr2½a2ð�1þ mÞ � b2ð1þ mÞ�
fa2ðb2 � r2Þð�1þ mÞ

þ b2ð1þ mÞ½a2ð�1þ mÞ � r2ð1þ mÞ� lnðb=aÞ
þ r2½b2ð1þ mÞ2 � a2ð�1þ m2Þ� lnðr=aÞg ð23aÞeM rh ¼ 0 ð23bÞ

eM h ¼
�F z

4pr2½a2ð�1þ mÞ � b2ð1þ mÞ�
fð�1þ mÞ½�b2r2ð1þ mÞ þ a2ðb2 þ r2mÞ�

þ b2ð1þ mÞ½a2ð�1þ mÞ þ r2ð1þ mÞ� lnðb=aÞ
þ r2ð1þ mÞ½a2ð�1þ mÞ � b2ð1þ mÞ� lnðr=aÞg ð23cÞ

eQr ¼
�F z

2pr
ð23dÞeQh ¼ 0 ð23eÞ
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The corresponding stresses can be derived by substituting Eq. (23) into Eq. (7). This solution was listed in
Young and Budynas (2002). Pook (1979) used this solution to derive the mode I stress intensity factor solution
for circular plates with connection. Lin and Pan (2008a) used this solution to derive the stress intensity factor
solutions for various types of specimens.
4.3. Central bending moments Mx and My

Fig. 4(d) shows a model of a finite circular plate with a clamped edge. The plate contains a rigid
inclusion subjected to a central bending moment Mx. This model represents a spot weld under central
bending conditions. The central bending moment Mx, marked as an arrow in the positive x direction,
represents the resultant bending moment acting on the inclusion. The displacement boundary condition
along the inclusion circumference at r = a due to the rotation of the rigid inclusion based on the geom-
etry is given as
ox
or

� �
r¼a

¼ x
r

� 	
r¼a

ð24Þ
The displacement boundary conditions along the circumference of the plate at r = b are given as
ðxÞr¼b ¼ 0 ð25Þ
ox
or

� �
r¼b

¼ 0 ð26Þ
The weak boundary condition gives the equilibrium equation for any given r as
Z 2p

0

ðMrr sin h� Qrr
2 sin hþMrhr cos hÞdh ¼ �Mx ð27Þ
It is straightforward to derive the closed-form solutions of this model based on the classical Kirchhoff plate
theory. The detailed derivations for this problem were presented in Reißner (1929). The moments and shear
forces of this model are given as
eM r ¼
Mxfa2½b2ð�1þ mÞ � r2ð1þ mÞ� þ r2½�b2ð1þ mÞ þ r2ð3þ mÞ�g sin h

4pr3ða2 þ b2Þ
ð28aÞ

eM rh ¼
Mxða2 � r2Þðb2 � r2Þð1� mÞ cos h

4pr3ða2 þ b2Þ
ð28bÞ

eM h ¼
Mxfa2½b2ð1� mÞ � r2ð1þ mÞ� þ r2½�b2ð1þ mÞ þ r2ð1þ 3mÞ�g sin h

4pr3ða2 þ b2Þ
ð28cÞ

eQr ¼
Mxða2 þ b2 þ 2r2Þ sin h

2pr2ða2 þ b2Þ
ð28dÞ

eQh ¼
�Mxða2 þ b2 � 2r2Þ cos h

2pr2ða2 þ b2Þ
ð28eÞ
Note that when b� a, the closed-form solutions of the finite plate model in Eq. (28) can be used to approx-
imate those for an infinite plate with a rigid inclusion. The limits of the moments and shear forces of the finite
plate model in Eq. (28) for b� a are given as
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eM r ¼
Mx½a2ð�1þ mÞ � r2ð1þ mÞ� sin h

4pr3
ð29aÞ

eM rh ¼
Mxða2 � r2Þð1� mÞ cos h

4pr3
ð29bÞ

eM h ¼
Mx½a2ð1� mÞ � r2ð1þ mÞ� sin h

4pr3
ð29cÞ

eQr ¼
Mx sin h

2pr2
ð29dÞ

eQh ¼
�Mx cos h

2pr2
ð29eÞ
Zhang (1997) used this solution to derive the mode II stress intensity factor solution for lap-shear
specimens. Zhang (1997) also used this solution to approximate the solution under counter bending
conditions to derive the mode I stress intensity factor solutions for lap-shear and cross-tension
specimens.

