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Abstract

Different partial hypergroupoids are associated with binary relations defined on a set H. In this paper we find sufficient and
necessary conditions for these hypergroupoids in order to be reduced hypergroups. Given two binary relations � and � on H we
investigate when the hypergroups associated with the relations � ∩ �, � ∪ � and �� are reduced. We also determine when the cartesian
product of two hypergroupoids associated with a binary relation is a reduced hypergroup.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

The first step in the history of the development of Hyperstructures Theory was the 8th Congress of Scandinavian
Mathematicians from 1934, when Marty [12] introduced the notion of hypergroup, analyzed its properties and applied
them to non-commutative groups, algebraic functions, rational fractions. Nowadays the hypergroups are studied from
the theoretical point of view and for their applications to many subjects of pure and applied mathematics: geometry,
topology, cryptography and code theory, graphs and hypergraphs, probability theory, binary relations, theory of fuzzy
and rough sets, automata theory, economy, ethnology, etc. (see [6]).

Till now, several connections between hyperstructures and binary relations are established and studied by many
researchers: Rosenberg [13], Corsini [3,4], Corsini and Leoreanu [5], Chvalina [1], Konstantinidou and Serafimidis
[11], Spartalis [14–16], De Salvo and Lo Faro [8] and so on. In this paper we deal with the hypergroupoids associated
with binary relations introduced by Rosenberg [13] and studied then by Corsini and Leoreanu [3–5].

In the following we present some results obtained on this argument.
For a non-empty set H , we denote by P∗(H) the set of all non-empty subsets of H .

� Work partially supported by the CEEX Programme of the Romanian Ministry of Education and Research, Grant CEX 05D11-11/04.10.2005.
∗ Corresponding author.

E-mail addresses: irinacri@yahoo.co.uk (I. Cristea), mirelast@univ-ovidus.ro (M. Ştefănescu).
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Definition 1.1. A non-empty set H, endowed with a mapping, called hyperoperation, ◦ : H 2 −→ P∗(H) is named
hypergroupoid. A hypergroupoid which verifies the following conditions:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z), for all x, y, z ∈ H ,
(ii) x ◦ H = H = H ◦ x, for all x ∈ H

is called hypergroup.

If A and B are non-empty subsets of H, then A ◦ B = ⋃
a∈A
b∈B

a ◦ b.

Rosenberg [13] has associated a partial hypergroupoid IH� = 〈H, ◦〉 with a binary relation � defined on a set H,
where, for any x, y ∈ H ,

x ◦ x = Lx = {z ∈ H | (x, z) ∈ �} and x ◦ y = Lx ∪ Ly .

Definition 1.2. An element x ∈ H is called outer element of � if there exists h ∈ H such that (h, x) /∈ �2.

We need some of Rosenberg results that we recall in the next theorem.

Theorem 1.3 (Roserberg [13, Proposition 2]). IH� is a hypergroup if and only if

(i) � has full domain;
(ii) � has full range;

(iii) � ⊂ �2;
(iv) if (a, x) ∈ �2 then (a, x) ∈ �, whenever x is an outer element of �.

Remark. If � is a quasiorder relation, then the hypergroupoid IH� associated with H is a hypergroup.

Theorem 1.4 (Corsini and Leoreanu [5, Proposition 1.1, Corollary 1.2, Remark 1.3]). Let � be a relation defined on
a set H and a, x ∈ H . Let “◦” be the partial hyperoperation defined above.

(i) If � ⊂ �2, then (a, x) ∈ �2 if and only if x ∈ a ◦ a ◦ a.
(ii) If � ⊂ �2, then x is an outer element for � if and only if there exists a ∈ H such that x /∈ a ◦ a ◦ a.

(iii) If � ⊂ �2, then there are no outer elements for � if and only if for any a ∈ H , we have a ◦ a ◦ a = H .

Theorem 1.5 (Corsini [3, Theorem 1.3]). If IH� is a hypergroup, then the following statements hold:

(i) �2 is a transitive relation.
(ii) If � is symmetric, then �2 is an equivalence relation on H.

