
INFORMATION AND COMPLTATION 86, 69-86 (1990) 

A Characterization of Heaps and Its Applications 

JGRG-R~~DIGER SACK* 

School of Computer Science, Carleton University, 
Colonel B.y Drive, Ottawa. Ontario, Canada KlS 5B6 

AND 

THOMAS STROTHOTTE' 

Institut ftir Informatik, Universitiit Stuttgart, 
Azenhergstrasse 12, D-7000 Stuttgart 1, Federal Republic of German? 

In this paper we present a new’ view of a classical data structure, the heap. We 
view a heap on n elements as an ordered collection of rlogz(n + l)] substructures of 
sizes 2’with i in {0, . . . . Llog,(n)]}. W e use the new view in the design of an algorithm 
,for splitting a heap on n elements into two heaps on k and n-k elements, respec- 
tively. The algorithm requires O(log*(n)) comparisons, improving the previous 
bound of O(k) comparisons for all but small values of k, i.e., for k > log’(n). We 
also present a new and conceptually simple algorithm for merging heaps of sizes n 
and k into one heap of size n + k in O(log(n) *log(k)) comparisons. (C’ 1990 

Academic Press, Inc. 

1. INTRODUCTION 

1.1. Background 

A (min-)heap (Williams, 1964) is a binary tree with the following 
properties: 

(1) it is heap-ordered, i.e., a key contained in any node is not greater 
than the keys of its offspring, and 

(2) it is heap-shaped, i.e., all leaves are on at most two adjecent 
levels, all leaves on the last level are as far to the left as possible, and all 
other levels are complete. A heap is an implicit data structure in the sense 
of (Munro et al., 1980). 

We refer to the number of elements in the heap as its size. The height of 
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TABLE I 

Traditional Heap-operations and Their Complexities 

Operation Description Comparisons 

Create Construct a heap O(n) 
FindMin Find element with minimum key O(l) 
DeleteMin Remove element with minimum key O(log(n)) 
Inserl Insert a new element Wag(n)) 

the heap is Llog(size) J. As usual, log stands for log, and, whenever integer 
values are expected, we will use the floor function, e.g., as in Llog(size)J. 

A heap is an efficient implementation of the data type priority queue, as 
shown in Brown (1980) and Gonnet (1984). The operations shown in 
Table I are commonly performed on heaps (see Floyd, 1964; Knuth, 1973; 
Gonnet, 1984). 

By exploiting the property that elements on a path from the root of a 
heap to a leaf occur in sorted order, the number of comparisons for insert- 
ing a new element into a heap can be reduced to O(log log(n)) (Gonnet 
and Munro, 1986). 

In this paper, we consider two additional operations on priority queues 
and show how these can be implemented using heaps. These operations are 
given in Table II. 

In addition to being of theoretic interest, the operations Split(heup, k) 
and Merge(heap1, heap2) are useful in the context of a multi-processor 
system where processors are deactivated (e.g., because of failure) and sub- 
sequently reactivated (e.g., start-up after repair). Each processor has 
associated with it a priority queue of jobs and the queue of any deactivated 
processor must be merged with the queue of some other processor. Subse- 
quently, after reactivation of the processor its priority queue is obtained by 
splitting some queue into two. In this case, the maximum queue size, k, of 
the newly activated processor, will be given as the second parameter for the 
Split-operation; two queues of sizes k and n - k, respectively, are produced. 

A related Merge operation for priority queues has previously been studied 
(see Aho et al., 1974, pp. 1522157). The authors designed a mergeable 
heap which consists of a 2-3 tree with a relaxation of the left-to-right 

TABLE II 

Description of the Operations Splif and Merge 

Merge 
Split 

Merge two heaps of sizes n and k 
Split a heap into two heaps of sizes k and n -k 
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ordering condition on the leaves. Only the value of the minimum key of a 
subtree is recorded at its root. Such heaps can be merged in O(log(n)) time, 
but cannot be stored implicitly. 

