

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 3537-3544

www.elsevier.com/locate/disc

Binary relations and reduced hypergroups $\stackrel{\scriptstyle \swarrow}{\sim}$

Irina Cristea^{a,*,1}, Mirela Ștefănescu^b

^aFaculty of Mathematics, "Al.I. Cuza" University, Bd. Carol I, no. 11, 700506 Iaşi, Romania ^bFaculty of Mathematics and Informatics, "Ovidius" University, Bd. Mamaia 124, 900527 Constanța, Romania

> Received 28 March 2007; received in revised form 2 July 2007; accepted 4 July 2007 Available online3 August 2007

Abstract

Different partial hypergroupoids are associated with binary relations defined on a set *H*. In this paper we find sufficient and necessary conditions for these hypergroupoids in order to be reduced hypergroups. Given two binary relations ρ and σ on *H* we investigate when the hypergroups associated with the relations $\rho \cap \sigma$, $\rho \cup \sigma$ and $\rho\sigma$ are reduced. We also determine when the cartesian product of two hypergroupoids associated with a binary relation is a reduced hypergroup. © 2007 Elsevier B.V. All rights reserved.

MSC: 20N20; 04A05

Keywords: Binary relation; Reduced hypergroup

1. Introduction and preliminaries

The first step in the history of the development of Hyperstructures Theory was the 8th Congress of Scandinavian Mathematicians from 1934, when Marty [12] introduced the notion of hypergroup, analyzed its properties and applied them to non-commutative groups, algebraic functions, rational fractions. Nowadays the hypergroups are studied from the theoretical point of view and for their applications to many subjects of pure and applied mathematics: geometry, topology, cryptography and code theory, graphs and hypergraphs, probability theory, binary relations, theory of fuzzy and rough sets, automata theory, economy, ethnology, etc. (see [6]).

Till now, several connections between hyperstructures and binary relations are established and studied by many researchers: Rosenberg [13], Corsini [3,4], Corsini and Leoreanu [5], Chvalina [1], Konstantinidou and Serafimidis [11], Spartalis [14–16], De Salvo and Lo Faro [8] and so on. In this paper we deal with the hypergroupoids associated with binary relations introduced by Rosenberg [13] and studied then by Corsini and Leoreanu [3–5].

In the following we present some results obtained on this argument.

For a non-empty set *H*, we denote by $\mathscr{P}^*(H)$ the set of all non-empty subsets of *H*.

0012-365X/ $\$ - see front matter $\$ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.07.011

[†] Work partially supported by the CEEX Programme of the Romanian Ministry of Education and Research, Grant CEX 05D11-11/04.10.2005. * Corresponding author.

E-mail addresses: irinacri@yahoo.co.uk (I. Cristea), mirelast@univ-ovidus.ro (M. Ştefănescu).

¹ Present address: University of Udine, via delle Scienze 206, 33100 Udine, Italy.

Definition 1.1. A non-empty set *H*, endowed with a mapping, called *hyperoperation*, $\circ : H^2 \longrightarrow \mathscr{P}^*(H)$ is named *hypergroupoid*. A hypergroupoid which verifies the following conditions:

(i) $(x \circ y) \circ z = x \circ (y \circ z)$, for all $x, y, z \in H$, (ii) $x \circ H = H = H \circ x$, for all $x \in H$

is called hypergroup.

If A and B are non-empty subsets of H, then $A \circ B = \bigcup_{a \in A} a \circ b$.

Rosenberg [13] has associated a partial hypergroupoid $\mathbb{H}_{\rho} = \langle H, \circ \rangle$ with a binary relation ρ defined on a set H, where, for any $x, y \in H$,

 $x \circ x = L_x = \{z \in H \mid (x, z) \in \rho\}$ and $x \circ y = L_x \cup L_y$.

Definition 1.2. An element $x \in H$ is called *outer element* of ρ if there exists $h \in H$ such that $(h, x) \notin \rho^2$.

We need some of Rosenberg results that we recall in the next theorem.