(iii) If � is symmetric and | H/�2 | > 1, then � is an equivalence relation on H.

Corollary 1.6. Let � be a reflexive, symmetric and non-transitive relation on H. The following assertions are
equivalent:

(i) IH� is a hypergroup.
(ii) For any x ∈ H we have x ◦ x ◦ x = H .

(iii) There are no outer elements for �.
(iv) �2 = H × H .

Proposition 1.7 (Corsini [3, Theorem 2.5]). Let � and � be two binary relations on H with full domain and full range
such that �2 = �, �2 = � and �� = ��. Then IH�� is a hypergroup.

It may happen that the hyperoperation “◦” does not discriminate between a pair of elements of H, when two
elements play interchangeable roles with respect to the hyperoperation. On a hypergroupoid 〈H, ◦〉, the following three



I. Cristea, M. Ştefănescu / Discrete Mathematics 308 (2008) 3537–3544 3539

equivalence relations, called the operational equivalence, the inseparability and the essential indistinguishability,
respectively, may be defined (see [9,10,7]):

• x∼oy ⇐⇒ x ◦ a = y ◦ a and a ◦ x = a ◦ y, for any a ∈ H ;
• x∼iy ⇐⇒ for a, b ∈ H , we have x ∈ a ◦ b ⇐⇒ y ∈ a ◦ b;
• x∼ey ⇐⇒ x∼oy and x∼iy.

For any x ∈ H , let x̂o, x̂i and x̂e, respectively, denote the equivalence classes of x with respect to the relations ∼o, ∼i

and ∼e.
We say that a hypergroup 〈H, ◦〉 is reduced if and only if, for any x ∈ H , x̂e = {x}.

Proposition 1.8 (Jantosciak [10, Proposition 3]). For any hypergroup 〈H, ◦〉, the quotient hypergroup 〈H/∼e, �〉 is
a reduced hypergroup, where the hyperoperation � on H/∼e is defined by

x̂e � ŷe = {ẑe | z ∈ x ◦ y}.

The quotient hypergroup 〈H/∼e, �〉 is called the reduced form of the hypergroup 〈H, ◦〉.
It is known that the study of hypergroups falls into two parts: the study of reduced hypergroups and the study of all

hypergroups having the same reduced form.
Our goal is to determine necessary and sufficient conditions such that the hypergroup IH�, associated with a binary

relation �, is reduced. Moreover, given two binary relations � and � defined on H, we investigate when the hypergroups
IH�∩�, IH�∪�, IH�� are reduced. In the last part of the paper we talk about the cartesian product of the reduced
hypergroups.

2. Basic properties

Let � be a binary relation defined on a non-empty set H.
For any x ∈ H , we denote L

�
x = {z ∈ H | (x, z) ∈ �} and R

�
x = {z ∈ H | (z, x) ∈ �}.

If it is clear what is the relation we talk about, then we use the notations Lx and Rx instead of L
�
x and R

�
x .

If � is a relation such that the associated hypergroupoid IH� is a hypergroup, then, for any x ∈ H , we have Lx �= ∅
and Rx �= ∅.

It is easy to see that

(1) � is reflexive if and only if, for any x ∈ H, x ∈ Lx ;
(2) � is symmetric if and only if, for any x ∈ H, Lx = Rx ;
(3) � is transitive if and only if, for any x, y ∈ H with Lx ∩ Ry �= ∅ it results y ∈ Lx .

Let � and � be two distinct binary relations defined on H. One verifies that:

(i) L
�∩�
x = {z ∈ H | (x, z) ∈ � ∩ �} = L

�
x ∩ L�

x ,

R
�∩�
x = {z ∈ H | (z, x) ∈ � ∩ �} = R

�
x ∩ R�

x .

(ii) L
�∪�
x = {z ∈ H | (x, z) ∈ � ∪ �} = L

�
x ∪ L�

x ,

R
�∪�
x = {z ∈ H | (z, x) ∈ � ∪ �} = R

�
x ∪ R�

x .