In a similar vein, Aho, et al. studied a Split operation which is related 
to the one we consider in this paper. Their operation Split(a, S) partitions 
a set S into two sets S,={b~S1b<a} and S,={b~Sjb>a}. They 
proposed concatenable queues, also based on 2-3 trees, to implement this 
operation in O(log(n)) time. Two such concatenable queues S,, Sz can be 
merged in @log(n)) time, provided that all elements of S, are less than all 
elements of Sz. However, O(n log n) time is required to construct such 
queues and they cannot be stored implicitly. 

We define a perfect heap as a heap of size 2’ - 1, while heaps of all 
other sizes are imperfect (Sack and Strothotte, 1985). Further, we define a 
pennant as a tree on 2’ elements, with the following properties: 

(a) the smallest element is located at the root, and 

(b) for i> 0, the root has exactly one child which is a perfect heap 
on the remaining 2’- 1 elements. 

See Fig. 1 for an illustration. 
The result of merging two equal-sized pennants is itself a pennant. 

Furthermore, a pennant can be split into two pennants of equal size. Thus, 
in contrast to perfect heaps, the set of pennants is closed under these two 
operations. 

In this paper, we develop an alternative view of heaps. Our view will be 
based on a l-l correspondence between heaps and certain ordered forests 
of pennants. The algorithms presented for splitting and merging heaps 
exploit this correspondence. 

1 
root 

FIG. 1. The root of a pennant has one child, consisting of a perfect heap. 
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2. AN ALTERNATIVE VIEW OF HEAPS 

In this section we show that a heap can be viewed as a unique ordered 
collection of pennants. A pennant forest or PF, P = (P,, . . . . PO), is defined 
to be an ordered collection of pennants satisfying the following properties: 

(a) each Pi, i = 0, . . . . m, is a pennant, 

(b) key(root(Pj)) < key(root(Pi- ,)) for 0 < i < m, and 

(c) size(Pi) 3 size(P,- ,). 

We say that a PF corresponds to a heap H if it contains the same elements 
as H, and furthermore, if a node p has a child s in the PF then this 
relationship holds also in H. 

In general, there is more than one way of constructing a pennant forest 
corresponding to a given heap. Conversely, it may be impossible to 
construct a heap to which a given pennant forest corresponds without 
performing additional comparisons. To illustrate the latter point and to 
provide the reader with a more intuitive view of the pennant structure and 
its relation to heaps, we discuss two examples. 

EXAMPLE 1. Let P = (P3, P,, P,, PO) be a PF in which all pennants 
have the same height h, where h is greater than 0. Intuitively, there are too 
many equal-sized pennants and thus the leaves of the heap will not be on 
adjacent levels. Any attempt to assemble a corresponding heap from this 
PF will result in a violation of the heap-shape. 

Another reason why a PF might not correspond to any heap is 
illustrated by the following example. 

EXAMPLE 2. Let P = (P2, P,, P,), where the height of P, equals 3. 
From the detintion of PF it follows that both P, and P, are at least as 
large as P,. Intuitively, the small pieces needed for the heap creation seem 
to be missing and again the heap-shape is violated. 

Thus it is relevant to count the number of pennants a given PF has. We 
associate with every PF a descriptor D = (d,., . . . . d,) such that the PF has 
di pennants of sizes 2’, for all i = 0, . . . . m’. If the number of nodes in the PF 
is k then 

k= ; di*2’. 
I=0 

In Section 2.1 we show how a unique PF is constructed corresponding to 
a given heap. The class of PF’s whose elements are created in this manner 
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are characterized using descriptors. In Section 2.2, we prove that this class 
of PF’s contains precisely all PF’s for which a corresponding heap can be 
constructed. This provides us with a l-l correspondence between heaps 
and this well-defined class of PF’s. 

2.1. Constructing a PF from a Heap 

Since a given heap may have many PF’s to which it corresponds, we 
need to specify a “canonical” PF representation. The idea is to split the 
heap by removing all arcs lying on the path from the root to the last leaf 
in the heap. Each node on the path from the root to the last leaf in the 
heap is the root of some pennant (see Fig. 2). This yields exactly 
rlog(n + 1)1 subtrees, each of which is a pennant. Since the roots of these 
pennants are also sorted, the collection of pennants forms a pennant forest. 
Algorithm ConstructPF states the procedure more formally; it also 
produces the descriptor for the PF corresponding to the given heap. 