Fig. 4(e) shows a model of a finite circular plate with a simply supported edge. The plate contains a rigid
inclusion subjected to a central bending moment Mx. This model represents a spot weld under central bending
conditions. The boundary condition along the inclusion circumference at r = a and the weak boundary con-
dition for equilibrium equation are identical to those in Eqs. (24) and (27), respectively. The boundary con-
ditions along the circumference of the plate at r = b are given as
ðxÞr¼b ¼ 0 ð30Þ
ð eM rÞr¼b ¼ 0 ð31Þ
It is straightforward to derive the closed-form solutions of this model based on the classical Kirchhoff plate
theory. The detailed derivations of the solutions were presented in Timoshenko and Woinowsky-Krieger
(1959). The moments and shear forces of this model are given as
eM r ¼
Mxðb2 � r2Þ

4pr3½a4ð�1þ mÞ � b4ð3þ mÞ�
½a4ð�1þ m2Þ

� a2ðb2 þ r2Þð�3þ 2mþ m2Þ þ b2r2ð3þ 4mþ m2Þ� sin h ð32aÞ

eM rh ¼
Mxða2 � r2Þð1� mÞ

4pr3½a4ð�1þ mÞ � b4ð3þ mÞ�
fa2½r2ð1� mÞ þ b2ð1þ mÞ�

þ b2½r2ð1þ mÞ � b2ð3þ mÞ�g cos h ð32bÞ

eM h ¼
Mx

4pr3½a4ð�1þ mÞ � b4ð3þ mÞ�
fa4ðb2 þ r2Þð1� m2Þ

þ b2r2ð1þ mÞ½b2ð3þ mÞ � r2ð1þ 3mÞ�
þ a2½b4ð�3þ 2mþ m2Þ þ r4ð�1� 2mþ 3m2Þ�g sin h ð32cÞ

eQr ¼
Mx

2pr2½a4ð�1þ mÞ � b4ð3þ mÞ�
fa4ð�1þ mÞ þ 2a2r2ð�1þ mÞ

� b2½2r2ð1þ mÞ þ b2ð3þ mÞ�g sin h ð32dÞ

eQh ¼
Mx

2pr2½a4ð�1þ mÞ � b4ð3þ mÞ�
f�a4ð�1þ mÞ þ 2a2r2ð�1þ mÞ

þ b2½�2r2ð1þ mÞ þ b2ð3þ mÞ�g cos h ð32eÞ
Note that the moments and shear forces for the resultant moment My can be obtained by substituting h + p/2
for h in Eqs. (28), (29), or (32). The corresponding stresses can be derived by substituting Eqs. (28), (29), or
(32) into Eq. (7). Lin and Pan (2008a) used this solution to derive a new mode I stress intensity factor solution
for coach-peel specimens.
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4.4. Twisting moment Mz

Fig. 4(f) shows an axisymmetric model of an infinite plate with a rigid inclusion subjected to a twisting
moment Mz. This model represents a spot weld under twisting loading conditions. The twisting moment
Mz, marked as an arrow in the positive z direction, represents the resultant twisting moment acting on the
inclusion. Based on the elementary solid mechanics, the closed-form solution of this model is given as
Fig. 5.
uniform
a squa
srh ¼
�Mz

2pr2t
ð33Þ
Zhang (1999, 2001) used this solution to derive the mode III stress intensity factor solution.
5. Closed-form solutions for self-balanced resultant forces and moments on plate lateral surface

Closed-form solutions for plates with inclusions under different self-balanced resultant forces and moments
are summarized in the following. Note that the solutions are needed to derive the new closed-form stress inten-
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sity factor solutions for five commonly used spot weld specimens as detailed in a subsequent paper (Lin and
Pan, 2008a).

5.1. Self-balanced tensile/compressive force eF s
x and eF s

y

Fig. 5(a) shows a model of an infinite plate with a rigid inclusion subjected to a remote uniformly distrib-
uted tensile force eF s

x. This model represents a spot weld under tensile/compressive loading conditions. This
rigid inclusion problem can be considered as a two-dimensional plane stress problem. The displacement
boundary conditions at r = a along the circumference of the inclusion are expressed as
ur ¼ 0 ð34Þ
uh ¼ 0 ð35Þ
where ur and uh represent the displacements in the radial and tangential directions, respectively. It is straight-
forward to solve the two-dimensional elastic boundary valued problem by the Airy stress function approach
using the general solution of Michell (1899). The stresses in the infinite plate are given as
rrr ¼
eF s