(iii) L
��
x = {z ∈ H | (x, z) ∈ ��} = {z ∈ H | ∃t ∈ H : (x, t) ∈ �, (t, z) ∈ �}

= {z ∈ L�
t | t ∈ L

�
x },

R
��
x = {z ∈ H | (z, x) ∈ ��} = {z ∈ H | ∃t ∈ H : (z, t) ∈ �, (t, x) ∈ �}

= {z ∈ R
�
t | t ∈ R�

x }.
(iv) If, for any x ∈ H , L

�
x = L�

x , then � = �.
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Proposition 2.1. Let IH� be the hypergroup associated with the binary relation � defined on H. For any x, y ∈ H , the
following implications hold:

(1) x∼oy ⇐⇒ Lx = Ly ,
(2) x∼iy ⇐⇒ Rx = Ry .

Proof. (1) By the definition of the relation “∼o”, we have that x∼oy is equivalent with x ◦ a = y ◦ a, for any a ∈ H ,
which means Lx ∪ La = Ly ∪ La. If Lx = Ly , it is clear that x∼oy.

Now we suppose x∼oy, hence, for any a ∈ H , Lx ∪ La = Ly ∪ La .

• For a = x it results Lx = Lx ∪ Ly , so Ly ⊆ Lx .
• For a = y it results Lx ∪ Ly = Ly , so Lx ⊆ Ly .

We conclude that Lx = Ly .
(2) Take x, y ∈ H , x∼iy. This means that x ∈ a ◦ b ⇐⇒ y ∈ a ◦ b, for a, b ∈ H , that is x ∈ La ∪ Lb ⇐⇒

y ∈ La ∪ Lb. But, for any x ∈ H , Rx �= ∅, therefore there exists a ∈ H such that a ∈ Rx , that is x ∈ La ; it
follows x ∈ La = a ◦ a and since x∼iy, we obtain y ∈ La , that is a ∈ Ry . Similarly we obtain Ry ⊆ Rx and then
Rx = Ry . �

Now, if Rx = Ry we have x ∈ Lz ⇐⇒ y ∈ Lz, for z ∈ H , therefore x ∈ z ◦ t ⇐⇒ y ∈ z ◦ t , for z, t ∈ H , which
means x∼iy.

In the following, we investigate when two different elements x, y ∈ H are in the relation x∼ey in the hypergroups
IH�∩� and IH��.

Proposition 2.2. Let � and � be two quasiorder relations on a non-empty set H. For any x, y ∈ H , x∼ey in IH�∩� if
and only if x∼ey in IH� and x∼ey in IH�.

Proof. Since � and � are two quasiorder relations, the hypergroupoids associated with �, � and �∩� are hypergroups.
First, we suppose x∼ey in IH� and x∼ey in IH�; by the previous proposition we have L

�
x = L

�
y , R

�
x = R

�
y , L�

x = L�
y

and R�
x = R�

y , so L
�∩�
x = L

�∩�
y and R

�∩�
x = R

�∩�
y , that is x∼ey in IH�∩�.

Conversely, suppose x∼ey in IH�∩�, that is x∼oy and x∼iy in IH�∩�. It is enough to show the implications:

(1) L
�
x ∩ L�

x = L
�
y ∩ L�

y �⇒ L
�
x = L

�
y and L�

x = L�
y ;

(2) R
�
x ∩ R�

x = R
�
y ∩ R�

y �⇒ R
�
x = R

�
y and R�

x = R�
y .

We will prove the first one, the second one has a similar proof.
Since � and � are reflexive relations, we write x ∈ L

�
x ∩ L�

x , so x ∈ L
�
y ∩ L�

y , that is (y, x) ∈ � ∩ � and similarly,
(x, y) ∈ � ∩ �.

Let us consider z ∈ L
�
x , that is (x, z) ∈ � and since (y, x) ∈ �, by the transitivity of �, it results (y, z) ∈ �, z ∈ L

�
y .

We have L
�
x ⊆ L

�
y and similarly L

�
y ⊆ L

�
x . We obtain L

�
x = L

�
y and, in the same way, L�

x = L�
y . �

Proposition 2.3. Let � and � be two binary relations on H with full domain and full range such that �2 = �, �2 = �
and �� = ��. If, for x, y ∈ H , x∼oy in IH� and x∼iy in IH�, then x∼ey in IH��.