Algorithm ConstructPF 
Input: A heap H of height m 
Output: The PF P corresponding to H as well as its descriptor D 

begin 
Initialize the descriptor D to 0 
j:=m 
for each edge (Node, Child) on the path in H from the root to the 

rightmost leaf on the last level do 
P, := the subtree rooted at Node excluding the subtree 
rooted at Child (Node now has one child less} 

j:=j- 1 
increment dhelghttP,, by 1 

{Now collect the remaining leaf} 
PO := last leaft in heap H 
increment dheipht(Pg) by I 

end 

In Fig. 3 we illustrate the PF corresponding to the heap of Fig. 2. The 
correctness of Algorithm ConstructPF is established in the following 
lemma. 

LEMMA 2.1. For any given heap H, Algorithm ConstructPF constructs a 
corresponding PF and its associated descriptor. 

Proof Let H be a heap and let m denote its height. We observe that 
any heap H contains a perfect subheap of height h - 1 rooted at the left 
child of the root, or it contains a perfect subheap of height h - 2 rooted at 
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FIG. 2. A heap on 19 elements showing the substructure of pennants (sizes 8, 4, 4, 2. 1). 

the right child of the root of H. In the former case, the left subtree together 
with the root forms a pennant; in the latter case, the right subtree together 
with the root forms a pennant. The algorithm extracts such a pennant and 
then iterates this procedure on the other subtree of H. This subtree is again 
a heap, since subtrees of heaps are heaps. Thus the trees P,, . . . . P,, are 
pennants. Furthermore, all roots of these pennants lie on a path in H from 
the root to a leaf. It follows that key(rootPj)) d key(root(Pjp ,)), and that 
size( P,) 3 size( P,- , ), for all j, with 0 <j d m. Q.E.D. 

The PF’s constructed by Algorithm ConstructPF have certain properties. 
In particular, we will show that since leaves in a heap lie on at most two 
levels, the heights of successively produced pennants differ by at most 2. 
Furthermore, the height of the pennant Pi is either i or i- 1. 

To formally characterize the PF’s produced by Algorithm ConstructPF, 
we introduce the notion of a valid descriptor. A valid descriptor (d,,, . . . . d,) 
is defined to be a descriptor which satisfies the following conditions: 

(1) For all j 6 m’, the partial sums Cl=, di are either j + 2 or j + 1, 
and 

(2) O<d,<2. 

We say that a PF is valid if its corresponding descriptor is valid. -- -- 
AA 

FIG. 3. The heap of Fig. 2 represented as a PF. 
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EXAMPLES OF DESCRIPTORS. 

Descriptor 

(2. LO. 1, 1, 2) 

(4, 1, 1, I. 1. 1) 
(20, 1. 1.0, 2) 
(l,Z 1, 1.2, 1) 

(1. 1, I. l,O, 1) 

valid/invalid 

valid 
invalid 
invalid 
invalid 
invalid 

For invalid descriptors, in the above table, the d, with smallest index i 
which makes (d,, . . . . d,) invalid is indicated in bold. 

We will now examine the structure of valid PF’s more closely. Note that 
for any id m the subsequence (Pi, . . . . P,) of a valid pennant forest 
(P,, . . . . PO) is itself valid. 

LEMMA 2.2. Let P = (P,, . . . . PO) be a valid PF. Then 

(a) for all OfiGm, height( P,) is either i - 1 or i, and 

(b) for aZlO<idm, height(P,)-height(P,-,)<2. 

Proof: (a) Since P is a valid PF, its corresponding descriptor 
D = (d,,, . . . . d,,) is valid. There are m + 1 pennants in P. Thus 
m + 1 = Cyl O d,. By definition, cyiO d, is either m’ + 1 or m’ + 2. Since m’ 
is the height of P,, height(P,) is either m or m - 1. Applying this argu- 
ment to the valid PF (P,, . . . . PO), km, proves part (a). Part (b) of the 
lemma follows directly from (a). Q.E.D. 