x

t
1

2
þ a2ð1� mÞ

2r2ð1þ mÞ

� �
þ 1

2
� 2a2ð1þ mÞ

r2ð�3þ mÞ þ
3a4ð1þ mÞ

2r4ð�3þ mÞ

� �
cosð2hÞ


 �
ð36aÞ

rrh ¼
eF s

x

t
�1

2
� a2ð1þ mÞ

r2ð�3þ mÞ þ
3a4ð1þ mÞ

2r4ð�3þ mÞ

� �
sinð2hÞ ð36bÞ

rhh ¼
eF s

x

t
1

2
þ a2ð�1þ mÞ

2r2ð1þ mÞ

� �
� 1

2
þ 3a4ð1þ mÞ

2r4ð�3þ mÞ

� �
cosð2hÞ


 �
ð36cÞ
Note that the stresses for eF s
y can be obtained by substituting h + p/2 for h in Eq. (36). Note that the r-depen-

dent terms on the right-hand sides of Eqs. (36a), (36b) and (36c) are expressed in terms of (a/r)2 and (a/r)4. The
constant terms on the right-hand sides of Eqs. (36a), (36b) and (36c) are in general related to the constant
remote uniform tensile force in the x direction. When a/r is less than 0.1, the contributions of these terms
are a few percents of the constant terms in the order of unity, and the stress state at this radial distance r

can be used to approximate the self-balanced tensile/compressive loading for a finite square plate with a rigid
inclusion. Therefore, the solutions in Eq. (36) can be approximately applicable to a rigid inclusion in a square
plate of the width 2b where b/a is larger than 10.

5.2. Self-balanced counter bending moment eM s
x and eM s

y

Fig. 5(b) shows a model of an infinite plate with a rigid inclusion subjected to a remote uniform counter
bending moment eM s

x. This model represents a spot weld under counter bending loading conditions. Based
on the assumptions of the rigid inclusion and the perfect bonding between the inclusion and the neighboring
plate, the displacement boundary conditions along the circumference of the inclusion at r = a are given as
ðxÞr¼a ¼ 0 ð37Þ
ox
or

� �
r¼a

¼ 0 ð38Þ
The boundary conditions along the remote edges of the plate for this model are
ðMxÞx!�1 ¼ eM s
x ð39Þ

ðMyÞy!�1 ¼ 0 ð40Þ
It is straightforward to derive the closed-form solutions of this model based on the classical Kirchhoff plate
theory. The detailed derivations of the solutions were presented in Goland (1943) and Lin et al. (2007).
The moments and shear forces of this model are given as
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eM r ¼
eM s

x

2r4ð�1þ m2Þ fr
2ð�1þ mÞ½�a2ð�1þ mÞ þ r2ð1þ mÞ�

þ ð1þ mÞ½3a4ð�1þ mÞ þ r4ð�1þ mÞ � 4a2r2m� cos 2hg ð41aÞ

eM rh ¼
� eM s

x

2r4
ð�3a4 þ 2a2r2 þ r4Þ sin 2h ð41bÞ

eM h ¼
eM s

x

2r4ð�1þ m2Þ fr
2ð�1þ mÞ½a2ð�1þ mÞ þ r2ð1þ mÞ�

� ð1þ mÞ½4a2r2 þ 3a4ð�1þ mÞ þ r4ð�1þ mÞ� cos 2hg ð41cÞ

eQr ¼
4 eM s

xa
2 cos 2h

r3ð�1þ mÞ ð41dÞ

eQh ¼
4 eM s

xa
2 sin 2h

r3ð�1þ mÞ ð41eÞ
By the similar argument for the case of a plate with a rigid inclusion under self-balanced tensile/compressive
forces, the moment solutions in Eq. (41) should be approximately valid for a rigid inclusion in a square plate
of the width 2b where b/a is larger than 10.

Fig. 5(c) shows a model of a finite square plate with a rigid inclusion subjected to a uniform counter bend-
ing moment eM s

x along the two edges as shown. In this figure, the square plate has the size of 2b as shown. The
size 2b can be correlated to the widths of various types of specimens as shown in Lin and Pan (2008a). The
displacement boundary conditions along the inclusion circumference at r = a are identical to Eqs. (37) and
(38). The boundary conditions along the edges of the plate are
ðMxÞx¼�b ¼ eM s
x; ðMxyÞx¼�b ¼ 0; ðQxÞx¼�b ¼ 0 ð42Þ