Theorem 1.3 (*Roserberg* [13, *Proposition* 2]). \mathbb{H}_{ρ} is a hypergroup if and only if

(i) ρ has full domain;
(ii) ρ has full range;
(iii) ρ ⊂ ρ²;
(iv) if (a, x) ∈ ρ² then (a, x) ∈ ρ, whenever x is an outer element of ρ.

Remark. If ρ is a quasiorder relation, then the hypergroupoid \mathbb{H}_{ρ} associated with H is a hypergroup.

Theorem 1.4 (*Corsini and Leoreanu* [5, *Proposition 1.1, Corollary 1.2, Remark 1.3*]). Let ρ be a relation defined on a set H and a, $x \in H$. Let " \circ " be the partial hyperoperation defined above.

- (i) If $\rho \subset \rho^2$, then $(a, x) \in \rho^2$ if and only if $x \in a \circ a \circ a$.
- (ii) If $\rho \subset \rho^2$, then x is an outer element for ρ if and only if there exists $a \in H$ such that $x \notin a \circ a \circ a$.
- (iii) If $\rho \subset \rho^2$, then there are no outer elements for ρ if and only if for any $a \in H$, we have $a \circ a \circ a = H$.

Theorem 1.5 (*Corsini* [3, *Theorem 1.3*]). If \mathbb{H}_{ρ} is a hypergroup, then the following statements hold:

- (i) ρ^2 is a transitive relation.
- (ii) If ρ is symmetric, then ρ^2 is an equivalence relation on *H*.

(iii) If ρ is symmetric and $|H/\rho^2| > 1$, then ρ is an equivalence relation on H.

Corollary 1.6. Let ρ be a reflexive, symmetric and non-transitive relation on H. The following assertions are equivalent:

(i) \mathbb{H}_{ρ} is a hypergroup.

- (ii) For any $x \in H$ we have $x \circ x \circ x = H$.
- (iii) There are no outer elements for ρ .
- (iv) $\rho^2 = H \times H$.

Proposition 1.7 (*Corsini* [3, *Theorem 2.5*]). Let ρ and σ be two binary relations on H with full domain and full range such that $\rho^2 = \rho$, $\sigma^2 = \sigma$ and $\rho\sigma = \sigma\rho$. Then $\mathbb{H}_{\rho\sigma}$ is a hypergroup.

It may happen that the hyperoperation " \circ " does not discriminate between a pair of elements of *H*, when two elements play interchangeable roles with respect to the hyperoperation. On a hypergroupoid $\langle H, \circ \rangle$, the following three

equivalence relations, called *the operational equivalence, the inseparability* and *the essential indistinguishability*, respectively, may be defined (see [9,10,7]):

- $x \sim_o y \iff x \circ a = y \circ a$ and $a \circ x = a \circ y$, for any $a \in H$;
- $x \sim_i y \iff$ for $a, b \in H$, we have $x \in a \circ b \iff y \in a \circ b$;
- $x \sim_e y \iff x \sim_o y$ and $x \sim_i y$.

For any $x \in H$, let \hat{x}_o, \hat{x}_i and \hat{x}_e , respectively, denote the equivalence classes of x with respect to the relations \sim_o, \sim_i and \sim_e .

We say that a hypergroup (H, \circ) is *reduced* if and only if, for any $x \in H$, $\hat{x}_e = \{x\}$.

Proposition 1.8 (*Jantosciak* [10, *Proposition 3*]). For any hypergroup $\langle H, \circ \rangle$, the quotient hypergroup $\langle H/\sim_e, \star \rangle$ is a reduced hypergroup, where the hyperoperation \star on H/\sim_e is defined by

 $\widehat{x_e} \star \widehat{y_e} = \{ \widehat{z_e} \mid z \in x \circ y \}.$

The quotient hypergroup $\langle H/\sim_e, \star \rangle$ is called the *reduced form* of the hypergroup $\langle H, \circ \rangle$.

It is known that the study of hypergroups falls into two parts: the study of reduced hypergroups and the study of all hypergroups having the same reduced form.

Our goal is to determine necessary and sufficient conditions such that the hypergroup \mathbb{H}_{ρ} , associated with a binary relation ρ , is reduced. Moreover, given two binary relations ρ and σ defined on H, we investigate when the hypergroups $\mathbb{H}_{\rho\cap\sigma}$, $\mathbb{H}_{\rho\cup\sigma}$, $\mathbb{H}_{\rho\sigma}$ are reduced. In the last part of the paper we talk about the cartesian product of the reduced hypergroups.