A property of a heap is that its shape is uniquely determined by the heap 
size n. In fact, as will be illustrated in Lemma 2.3, just by examining the 
binary representation R of n, the descriptor for the PF constructed by 
Algorithm ConstructPF can be generated. As shown below, this descriptor 
is valid. 

LEMMA 2.3. Let H be a heap and R the binary representation of its size n, 
where ri denotes the j th bit for j = 0, . . . . Llog n_l. The descriptor D constructed 
by Algorithm ConstructPF on input H satisjies the relationship 

d,=2-r, 

d,=r/-, + (1 -r,), 

for j= 1, . . . . Llog n_l. 
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Proof: Algorithm ConstructPF constructs the descriptor D by examin- 
ing the path from the root of the heap to its n th node. We will use the fact 
that this path from the root of a heap to its nth node is described by the 
binary representation R of n, where the high order bit is ignored, “0” 
stands for “go to left son,” and “1” stands for “go to right son.” The least 
significant bit of R is assumed to be rO. Combining this with Lemma 2.1, 
we observe that for j > 0 

height( P,) = 
j-l if Y,-~=O 

j if ri+,=l. 

Hence dj can be computed from rj and r,- r, for j > 0 as 

and for j=O as 

i 

r i-1 

0 
1 
0 
1 

These values of d, coincide exactly with the ones obtained by the rela- 
tionship stated in the lemma. Q.E.D. 

From Lemma 2.3 follows 

COROLLARY 2.1. Let H be a heap, D= (d,, . . . . d,) its descriptor as 
produced by Algorithm ConstructPF, and R = r, . . ’ r,, the binary representa- 
tion of its size n. Then for all 0 <k 6 m 

(a) CT=odj=(k+2)-r,, 

(b) CT=, dj2j= 2k+1 - rk2k + cf:d rj2’. 
- 

LEMMA 2.4. Let H be a heap. The PF constructed by Algorithm 
ConstructPF on input H is valid. 

Proof: Follows from Corollary 2.1(a). Q.E.D. 
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EXAMPLES. 

Number Binary representation 

22 (1.0. I, 1,O) 
19 (l,O,O, 1.1) 

Valid descriptor 

(2, 1,o. 2) 
(1,2,1, 1) 

2.2. Constructing a Heap from a Valid PF 

So far we have shown how to construct a valid PF corresponding to a 
given heap. We shall now turn to the inverse operation: given a valid PF, 
construct a heap. This establishes a l-l correspondence between heaps and 
valid pennant forests. 

We will give a general algorithm for converting any PF into a binary 
tree, and then show, by using Lemma 2.3, that in the special case of valid 
PF’s as input, the binary tree generated by the algorithm is a heap. 

Algorithm ConstructBinaryTree 
Input: PF = (P,, . . . . PO) 
Output: A binary tree T. 

begin 
T:=P, 
for i := 1 to m do 

begin 
if height(T) # height(P;) then Let the child of the root of Pi be 

the left child and let T be the right child of P, 
else 

Let the child of the root of Pi be the right child (if any) and 
let T be the left child of P, 

T:= P, 
end 

end 

LEMMA 2.5. If (P,, . . . . PO) is a valid PF, then Algorithm Con- 
structBinaryTree constructs a heap of height m. 

Proof: Let P = (P,, . . . . P,) be a valid PF. We prove the lemma by 
induction on m: 
m = 0: Since d, 2 1, PO contains exactly one element, and is thus a heap of 
height 0. 
m = i> 0: Assume that the result is true for each valid subforest 
(P,- r, . . . . PO) and let Hip r be the heap constructed from this subforest. 
By the induction hypothesis, height(H,- ,) = i - 1. We will show that the 
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algorithm maintains the heap properties when Hi_ 1 is merged with Pi to 
give Hi. We will show that 

(i) the heap shape is maintained, 

(ii) the heap ordering is maintained, and 

(iii) height(H,) = height(H,- 1) + 1. 