ðMyÞy¼�b ¼ 0; ðMyxÞy¼�b ¼ 0; ðQyÞy¼�b ¼ 0 ð43Þ
However, it is very difficult to apply the boundary conditions in Eqs. (42) and (43) to determine the coefficients
of the solution of x with respect to the polar coordinate system. Therefore, Lin et al. (2007) selected a set of
approximate boundary conditions at points A, B, C, and D on the edges of the plate as shown in Fig. 5(c).
Based on the boundary conditions in Eqs. (42) and (43), the approximate boundary conditions at point A
(r = b, h = 0�) are selected to be
ðMrÞr¼b;h¼0� ¼ eM s
x ð44Þ

ðQrÞr¼b;h¼0� ¼ 0 ð45Þ
The approximate boundary conditions at point B (r = b, h = 90�) are selected to be
ðMrÞr¼b;h¼90� ¼ 0 ð46Þ
ðQrÞr¼b;h¼90� ¼ 0 ð47Þ
Due to the symmetry, the approximate boundary conditions at points C and D are not shown here. Note that
Mrh in the rightward and downward directions of the inclusion (h = 0� and 90�) is identically zero due to sym-
metry. Therefore, Mrh is not considered in the approximate boundary conditions.

With consideration of the approximate boundary conditions, it is straightforward to derive the approx-
imate closed-form solutions of this model based on the classical Kirchhoff plate theory. The detailed deri-
vation for the solutions was presented in Lin et al. (2007). The moments and shear forces of this model are
listed here as
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eM r ¼
eM s

x

2r4XY
fr2X ½r2Y þ a2ðb2 � r2Þð�1þ mÞ� þ Y ½r4X þ a8ðb4 � r4Þð�1þ mÞ

þ 3a4b4ðb4 � r4Þð�1þ mÞ � 4a2b4r2ðb2 � r2Þð�r2 þ b2mÞ� cos 2hg ð48aÞ

eM rh ¼
eM s

xb
4ða2 � r2Þ½a6 þ r2ða4 þ b4Þ þ a2ð3b4 þ 2r4Þ�ð�1þ mÞ sin 2h

2r4X
ð48bÞ

eM h ¼
� eM s

x

2r4XY
fr2X ½�r2Y þ a2ðb2 þ r2Þð�1þ mÞ� þ Y ½r4X þ a8ðb4 � r4Þð�1þ mÞ

þ 3a4b4ðb4 � r4Þð�1þ mÞ þ 4a2b4r2ðb2 þ r2Þðb2 þ r2mÞ� cos 2hg ð48cÞ

eQr ¼
4 eM s

xa
2b4ðb4 � r4Þ cos 2h

r3X
ð48dÞ

eQh ¼
4 eM s

xa
2b4ðb4 þ r4Þ sin 2h

r3X
ð48eÞ
where X and Y are defined as
X ¼ ð�1þ mÞða4 þ b4Þ2 � 4a2b6ð1þ mÞ ð49aÞ
Y ¼ a2ð�1þ mÞ � b2ð1þ mÞ ð49bÞ
Note that the moments and shear forces for the counter bending moment eM s
y can be derived by substi-

tuting h + p/2 for h in Eqs. (41) and (48). The corresponding stresses can be derived by substituting Eqs.
(41) and (48) into Eq. (7). This solution appears to be approximately valid for b/a as small as 5 (Lin
et al., 2007) by comparing the moments and shear forces based on the closed-form solution and those
of the applied counter bending conditions along the four edges of a square plate with various ratios of
b/a. Additionally, we performed a three-dimensional finite element analysis of a finite square plate with
a rigid inclusion under counter bending conditions. Counter bending moments were applied to the two
opposite edges of the square plate as shown in Fig. 5(c). The computational results were obtained for
a large ratio of b/a = 25 and a small ratio b/a = 6 with t/a = 0.2 and m = 0.3. The difference of the com-
putational result and the closed-form solution for the maximum eM r at the critical locations (h = 0 or p as
shown Fig. 5(c)) along the inclusion circumference for the large ratio of b/a = 25 is less than 1%. For the
small ratio of b/a = 6, the difference of the computational result and the closed-form solution for the max-
imum eM r at the critical locations along the inclusion circumference is less than 5%. The computational
results suggest that the closed-form solution is approximately valid for b/a as small as 6. Note that this
solution is the key to derive the closed-form stress intensity factor solutions for various types of specimens
in the subsequent paper (Lin and Pan, 2008a) since the sizes of these specimens are critical for the
solutions.
5.3. Self-balanced shear forces eF s
xy and eF s