Moreover, x∼ey in IH� and x∼ey in IH� lead to x∼ey in IH��.

Proof. In this hypothesis, the hypergroupoids IH�, IH� and IH�� are hypergroups.
Let us consider x, y ∈ H such that x∼oy in IH� and x∼iy in IH�, so we have L

�
x = L

�
y and R�

x = R�
y . It is enough

to prove the implications

(1) L
�
x = L

�
y �⇒ L

��
x = L

��
y ;

(2) R�
x = R�

y �⇒ R
��
x = R

��
y .
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Let z ∈ L
��
x ; there exists t ∈ L

�
x such that z ∈ L�

t , so there exists t ∈ L
�
y such that z ∈ L�

t ; therefore z ∈ L
��
y . Similarly

L
��
y ⊆ L

��
x .

In the same way we can show the second implication.
Thus, if x∼oy in IH� and x∼iy in IH�, it results x∼ey in IH�� and since �� = �� we obtain the last assertion of the

proposition. �

3. Reduced hypergroups associated with binary relations

In this section, first, we determine a necessary and sufficient condition for the hypergroup IH� in order to be reduced;
then we analyze this condition for different types of relations. Secondly, we prove that the hypergroupoidH� associated
with a binary relation defined by Corsini [4] is not a reduced hypergroup.

Theorem 3.1. The hypergroup IH� is reduced if and only if, for any x, y ∈ H , x different from y, either Lx �= Ly or
Rx �= Ry .

Proof. By the definition, the hypergroup IH� is reduced if and only if, for any x �= y, it is true x /∼oy or x /∼iy and by
the Proposition 2.1 this is equivalent with Lx �= Ly or Rx �= Ry . �

For some particular relations, the condition expressed in the previous theorem is simpler, as we see in the following
results.

Proposition 3.2. If � is an equivalence on H, then the hypergroupoid IH� is a reduced hypergroup if and only if
� = �H = {(x, x) | x ∈ H }.

Proof. If � is an equivalence on H, then 〈IH�, ◦〉 is a hypergroup.
Since � is symmetric, we have, for any x ∈ H , Lx = Rx and then, IH� is reduced if and only if, for any x �= y,

Lx �= Ly . We show that this condition is equivalent with the following one: for any x ∈ H , Lx = {x} and then, it is
clear � = �H .

If, for any x ∈ H , Lx = {x}, it results for all x �= y that Lx �= Ly .
Conversely, let y �= x, y ∈ Lx ; we obtain {x, y} ⊆ Ly . For any z ∈ Ly\{x, y} we have (y, z) ∈ �, (x, y) ∈ � and

by transitivity it follows (x, z) ∈ �, so z ∈ Lx . Similarly, it results Lx ⊆ Ly , thus Lx = Ly which is in contradiction
with the hypothesis. �

Proposition 3.3. If � is a non-symmetric quasiorder on H, then the hypergroup 〈IH�, ◦〉 is reduced if and only if, for
any x �= y, Lx �= Ly .

Proof. If � is a quasiorder on H then, for any x �= y ∈ H , we have the implication x∼oy �⇒ x∼iy.
Indeed, if we suppose Lx = Ly and Rx �= Ry , there exists z ∈ Rx, z /∈ Ry ; then (z, x) ∈ � and (z, y) /∈ �. But � is

reflexive and then y ∈ Ly = Lx ; thus (x, y) ∈ � and by transitivity we obtain (z, y) ∈ �, which is false.
So, for any x �= y, the condition “Lx �= Ly or Rx �= Ry” is equivalent with “Lx �= Ly”. �

Proposition 3.4. If � is a reflexive symmetric non-transitive relation on H, such that �2 =H ×H , then the hypergroup
〈IH�, ◦〉 is reduced if and only if Lx �= Ly , for all x, y ∈ H , x different from y.