(i) Pi has a height of either i or i- 1 (Lemma 2.2(a)). Hence its perfect 
child C has a height of either i - 1 or i - 2. In the case where the height of 
C is i - 1, the algorithm makes C the left child of the new heap, whereas 
Hi-1 becomes the right child. Alternatively, if the height of C is i - 2, C 
becomes the right child of the new root and Hi_ L becomes the left child. 
In both cases the heap shape is maintained. 

(ii) From the definition of PFs, key(root(Pi)) Q key(root(Pjp ,)), for 
i = 1, . . . . m. Since key(root(Hip ,)) = key(root(Pi- 1)), we see that 
key(root(Pi)) < key(root(H,_ ,)), hence the heap ordering is maintained. 

(iii) Since Hi_ 1 becomes a new child of the root of Hi, we obtain 
height(Hj) > height(H,- 1) + 1. Using the induction hypothesis, we see that 
height( Hi) > i. Furthermore, height(Pi) > height(Hi,_,). As shown in 
Lemma 2.2(a), height(Pi) is either i- 1 or i. Thus, we obtain that 
height( Hi) < i. Therefore, height(H,) = i as was to be shown. Q.E.D. 

By Lemma 2.5, a heap can be constructed from a given valid pennant 
forest. By Lemmas 2.1 and 2.3 and Corollary 2.1, a valid pennant forest can 
be constructed from a given heap. Thus, summarizing this section, we see 
that heaps and valid pennant forests are in l-l correspondence. Further- 
more, since the heap-shape is uniquely determined by the heap-size we 
obtain: 

LEMMA 2.6. For any integer n there exists a unique valid descriptor 

D = (d,,,, . . . . d,) with f di2j= n. 
i=O 

We say that D is the descriptor for integer n. 
Although we have given algorithms to construct a valid PF from a given 

heap and vice versa, no key comparisons must be done to “see” a heap as 
a pennant forest or conversely to “see” a valid PF as a heap. This view is 
crucial for the design of the algorithms to follow. 
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3. SPLITTING HEAPS 

In this section we will show how the pennant structure can be utilized for 
solving the problem of splitting a given heap into two heaps. We define the 
operation Split as: 

input: a heap on n elements and an integer k, 

output: two heaps of sizes k and n-k, respectively. 

The algorithm may choose which elements are to be placed into each 
output heap. This problem can easily be solved by removing the last k item 
from the heap and building a new heap from these items. The total cost of 
this solution is O(k), which is good for small values of k. Here we describe 
an algorithm for the operation Split which makes use of the pennant view 
of heaps. The algorithm is more efficient for all but small values of k, i.e., 
k > log’(n). 

To write the Split algorithm, we first define a primitive operation, Spfit- 
Pennant, which takes a pennant of size s and produces two pennants each 
of size s/2. The procedure is as follows: 

Algorithm SplitPennant 
Input: A pennant P of size s 
Output: Pennants Q and R each of size s/2 

Y := node at root of P 
Q := left child of P attached to Y 
R := child of P with its right subheap 

Remark 3.1. A pennant of size s can be split into two pennants each of 
size s/2 without using any key comparisons. 

One further primitive operation is required for the algorithm Split. We 
use the procedure TrickfeDown(Root) which is analogous to the procedure 
Sift-Up described in Knuth (1973). In our algorithm, TrickleDown is 
applied to the root of a data structure P* which is a pennant forest except 
that the heap-ordering may be violated at root. The procedure restores the 
heap-ordering in P* while maintaining its shape. 

We now have the tools necessary to present the algorithm Split for split- 
ting a heap. The input for the algorithm is a heap, called H, on n elements, 
and an integer k. 

Let P = (P,, . . . . PO) be the valid PF for the heap H, P’ = (Pk., . . . . Pb) for 
the heap H’ containing k elements, and P” = (Pk.., . . . . Pi) for the heap H” 
on the remaining n -k elements. 