yx

Fig. 5(d) shows a model of an infinite plate with a rigid inclusion subjected to remote uniform shear
forces eF s

xy and eF s
yx. Note that eF s

xy and eF s
yx should be the identical due to equilibrium. Based on the

Mohr’s circle transformation, the lateral shear loading condition is equivalent to a combined tensile
and compressive loading condition in a new x0 and y0 coordinate system where eF s

x0 ¼ eF s
xy andeF s

y0 ¼ �eF s
xy . The x0 and y0 axes are rotated 45� counterclockwise from the original x and y axes, respec-

tively. Substituting eF s
xy for eF s

x and h + p/4 for h in Eq. (36) gives the stresses under tensile loading con-
ditions and substituting �eF s

xy for eF s
x and h + 3p/4 for h in Eq. (36) gives the stresses under compressive

loading conditions. Then combining the stresses under tensile and compressive loading conditions gives
the stresses of this model as
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rrr ¼
�eF s

xy

r4tð�3þ mÞ ½r
4ð�3þ mÞ þ ð3a4 � 4a2r2Þð1þ mÞ� sin 2h ð50aÞ

rrh ¼
eF s

xy

r4tð�3þ mÞ ½�r4ð�3þ mÞ þ ð3a4 � 2a2r2Þð1þ mÞ� cos 2h ð50bÞ

rhh ¼
eF s

xy

r4tð�3þ mÞ ½r
4ð�3þ mÞ þ 3a4ð1þ mÞ� sin 2h ð50cÞ
By the similar argument for the case of a plate with a rigid inclusion under self-balanced tensile/compressive
forces, the solutions in Eq. (50) should be approximately valid for a rigid inclusion in a square plate of the
width 2b where b/a is larger than 10.

5.4. Self-balanced twisting moments eM s
xy and eM s

yx

Fig. 5(e) shows a model of an infinite plate with a rigid inclusion subjected to remote uniform
twisting moments eM s

xy and eM s
yx. Note that eM s

xy and eM s
yx should be identical due to equilibrium. Based

on the Mohr’s circle transformation, the twisting loading condition is equivalent to a combined counter
bending loading condition in a new x0 and y0 coordinate system where eM s

x0 ¼ eM s
xy and eM s

y0 ¼ � eM s
xy .

The x0 and y0 axes are rotated 45� counterclockwise from the original x and y axes, respectively.
Substituting eM s

xy for eM s
x and h + p/4 for h in Eq. (41) or (48) gives one set of the moments and forces

under counter bending loading conditions and substituting � eM s
xy for eM s

x and h + 3p/4 for h in Eq.
(41) or (48) gives another set of the moments and forces under counter bending loading conditions.
Then combining these two sets of the moments and forces gives the moments and forces of this model
as
eM r ¼
eM s

xy

r4ð�1þ mÞ ½ð3a4 þ r4Þð1� mÞ þ 4a2r2m� sin 2h ð51aÞ

eM rh ¼
� eM s

xy

r4
ð�3a4 þ 2a2r2 þ r4Þ cos 2h ð51bÞ

eM h ¼
eM s

xy

r4ð�1þ mÞ ½ð3a4 þ r4Þð�1þ mÞ þ 4a2r2m� sin 2h ð51cÞ

eQr ¼
�8 eM s

xya
2 sin 2h

r3ð�1þ mÞ ð51dÞ

eQh ¼
8 eM s

xya
2 cos 2h

r3ð�1þ mÞ ð51eÞ
The corresponding stresses can be derived by substituting Eq. (51) into Eq. (7). By the similar argument for
the case of a plate with a rigid inclusion under self-balanced counter bending moment, the moment solu-
tions in Eq. (51) should be approximately valid for a rigid inclusion in a square plate of the width 2b where
b/a is larger than 10. Similar operation can be used to derive the solutions for a finite square plate with a
rigid inclusion using the solutions in Eqs. and (48) and (49). However, the solutions are quite complex and
are not listed here.
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Fig. 6. A two-dimensional model of two infinite strips with connection under plane strain conditions.
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6. Stress intensity factor solutions for a strip under various types of loading conditions

Once the moments, transverse shear forces and structural stresses along the rigid inclusion circumference
are determined from a plate with a rigid inclusion under various types of the loading conditions, the strip
model of Radaj and Zhang (1991a) can then be adopted to derive approximate stress intensity factor solutions
for spot welds under various types of loading conditions. Fig. 6 shows a two-dimensional model of two infinite
strips with connection under plane strain conditions. The two strips have the same thickness t. As schemati-
cally shown in Fig. 6, the radial stress rrr and the shear stress rrh along the rigid inclusion circumference
obtained from a plate with a rigid inclusion under various types of loading conditions are used to represent
the structural stresses rx and sxz for the strip model, respectively, with respect to the Cartesian coordinate sys-
tem as shown in Fig. 6. Note that the effects of the transverse shear stresses are neglected (Radaj, 1989; Radaj
and Zhang, 1991a). The stress intensity factors can then be determined from the structural stress distributions
and the J integral based on the strip model shown in Fig. 6.

