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Abstract 

Numerical simulation of cutting by means of finite element methods is widely accepted worldwide. Simulation results hardly 
depend on the right choice of input material parameters such as the material model, the hardening law and failure criteria. One of 
the methods that have proved their adequacy is lagrange with erosion. Its drawbacks are widely known, but for simulation of 
ductile material machining this method seems to be the most reliable. The aim of the present paper is to assess material model 
parameters and failure criteria on cutting forces arising in the cutting process of 6061-T6 aluminum. Material model parameters 
were specified as the Johnson-Cook material model, the kinematic hardening and the isotropic hardening. The failure criteria 
were the Johnson-Cook model, the equivalent plastic strain and the maximum principal strain.  
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of ICIE 2016. 

Keywords: finite elememt method; cutting simulation; hardening; failure criteria. 

1. Introduction 

Cutting is one of the widespread methods of machining of different materials. Prediction of cutting forces plays 
an essential role for quality improvement of machined parts and components. Cutting can be analyzed by analytical 
and numerical methods. Numerical methods currently are widely improved; one of those is finite element method 
[20]. This method is widely used in various formulations such Lagrangian [1, 2, 13,8], Eulerian [6], SPH [3,12,14], 

 

 
* Corresponding author. Tel.: +7-351-267-9111; fax: +7-351-267-9111. 

E-mail address: ptc_bis@inbox.ru 

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICIE 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82221491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2016.07.031&domain=pdf


867 I.S. Boldyrev et al.  /  Procedia Engineering   150  ( 2016 )  866 – 870 

SPG [18], EFG [17] and incorporated in number of commercial programs. The main issue of using such a method 
for cutting simulations is the reasonable choice of parameters: material model, mechanical material properties and 
failure criteria [5, 8–12, 15, 16]. These parameters make an essential effect on obtained results, as in terms of 
quantity, as in terms of quality.  

The aim of the current paper is to assess effect of material model parameters and failure criteria on cutting forces 
arising in the cutting process during finite element method simulation. For this purpose, the authors have developed 
a finite element model of free orthogonal cutting of aluminum 6061-T6.  

2. Finite element modeling of free orthogonal cutting  

2.1. Model description 

For finite element modeling of free orthogonal cutting the model was created with the following parameters: box-
shaped workpiece with 10 x 4 x 3 mm. In analysis, cutting tool is assumed to be a rigid body with following 
parameters: elastic modulus 650 GPa, Poisson's ratio 0.25. Geometric variables of the tool are as follows: tip radius 
r= 0.1 mm, rake angle  = 150, clearance angle  = 50. Cutting speed 10 m/s, cutting depth t= 1 mm. The material 
aluminum 6061-T6 has the following properties: density 2700 kg/m3, Young’s modulus E=70 GPa, fracture strain 
0.5, yield stress 260 MPa. Coulomb's friction coefficient between tool and workpiece equals 0.3.  The finite element 
model of workpiece was using uniform mesh of hexahedral elements. The mesh of tool is not uniform for better 
results prediction. The analysis was performed using finite element method with Langrangian approach, element 
erosion and deletion with failure strain 0.5. 

2.2. Material models and failure criteria 

Flow stress modeling of work piece material is very important to achieve satisfactory results from metal cutting 
simulation. In the analysis, 6061-T6 is selected as work piece material as its properties are widely estimated in 
literature. Isotropic hardening, kinematic hardening and Johnson-Cook constitutive models are used in the current 
analysis. The parameters for isotropic and kinematic hardening are as follows: elastic modulus 70 GPa, Poisson's 
ratio 0,33, yield stress 260 MPa. The parameters of Johnson-Cook obtained by experiment are as follows: A=324.1 
MPa, B=113.8 MPa, N=0.42, C=0.002, M=1.34, strain rate effect is not considered [6,19]. The failure model 
parameters for Johnson-Cook model are as follows: D1=–0.77, D2=1.45, D3=–0.47, D4=0, D5=1.6 [4, 6]. For 
kinematic and isotropic hardening two types of failure criteria are used: effective plastic strain 0,5 and maximal 
principal strain at failure. The former is always a positive value and accounts all strain components of the deformed 
state. The latter is a tensile strain indicator. Its use gives more satisfactory results as material failure always 
accompanied by advancing crack in which the  principal stress is maximal. Von Mises stress distributions obtained 
in the result of modeling can be seen in Fig. 1. As one can see, the model elements have essential hourglass 
distortion that requires an additional  investigation. 