Proof. As in the previous proposition it is enough to prove that, for any x �= y, x∼oy �⇒ x∼iy.
If we suppose there exists a ∈ H such that x ∈ La and y /∈ La , then, by the symmetry, we have a ∈ Lx = Ly and

thus a ∈ Ly , so y ∈ La , contradiction.
Given a binary relation � on H, Corsini [4] has defined another hyperoperation: for any x, y ∈ H ,

x⊗�y = Lx ∩ Ry ,

and he has proved that H� = 〈H, ⊗�〉 is a hypergroupoid if and only if �2 = H × H .
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In case that the Corsini hyperoperation ⊗� is left or right reproductive, then H� is the total hypergroup (see
[16, Remark 2.4]). So, the unique hypergroup obtained in this manner is the total hypergroup, which clearly is
not reduced. �

4. The hypergroups IH�∩�, IH�∪�, IH�� as reduced hypergroups

Let � and � be two binary relations defined on a non-empty set H. The hypergroups IH�∩�, IH�� and IH�∪� are
reduced independently if IH� and IH� are or are not reduced hypergroups, as we will see in the following results.

Proposition 4.1. Let � and � be two quasiorder relations on H. If the hypergroups IH� and IH� are reduced, then the
hypergroup IH�∩� is reduced too.

Proof. If we suppose that the hypergroup IH�∩� is not reduced, then it results there exist x �= y in H such that
x∼ey in IH�∩� and therefore x∼ey in IH�, x∼ey in IH�, which is impossible because the hypergroups IH� and IH�
are reduced. �

Remark. If the hypergroup IH�∩� is reduced, then the hypergroups IH� and IH� can be reduced or not, as one sees
from the following examples.

Example 4.2. Let H = {1, 2, 3, 4}.

(i) If � ∩ � = �H = {(1, 1), (2, 2), (3, 3), (4, 4)} and �, � are equivalences on H different from the diagonal relation
�H , then the hypergroup IH�∩� is reduced, but neither IH� nor IH� is a reduced hypergroup (see Proposition 3.2).

(ii) Set � = �H ∪ {(1, 2)} and � = �H ∪ {(1, 3)}. Then � ∩ � = �H , so IH�∩� is a reduced hypergroup and also IH�
and IH�.

(iii) Set � = �H ∪ {(1, 2), (2, 1), (1, 3), (2, 3)}, � = �H ∪ {(1, 2), (3, 4)}, so � ∩ � = �H ∪ {(1, 2)}. It results the
hypergroups IH�∩� and IH� are reduced, but the hypergroup IH� is not (L�

1 = L
�
2 , R

�
1 = R

�
2 ).

Proposition 4.3. Let � and � be two binary relations on H with full domain and full range such that �2 = �, �2 = �
and �� = ��. If the hypergroup IH�� is reduced, then both hypergroups IH� and IH� are reduced.

Proof. From the Proposition 2.3 we have the implications:

(1) L
��
x �= L

��
y �⇒ L

�
x �= L

�
y and L�

x �= L�
y ;

(2) R
��
x �= R

��
y �⇒ R

�
x �= R

�
y and R�

x �= R�
y .

If IH�� is a reduced hypergroup then, for any x �= y, we have x /∼ey, so, for any x �= y, L
��
x �= L

��
y or R

��
x �= R

��
y .

It follows (L
�
x �= L

�
y and L�

x �= L�
y) or (R

�
x �= R

�
y and R�

x �= R�
y ) and therefore the hypergroups IH� and IH�

are reduced. �

Remark. In the same hypothesis as in the Proposition 4.3, if IH� and IH� are reduced hypergroups, then the hypergroup
IH�� is reduced or not, as the following examples show.

Example 4.4. We consider the following two situations.

(1) Set H ={1, 2, 3, 4}, � = �H ∪ {(1, 2)} = �2 and � = �H ∪ {(1, 3)} = �2. Clearly, IH� and IH� are reduced
hypergroups (see the Proposition 3.3); since �� = �H ∪ {(1, 2), (1, 3)} = ��, it results that the hypergroup IH�� is
reduced.