For linear elastic materials, the J integral (Rice, 1968) represents the energy release rate. Under plane strain
conditions, the J integral is related to KI, KII and KIII as
Fig. 8. Decomposition of the general structural stress distributions of a strip model. Model A represents a strip model under general
distributions of the normal stresses rx and the shear stresses sxz. The general stress distributions of model A can be decomposed into
several symmetric or anti-symmetric structural stress distributions: symmetric counter bending (model B), anti-symmetric central bending
(model C), symmetric tension/compression (model D), anti-symmetric in-plane shear (model E), symmetric out-of-plane shear (model F)
and anti-symmetric out-of-plane shear (model G).
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J ¼ 1� m2

E
ðK2

I þ K2
IIÞ þ

K2
III

2G
ð52Þ
Fig. 7(a) shows a crack and a Cartesian coordinate system centered at the crack tip. In reference to Fig. 7(a),
the J integral is defined as
J ¼
Z

C
Wnx � T i

oui

ox

� �
ds; i ¼ x; y; z ð53Þ
where C represents a contour counterclockwise from the lower crack face to the upper crack face, ds represents
the differential arc length of the contour C, nx represents the x component of the unit outward normal n to the
differential arc length ds, Ti (=rijnj) represents the components of the traction vector T on the differential arc
length ds, and ui represents the components of the displacement vector u. In Eq. (53), the strain energy density
W is defined as
W ¼
Z e

ij

0

rijdeijði; j ¼ x; y; zÞ ð54Þ
Rice (1968) showed that the J integral is a path-independent line integral. Fig. 7(b) shows the front and side
views of the left half of the strip model near the crack tip with linearly distributed structural stresses based on
the classical Kirchhoff plate theory. As shown in Fig. 7(b), the normal stress rx and the shear stress sxz rep-
resent the structural stresses for the two infinite strips. The normal stresses rui, ruo, rli and rlo represent the
normal stresses rx at the inner (i) and outer (o) surfaces of the upper (u) and lower (l) strips, respectively. The
shear stresses su and sl represent the shear stress sxz of the upper (u) and lower (l) strips, respectively. Since the
spot weld is modeled as a rigid inclusion with a perfect bonding to the plate, the twisting moment along the
nugget circumference is zero. Therefore, sxz in the upper and lower strips are uniformly distributed through
the thickness. For spot welds in various types of specimens or in automotive structural components under
complex loading conditions, the deformation of the spot weld may deviate from that of a rigid inclusion.
In this case, the structural stresses based on the rigid inclusion assumption may not give accurate stress inten-
sity factor solutions along the nugget circumference (Lin and Pan, 2008b).

As shown in Fig. 7(b), the line ABCDEF is considered as the contour C for the J integral. The J integral is
written for the contour lines AB, BC, CD, DE, and EF as
J ¼
Z

AB
þ
Z

BC
þ
Z

CD
þ
Z

DE
þ
Z

EF

� �
Wnx � T i

oui

ox

� �
ds ð55Þ
where the integrals along line BC and line DE are zero because nx is zero and Ti are zeros. For the integrals
along line AB, line CD and line EF , the contributions of the shear stress sxy are taken to be zero in Radaj and
Zhang (1991a). Recently, the three-dimensional finite element computational results of Wang et al. (2005a,b)
and Lin and Pan (2008b) for various types of spot weld specimens indicate that the structural stresses from the
bending moments and the membrane forces provide the dominant contributions to the stress intensity factors
along the nugget circumference whereas the structural stresses from the transverse shear forces may not have
significant contributions. Therefore, the J integral can be written as
J ¼ �
Z

AB
Wdy þ

Z
CD

Wdy þ
Z

EF
Wdy

� �
ð56Þ
where the strain energy density W is
W ¼ 1� m2

2E
r2

x þ
s2

xz

2G
ð57Þ
Since the integrals along line BC and line DE are zero, line AB, line CD and line EF can be taken near the crack
tip or at the far ends of the infinite strips by the path independence of the J integral.