We formulate the Split algorithm by using the valid pennant forests 
representation of the heaps. The algorithm is as follows: 
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Algorithm Split 
Input: A valid pennant forest P of size n and an integer k. 
Output: Two valid pennant forests P’ and P” of size k and n-k, respec- 

tively. 
Compute the descriptor representations D = (d,, . . . . d,), D’ = (dk.. . . . . db), 

and D” = (dk, . . . . di) for II, k, and n-k, respectively. 
{For convenience, we define d: = 0 for all i > m’ and d,!’ = 0 for all i > m”. ) 

for i := 0 to max(m’, m”) do 
{If P does not have enough pennants of height i, we have to split 
larger pennants.} 
while di+d:‘>d, do 

Let S be the smallest indexed pennant in P such that 
h = height(S) > i. 
Using SplitPennant split S into two pennants Q and R of height 
h- 1. 
Replace S by (R and Q) in P. 
TrickleDown(root(R)) in PF P 
d/, := dh - 1 
d h-l :=d,,-I+2 

P’ is constructed by removing a subsequence of P consisting of di pennants 
of height i, for i := m’, . . . . 0. 
The remaining subsequence, consisting of d:’ pennants of height i, for 
i :=m” , . . . . 0, is P”. 

THEOREM 3.1. Let P be a valid pennant forest of size n and k <n be a 
positive integer. Algorithm Split constructs two valid pennant forests on k and 
n -k elements, respectively, using O(log2 n) comparisons. 

Proof: Throughout this algorithm, P is a (not necessarily valid) pen- 
nant forest of size n described by the descriptor D. Since D, D’ and D” are 
descriptors for n, k, and n-k, it follows that 

fodi2’=n, 5 d/2’=k, z d,!z’=n-k. 
i=O ,=o 

We show that, for 0 d t < m, 

i dj2’< i (d; + d;)2’ 
j=O j=O 

(1) 

is always true and, after the iteration of the for-loop in which the loop 
index has value i, d, = d,! + d,” for all 0 <j < i. In particular, this proves the 
correctness of the algorithm. 
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Initially, D, D’, and D” are all valid PFs. Thus, using Corollary 2.2 it is 
easy to show that 

i dj2-‘< i (d;+ d;‘)2’ (2) 
J=o ;=o 

for 0 < t < m. Also, notice that the value of d, does not change during the 
ith iteration of the loop, for j < i. 

The proof proceeds by induction. Assume that the claim is true before 
some iteration of the while-loop during the ith iteration of the for-loop. 
Suppose that during that iteration, a pennant of height h is replaced by 
two pennants of height h - 1. Since d,,+ ,2’ ’ + dh2’ = (d,,+ I + 2)2”-’ + 
(dh - 1)2", the value of Cjzo ,,,,,, d,2j remains unchanged for k # h - 1. 
However, we must show that 

h-2 h -- 1 

c dj2’+(dj-,+2)2h-‘d c (d;+d;‘)2’. (3) 
/=O ;=o 

For 0 <j < i, Eq. (3) is equivalent to 

II- I h-l 

1 dj2’+ 2h d 1 (dl+ d,!‘)2’, because d, = dl+ d;. (4) 
,=r ,=r 

We assume that this is false and obtain a contradiction. Now we know that 
di < d: + dj’ and d, = 0, for i <j < h, by definition of h. Thus 

h ~ 1 
di2’<(dj+dj’)2’,< c (d;+d,“)2j<d,2’+2’+2h 

[=I 
(5) 

and C,=j ,..., h-, (d;+d;)2’=di2’+a, where O<a~2~. Finally, 
i- I 
c dj2’+di2’+ f d,2’= f d,2-‘= f (d,‘+d.1’)2’ 

j=O j=h j=O J=o 

1-l h-l 

=j~o(d,‘+dj’)2~‘+ 1 (d,‘+dl’)2’+ f (d;+d;)2’ 
j=i j=h 

r-1 

= 1 dj2’+ d,2’+ a + f (di + d,!‘)2’ 
j-0 ,=h 

implies that 

f dj2’=a+ f (dj+d,“)2’, 
,=h j=h 

which is impossible, since a is not divisible by 2h. Hence the correctness of 
( 1) is established. 
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By construction, after the ith iteration of the for-loop, d,> d; + d:‘, but 