           

Fig. 1. Von Mises stress distribution using Johnson-Cook material model of aluminum 6061-T6 
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2.3. Cutting forces investigation  

In this section the results of finite element simulation are presented. The cutting forces simulation results 
available in the literature are compared. As is known, cutting force has three components: tangential “cutting” force 
Fc, radial force Fr and axial or thrust force Ft. In free orthogonal cutting only two of them have meaning -  Fc and Ft. 
Experimental results for investigated material 6061-T6 are given in table 1 [7]. The cutting conditions are as 
follows: cutting depth 0.63 mm, cutting width 3,3 mm, cutting velocity 20 m/s, rake angle 15 . 

As mentioned, three different constitutive models are used in this study. Threes simulations are carried out using 
same friction model and coefficient. Effect of material constitutive models on cutting and thrust force is given in fig. 
2-4. It can be stated that Johnson-Cook model can predict cutting force more accurate in contrast to other two. All 
models underestimate tangential forces. 

 

 

Fig. 2. Cutting forces Fc (1) and Ft calculated results (Johnson-Cook material model and criteria) 

 

Fig. 3. Cutting forces Fc (1) and Ft calculated results (kinematic hardening  material model and effective plastic strain failure criteria) 
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Fig. 4. Cutting forces Fc (1) and Ft calculated results (isotropic hardening  material model and effective plastic strain failure criteria) 

In order to estimate failure criteria on cutting forces value one simulation was carried out with maximum 
principal strain failure criteria using kinematic hardening material model. According to this criteria the finite 
element is excluded from calculation if this condition is satisfied:  1 > max. Thus predicted cutting forces results are 
given in table 1.  

3. Results and discussion 

Numerical simulation of 6061-T6 aluminum free orthogonal cutting showed the following results. Overall 
approach to such a problem with finite element method proved its validity. Quantitive results are satisfactory as 
continuous chip is obtained during simulation. Cutting and thrust force are depending of constitutive models. 
Calculated results of cutting forces are given in Table 1.  In all three cases thrust forces are underestimated. The 
minimum deviation is with Johnson–Cook constitutive model and failure criteria (800 N predicted), in this case the 
cutting force is overestimated.  The maximum discordance is in case of kinematic hardening and effective strain 
failure criteria. Isotropic and kinematic hardening have practically the same results. The type of failure criteria has 
an essential effect on cutting forces values. The Johnson-Cook criteria can predict cutting force more accurate in 
contrast to other two.  The difference between calculated and experimental cutting force may be attributed to 
simplified friction model with Coulomb’s coefficient of friction. 

  Table 1. Cutting force and thrust force results for different material models and experimental data 

Cutting 
forces, N 

Experimental Johnson-
Cook 

Kinematic hardening with maximum principal 
strain failure criteria 

Kinematic 
hardening 

Isotropic 
hardening 

Fc 719 800 410 490 510 

Ft 223 90 80 52 51 

4. Conclusions 

In this paper a finite element model of free orthogonal cutting of aluminum 6061-T6 is presented. The developed 
model is able to predict cutting forces and continuous chip morphology in full accordance with experimental data. 
Three different material models are implemented and results of modeling are compared with experimental data 
available in literature.  



870   I.S. Boldyrev et al.  /  Procedia Engineering   150  ( 2016 )  866 – 870 

The results of the simulation show that Johnson-Cook constitutive model and failure criteria are able to give more 
accurate results than kinematic and isotropic hardening.   
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