Based on the works of Radaj (1989) and Radaj and Zhang (1991a), general structural stress distributions
for a strip model can be decomposed into several symmetric and anti-symmetric distributions. Fig. 8 schemat-
ically shows the decomposition of the general structural stress distributions of a strip model. Schematics of
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various types of structural stress distributions are shown from model A to G in Fig. 8. The general structural
stress distributions are shown as model A. The structural stress distributions of model A are then decomposed
into several symmetric or anti-symmetric types of structural stress distributions: symmetric counter bending
(model B), anti-symmetric central bending (model C), symmetric tension/compression (model D), anti-sym-
metric in-plane shear (model E), symmetric out-of-plane shear (model F) and anti-symmetric out-of-plane
shear (model G). The stress intensity factor KI, KII and KIII solutions for spot welds in various types of spec-
imens show strong dependence on the structural stresses near the spot weld (Radaj, 1989; Radaj and Zhang,
1991a,b, 1992; Zhang, 1997, 2001). For example, the KI solution is a function of the structural stresses near the
spot weld under symmetric counter bending conditions (model B shown in Fig. 8). The KII solution is a func-
tion of the structural stresses near the spot weld under anti-symmetric central bending and anti-symmetric in-
plane shear conditions (models C and E shown in Fig. 8). The KIII solution is a function of the structural stres-
ses near the spot weld under anti-symmetric out-of-plane shear conditions (model G shown in Fig. 8). Note
that the structural stresses under symmetric tension/compression and symmetric out-of-plane shear conditions
(models D and F shown in Fig. 8) have no contribution to any stress intensity factor.

The maximum values of the normal stress rx, marked as rCB for counter bending (model B), rB for central
bending (model C), rT for tension/compression (model E) and rS for in-plane shear (model D), in terms of the
normal stresses rui, ruo, rli, and rlo as shown for general loading (model A) are defined as
rCB ¼
1

4
ðrui � ruo þ rli � rloÞ ð58aÞ

rB ¼
1

4
ðrui � ruo � rli þ rloÞ ð58bÞ

rT ¼
1

4
ðrui þ ruo þ rli þ rloÞ ð58cÞ

rS ¼
1

4
ðrui þ ruo � rli � rloÞ ð58dÞ
The values of the shear stress sxz, marked as sS for symmetric out-of-plane shear (model F) and sAS for anti-
symmetric out-of-plane shear (model G), in terms of the shear stresses su and sl as shown for general loading
(model A) are defined as
sS ¼
1

2
ðsu þ slÞ ð59aÞ

sAS ¼
1

2
ðsu � slÞ ð59bÞ
6.1. Solution for a strip model under counter bending (model B)

As shown in Fig. 8, model B represents a strip model under counter bending conditions. Note that the
structural stresses of model B have no contribution to KII and KIII. For model B, the integral along line
CD in Eq. (56) is zero because line CD is traction free due to the self-equilibrating loading conditions of coun-
ter bending. Based on the classical Kirchhoff plate theory, the normal stress rx along line AB can be defined as
rx ¼ rCB 1þ 2y
t

� �
ð60Þ
Similarly, the normal stress rx along line EF can be defined as
rx ¼ rCB 1� 2y
t

� �
ð61Þ
Combining Eqs. (56), (60) and (61) gives the J integral for model B as
J ¼ �ð1� m2Þ
2E

Z �t

0

rCB 1þ 2y
t

� �� �2

dy þ
Z 0

t
rCB 1� 2y

t

� �� �2

dy

( )
¼ r2

CBtð1� m2Þ
3E

ð62Þ
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Combining Eqs. (52) and (62) with KII = 0 and KIII = 0 gives the KI solution for model B as
KI ¼
rCB

ffiffi
t
pffiffiffi
3
p ð63Þ
6.2. Solution for a strip model under central bending (model C)

Model C represents a strip model under central bending conditions. Note that the structural stresses of
model C have no contribution to KI and KIII. For model C, the derivations of the integrals are similar to those
for model B. However, an additional bending moment along line CD is required in order to balance the two
bending moments along line AB and line EF . Based on the classical Kirchhoff plate theory, the normal stress rx

along line AB can be defined as
rx ¼ �rB 1þ 2y
t

� �
ð64Þ
Similarly, the normal stress rx along line CD can be defined as
rx ¼
�rBy