i dj2’< i (d;+d;‘)2’=(d;+d:‘)2’+‘~‘d,2’, 
.j= 0 j=O /=O 

so dj < d; + d;‘. Thus d, = d; + d;‘. 
The O(log* n) time complexity of the algorithm follows by observing that 

at most one SplitPennant operation need be performed for each pennant in 
P since initially dj + 2 < dj + dj’ for all i. For each such SplitPennant opera- 
tion, the algorithm carries out a TrickleDown operation at a cost of 
O(log n). Since P contains O(log n) pennants, the overall complexity is 
O(log2 n) in the worst case. Q.E.D. 

Remark 3.2. The total number of comparisons required by Algorithm 
SpZit is O(log’(max(k, n-k))) = O(log2(n)). 

AN EXAMPLE. We illustrate the algorithm presented in this section by 
showing how a heap H on 22 elements is split into two heaps H’ and H” 
on 3 and 19 elements, respectively. We refer to the corresponding PFs as 
P, P’, and P” and to their descriptors as D, D’, and D”, respectively. Their 
descriptors are 

D = (2, 1, 0, 2) 

D’ = (0, 0, 1, 1) 

D”=(1,2, 1, 1) 

The algorithm first splits pennants in P such that for each pennant in P’ 
or P” there is exactly one pennant of the same size in P. This leaves P with 
a descriptor of (1,2,2,2). Now the algorithm extracts from P the sub- 
sequence of pennants required for P’, leaving P with exactly the sequence 
required for P”. This completes the execution of the algorithm. 

4. MERGING HEAPS 

In Section 2 we presented a new way of seeing a heap as a forest of 
pennants. This enabled us to design an efficient algorithm for solving the 
problem of splitting a heap on k elements into two heaps of size k and 
n -k, respectively, where k d n. Here we show how to employ this view in 
the design of an algorithm for merging heaps. This operation, called Merge, 
merges two heaps, i.e., it creates a heap H containing all n + k elements 
given two heaps H’, H”, with n and k elements, respectively. An alternate 
solution exhibiting the same time bound has been presented in Sack and 
Strothotte (1985). The algorithm described here achieves a higher degree of 
clarity by making use of the pennant structure of heaps. 
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The algorithm first “sees” the two input heaps as valid PFs, referred to 
as P’ and P”; it then builds the “union” of both PFs. Notice, however, that 
by the union process a PF may be created which is no longer valid (e.g., 
the union may produce more than two pennants of equal height). Even 
worse, since the roots of pennants originating from different heaps are not 
necessarily sorted, the resulting collection of pennants may not even be a 
pennant forest. Thus, some care must be taken to ensure that the output 
of the Merge algorithm is indeed a &id pennant forest. 

We require a primitive operation Merge Pennants, which merges two 
equal-sized pennants into one larger pennant: 

Algorithm MergePennants 
Input: Two pennants, P,, P,, both of size s 
Output: One pennant, R, of size 2s, containing the elements from P, 
and P, 

i := index of the pennant with smaller root 
j := index of the other pennant 
R := root of P, 
right child of root of P, := child of Pi 
left child of root of P, := child of Pi 
child of R := Pi 
TrickleDown(child of R) 

Remark 4.1. Two pennants, each of size S, can be merged in O(log(s)) 
time. 

We formulate the Merge algorithm by using the valid pennant forests 
representation of the heaps. The following algorithm constructs a descrip- 
tor D for the valid pennant forest P. We use 0 to represent a temporary 
descriptor used during the execution of the algorithm. The algorithm ter- 
minates when 0 is equal toD. 