(2) Set H = {1, 2, 3}, � = �H ∪ {(2, 1), (2, 3)} = �2 and � = �H ∪ {(1, 3), (1, 2)} = �2. Again it results that IH� and
IH� are reduced hypergroups; we obtain �� = �H ∪ {(1, 2), (1, 3), (2, 1), (2, 3)} = ��, and then L

��
1 = H = L

��
2 ,

R
��
1 = {1, 2} = R

��
2 , therefore the hypergroup IH�� is not reduced.
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Remark. Let � and � be two binary relations defined on H such that the hypergroupoids IH�, IH� and IH�∪� are
hypergroups. If IH� and IH� are reduced hypergroups, then the hypergroup IH�∪� can be reduced or not and conversely,
if IH�∪� is a reduced hypergroup, it does not result that the hypergroups IH� and IH� are reduced, too, as it follows
from the following examples.

Example 4.5. We present the following situations.

(1) Set H ={1, 2, 3}, �=�H ∪{(1, 2)}=�2 and �=�H ∪{(2, 1)}=�2; we find �∪�=�H ∪{(1, 2), (2, 1)}=(�∪�)2. It is
clear that IH� and IH� are reduced hypergroups, but the hypergroup IH�∪� is not reduced, since L

�∪�
1 ={1, 2}=L

�∪�
2 ,

R
�∪�
1 = {1, 2} = R

�∪�
2 (see the Proposition 3.3).

(2) Set H ={1, 2, 3}, �=�H ∪{(1, 2)}=�2 and �=�H ∪{(1, 3)}=�2; we obtain �∪�=�H ∪{(1, 2), (1, 3)}=(�∪�)2.
It follows that all the three hypergroups IH�, IH� and IH�∪� are reduced.

(3) Set again H = {1, 2, 3} and the relations � = �H ∪ {(1, 2), (2, 1)} = �2, � = �H ∪ {(1, 3)} = �2, therefore
� ∪ � = �H ∪ {(1, 2), (2, 1), (1, 3)} which is different from (� ∪ �)2 = �H ∪ {(1, 2), (2, 1), (1, 3), (2, 3)}. In this
case the hypergroup IH� is not reduced, the hypergroup IH� is reduced and the hypergroup IH�∪� is reduced, too.
The hypergroupoid IH�∪� is a hypergroup because � ∪ � ⊂ (� ∪ �)2 and for the outer elements 1 and 2 of � ∪ �,
condition (iv) of the Theorem 1.3 holds.

5. The cartesian product of the reduced hypergroups

Let 〈H1, ◦1〉, 〈H2, ◦2〉 be two hypergroups. On the cartesian product H1 × H2 we define the hyperoperation

(x1, x2) ⊗ (y1, y2) = (x1◦1y1, x2◦2y2)

and we obtain the hypergroup 〈H1 × H2, ⊗〉 [2].

Proposition 5.1. In the hypergroup 〈H1 × H2, ⊗〉, the following implications hold:

(i) (x1, x2)∼o(y1, y2) ⇐⇒ x1∼oy1 in H1 and x2∼oy2 in H2;
(ii) (x1, x2)∼i (y1, y2) ⇐⇒ x1∼iy1 in H1 and x2∼iy2 in H2.

Proof. (i) By the definition of the relation ∼o we have (x1, x2)∼o(y1, y2) if and only if, for any (a1, a2) ∈ H1 × H2,
it is true: (x1, x2) ⊗ (a1, a2) = (y1, y2) ⊗ (a1, a2) and (a1, a2) ⊗ (x1, x2) = (a1, a2) ⊗ (y1, y2), which is equivalent
with x1◦1a1 = y1◦1a1, x2◦2a2 = y2◦2a2 and a1◦1x1 = a1◦1y1, a2◦2x2 = a2◦2y2, that is, x1∼oy1 and
x2∼oy2.

(ii) By the definition of the relation ∼i we get (x1, x2)∼i (y1, y2) if and only if, for (a1, a2), (b1, b2) ∈ H1 × H2, we
have (x1, x2) ∈ (a1, a2) ⊗ (b1, b2) equivalently (y1, y2) ∈ (a1, a2) ⊗ (b1, b2), therefore x1 ∈ a1◦1b1 and x2 ∈ a2◦2b2
if and only if y1 ∈ a1◦1b1 and y2 ∈ a2◦2b2, that is, x1∼iy1 and x2∼iy2. �

Theorem 5.2. The hypergroup 〈H1 × H2, ⊗〉 is reduced if and only if the hypergroups 〈H1, ◦1〉 and 〈H2, ◦2〉 are
reduced.