2t
ð65Þ
The normal stress rx along line EF can be defined as
rx ¼ rB 1� 2y
t

� �
ð66Þ
Combining Eqs. (56), (64), (65) and (66) gives the J integral for model C as
J ¼ �ð1� m2Þ
2E

Z �t

0

�rB 1þ 2y
t

� �� �2

dy þ
Z t

�t

�rBy
2t

� 	2

dy þ
Z 0

t
rB 1� 2y

t

� �� �2

dy

( )

¼ r2
Btð1� m2Þ

4E
ð67Þ
Combining Eqs. (52) and (67) with KI = 0 and KIII = 0 gives the KII solution for model C as
KII ¼
rB

ffiffi
t
p

2
ð68Þ
6.3. Solution for a strip model under in-plane shear (model E)

Model E represents a strip model under in-plane shear conditions. Note that the structural stresses of model
E have no contribution to KI and KIII. For model E, an additional bending moment along line CD is required
in order to balance the moment due to the shear forces along line AB and line EF . The detailed derivations of
the integrals for the KII solution are similar to those for model C and are not repeated here. The J integral for
model D can be written as
J ¼ �
Z

AB
W dy þ

Z
CD

W dy þ
Z

EF
W dy

� �
¼ r2

Stð1� m2Þ
4E

ð69Þ
Combining Eqs. (52) and (69) with KI = 0 and KIII = 0 gives the KII solution for model D as
KII ¼
rS

ffiffi
t
p

2
ð70Þ



P.-C. Lin, J. Pan / International Journal of Solids and Structures 45 (2008) 3996–4020 4019
6.4. Solution for a strip model under anti-symmetric out-of-plane shear (model G)

Model G represents a strip model under anti-symmetric out-of-plane shear conditions. For model G, the
integral along line CD in Eq. (56) is zero since CD can be considered as traction free due to the self-equilibrat-
ing anti-symmetric out-of-plane shear loading conditions. The detailed derivations of the integrals for the KIII

solution are similar to those for model E and are not repeated here. The J integral for model G can be written
as
J ¼ �
Z

AB
W dy þ

Z
EF

W dy
� �

¼ s2
ASt
G

ð71Þ
Combining Eqs. (52) and (71), the KIII solution for model G is derived as
KIII ¼ sAS

ffiffiffiffi
2t
p

ð72Þ
Note that the structural stresses for strip models under symmetric tension/compression (model D) and under
symmetric out-of-plane shear (model F) have no contribution to any stress intensity factor and the J integral
for them are zero.

Note that in this paper, we only focus on spot welds joining two sheets of equal thickness. In practical
applications, spot welds may be used to join sheets of unequal thickness. In this case, the closed-form struc-
tural stress solutions presented in this paper remain applicable and the formulae presented in Zhang (2001)
can be used to obtain the stress intensity factor solutions.
7. Conclusions

The theoretical framework and closed-form stress intensity factor solutions in terms of the structural stres-
ses for spot welds under various types of loading conditions are presented based on elasticity theories and frac-
ture mechanics. A mechanics description of loading conditions for a finite plate with a rigid inclusion is first
presented. The loading conditions of interest are the resultant loads on the inclusion with respect to the center
of the inclusion in a finite or infinite plate and the surface tractions on the lateral surface of a finite or infinite
plate. The surface tractions on the lateral surface of the plate can be decomposed into a load-balanced part
and a self-balanced part. The load-balanced part is statically in equilibrium with the resultant loads acting
on the inclusion. The self-balanced part can be represented by the resultant loads on the lateral surface of
the plate.

The resultant loads on the inclusion and the self-balanced resultant loads on the lateral surface are then
decomposed into various types of symmetric and anti-symmetric parts. Based on the stress function approach
and the Kirchhoff plate theory for linear elastic materials, closed-form in-plane stress, moment and transverse
shear force solutions are derived for a plate with a rigid inclusion subjected to various types of resultant loads
on the inclusion and various types of resultant loads on the plate lateral surface. The relevant structural stress
solutions either can come from the in-plane stress solutions or can be derived easily from the moment solu-
tions. Based on the J integral for a strip model, closed-form analytical stress intensity factor solutions for spot
welds joining two sheets of equal thickness are derived in terms of the structural stresses around a rigid inclu-
sion in a plate under various types of loading conditions. The closed-form solutions presented in this paper are
used as the basis to develop new analytical stress intensity factor solutions for spot welds in various types of
specimens presented in a subsequent paper (Lin and Pan, 2008a).
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