Algorithm Merge 
Input: Two valid pennant forests P’ and P” of sizes n and k, respectively 
(n>k) 
Output: A valid pennant forest P of size n + k 

[Initialization] 
compute the descriptor representations D = (d,,, . . . . d,), D’ = (d;,, . . . . db) 

and D” = (dk., . . . . di) for n + k, n and k, respectively 
initialize P to empty 
set descriptor D = (dm, . . . . &,i,, as follows: 

gi= 
di + di’ for all 0 < id m” 
d: for all m” < i < rn’ 
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Step CA1 
for every pennant p in P’ whose size is greater than 

the size of the largest pennant in P” (in order of decreasing size) do 
if root(p) > root( P”) then 

swap root(p) and root(P”) 
TrickleDown(root(P”)) 

append p to P 

Step Dl 
(1) append the pennants remaining in P’ and in P” to P such that the 

pennants appear in decreasing order of size and among pennants of 
like size, they 
appear in non-decreasing order of the keys stored and the roots 

(2) (now establish the heap-ordering among the keys of roots of pennants 
in P> 

let / equal to the number of pennants appended to P in step [B( 1 )] 
for i:=O to I- 1 do 

TrickleDown( root( P,)) in pennant forest P 

Step Ccl 
(sweep through P once more to make it valid } 
for i:=O to m do 

while di < 4, do 
merge the two pennants of size i in P with the smallest roots 

using MergePennants 
_di :=_d-2 
Lii+l :=di+l+l 

THEOREM 4.1. Let P’ and P” he valid pennant forest of sizes n and k, 
respectively, for n > k. Algorithm Merge constructs a pennant forest P on 
these n + k elements in O(log(n) * log(k)) comparisons in the worst case. 

ProoJ We shall show the following: 

(1) the output P has the heap-shape, 

(2) the output P is heap-ordered, and 

(3) the algorithm terminates after at most O(log(n) * log(k)) com- 
parisons. In particular, this will prove the stated result. 

(1) Heap-shape. By the same argument used f& Eq. (2) (from Section 3), 
after Step [B] of the algorithm, the following holds: 

C d,2’< C 4,2’, for all i, where O<i<m. 
/=O J=o 
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Indeed, by induction, we can show that this property always holds 
throughout Step [C] of the algorithm and in particular, at the end of 
Step [C], dj = dji, for all j, where 0 <j < m. The proof is analogous to that 
of the correctness proof of the Split algorithm (Theorem 3.1) and is omitted 
here. 

(2) Heap-ordering. It is straightforward to show by induction that the 
following conditions hold after the ith iteration of the loop of Step [A]: 

(a) the keys of the roots of the pennants in P are in non-decreasing 
order, and 

(b) all elements remaining in P’ and P” have keys greater than or 
equal to the keys of the roots of the smallest pennants in P. 

Similarly, it follows by induction that P is a (not necessarily valid) pennant 
forest after Step [B]. Finally, an inductive argument can be used to show 
that after every iteration of the while-loop of [Cl, P remains a pennant 
forest, since 

(a) the subtrees created within the while-loop are pennants, and 

(b) the relative order of the roots of the pennants in P remaining 
after Step [C] is the same as before Step [Cl. 

(3) Cornplhy analysis. We shall analyze each step individually: 

Step [A]: Observe that the loop is executed O(log(n)) times, each 
iteration performing a TrickleDown on a heap of k elements. Thus this step 
costs O(log(n) * log(k)) comparisons. 

Step [B]: Step B(1) takes O(log n) comparisons. In Step B(2), the 
loop is executed O(log(k)) times. Since there are only a constant number 
of equal-sized pennants in P, each iteration costs O(log(k)) comparisons. 
Hence this step costs O(log’(k) + log(n)) comparisons. 

Step [Cl: Since the for-loop is executed O(log(n)) times, the number 
of comparisons is bounded by O(log’(n)). However, a more careful analysis 
reveals a bound of O(log(n) + log’(k)). Observe that in the worst case, the 
first O(log(k)) iterations of the loop may each require a TrickleDown at a 
cost of O(log(k)) each. However, by examining the binary representation of 
n and n + k, we observe that d, # dl for at most two values of i greater than 
log(k). Hence the body of the while-loop of the algorithm is entered at 
most twice during the last I-log(n)] - Llog(k)] iterations of the for-loop, at 
a cost of at most O(log(n)) comparisons each. Thus the overall cost of this 
step is O(log(n) + log’(k)). 

Thus the cost of the merge algorithm is O(log(n) * log(k)) comparisons. 
Q.E.D. 
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