Proof. First, we suppose that 〈H1 × H2, ⊗〉 is a reduced hypergroup and that H1 is not reduced. Then
there exists x1 �= y1 in H1 such that x1∼ey1, that is, x1∼oy1 and x1∼iy1. It follows that, for any x2 ∈ H2,
we have (x1, x2)∼o(y1, x2) and (x1, x2)∼i (y1, x2) (by the previous proposition), that is (x1, x2)∼e(y1, y2) with
(x1, x2) �= (y1, x2); this means that 〈H1 × H2, ⊗〉 is not reduced, which is in contradiction with the
hypothesis.

Conversely, we suppose that 〈H1, ◦1〉 and 〈H2, ◦2〉 are reduced hypergroups, but 〈H1 × H2, ⊗〉 is not. Then there
exist (x1, x2) �= (y1, y2) ∈ H1 × H2 such that (x1, x2)∼e(y1, y2). By the previous proposition we find x1∼ey1 and
x2∼ey2. Since 〈H1, ◦1〉 and 〈H2, ◦2〉 are reduced, it follows that x1 = y1, x2 = y2, thus (x1, x2) = (y1, y2) which is
false. �
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Proposition 5.3. Let �1, �2 be two binary relations defined on the non-empty sets H1, H2 such that the associated
hypergroupoids (IH1)�1

and (IH2)�2
are hypergroups.

(i) If (IH1)�1
and (IH2)�2

are reduced hypergroups and, for j ∈ {1, 2}, the implication �2
j �= H 2

j �⇒ �3−j = �2
3−j

(that is (H1 × H2)�1×�2
is a hypergroup) ([4]) holds, then (H1 × H2)�1×�2

is a reduced hypergroup.
(ii) If (H1 × H2)�1×�2

is a reduced hypergroup, then at least one of the hypergroups (IH1)�1
and (IH2)�2

is reduced.

Proof. (i) If we suppose that (H1 × H2)�1×�2
is not reduced, then there exist (x1, x2) �= (y1, y2) ∈ H1 × H2 such

that L(x1,x2) = L(y1,y2) and R(x1,x2) = R(y1,y2), that is Lx1 = Ly1 , Lx2 = Ly2 , Rx1 = Ry1 , Rx2 = Ry2 . This implies that
x1∼ey1 in (IH1)�1

and x2∼ey2 in (IH2)�2
, but since (IH1)�1

and (IH2)�2
are reduced, it follows x1 = y1 and x2 = y2,

therefore (x1, x2) = (y1, y2), which is false.
(ii) Now, if (H1 × H2)�1×�2

is a reduced hypergroup and if we suppose that both hypergroups (IH1)�1
and (IH2)�2

are not reduced, it follows there exist x1 �= y1 ∈ H1 and x2 �= y2 ∈ H2 such that x1∼ey1 in (IH1)�1
and x2∼ey2 in

(IH2)�2
; we obtain Lx1 = Ly1 , Rx1 = Ry1 and Lx2 = Ly2 , Rx2 = Ry2 , which lead to the relations L(x1,x2) = L(y1,y2) and

R(x1,x2) = R(y1,y2). This is in contradiction with the hypothesis that (H1 × H2)�1×�2
is reduced. �

6. Conclusions

The hypergroup associated with a binary relation � in the sense of Rosenberg is reduced if and only if, for any
x, y ∈ H , either Lx �= Ly or Rx �= Ry . The unique equivalence relation � defined on H such that the hypergroup
IH� is reduced is the diagonal relation �H . Given two binary relations � and � on H, the property of being reduced of
the associated hypergroups IH� and IH� may or may not influence the same property of the hypergroups IH��, IH�∩�,
IH�∪� and conversely. Finally, we proved that the cartesian product of reduced hypergroups is a reduced hypergroup.
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