2. Basic properties

Let ρ be a binary relation defined on a non-empty set *H*.

For any $x \in H$, we denote $L_x^{\rho} = \{z \in H \mid (x, z) \in \rho\}$ and $R_x^{\rho} = \{z \in H \mid (z, x) \in \rho\}$.

If it is clear what is the relation we talk about, then we use the notations L_x and R_x instead of L_x^{ρ} and R_x^{ρ} .

If ρ is a relation such that the associated hypergroupoid \mathbb{H}_{ρ} is a hypergroup, then, for any $x \in H$, we have $L_x \neq \emptyset$ and $R_x \neq \emptyset$.

It is easy to see that

- (1) ρ is reflexive if and only if, for any $x \in H, x \in L_x$;
- (2) ρ is symmetric if and only if, for any $x \in H$, $L_x = R_x$;
- (3) ρ is transitive if and only if, for any $x, y \in H$ with $L_x \cap R_y \neq \emptyset$ it results $y \in L_x$.

Let ρ and σ be two distinct binary relations defined on *H*. One verifies that:

(i)
$$L_x^{\rho \cap \sigma} = \{ z \in H \mid (x, z) \in \rho \cap \sigma \} = L_x^{\rho} \cap L_x^{\sigma}, R_x^{\rho \cap \sigma} = \{ z \in H \mid (z, x) \in \rho \cap \sigma \} = R_x^{\rho} \cap R_x^{\sigma}.$$

(ii) $L_x^{\rho \cup \sigma} = \{ z \in H \mid (x, z) \in \rho \cup \sigma \} = L_x^{\rho} \cup L_x^{\sigma},$ $R_x^{\rho \cup \sigma} = \{ z \in H \mid (z, x) \in \rho \cup \sigma \} = R_x^{\rho} \cup R_x^{\sigma}.$

(iii)
$$L_x^{\rho\sigma} = \{z \in H \mid (x, z) \in \rho\sigma\} = \{z \in H \mid \exists t \in H : (x, t) \in \rho, (t, z) \in \sigma\}$$
$$= \{z \in L_t^{\sigma} \mid t \in L_x^{\rho}\},$$
$$R_x^{\rho\sigma} = \{z \in H \mid (z, x) \in \rho\sigma\} = \{z \in H \mid \exists t \in H : (z, t) \in \rho, (t, x) \in \sigma\}$$
$$= \{z \in R_t^{\rho} \mid t \in R_x^{\sigma}\}.$$

(iv) If, for any $x \in H$, $L_x^{\rho} = L_x^{\sigma}$, then $\rho = \sigma$.

Proposition 2.1. Let \mathbb{H}_{ρ} be the hypergroup associated with the binary relation ρ defined on H. For any $x, y \in H$, the following implications hold:

(1) $x \sim_o y \iff L_x = L_y$, (2) $x \sim_i y \iff R_x = R_y$.

Proof. (1) By the definition of the relation " \sim_o ", we have that $x \sim_o y$ is equivalent with $x \circ a = y \circ a$, for any $a \in H$, which means $L_x \cup L_a = L_y \cup L_a$. If $L_x = L_y$, it is clear that $x \sim_o y$.

Now we suppose $x \sim_o y$, hence, for any $a \in H$, $L_x \cup L_a = L_y \cup L_a$.

- For a = x it results $L_x = L_x \cup L_y$, so $L_y \subseteq L_x$.
- For a = y it results $L_x \cup L_y = L_y$, so $L_x \subseteq L_y$.

We conclude that $L_x = L_y$.

(2) Take $x, y \in H$, $x \sim_i y$. This means that $x \in a \circ b \iff y \in a \circ b$, for $a, b \in H$, that is $x \in L_a \cup L_b \iff y \in L_a \cup L_b$. But, for any $x \in H$, $R_x \neq \emptyset$, therefore there exists $a \in H$ such that $a \in R_x$, that is $x \in L_a$; it follows $x \in L_a = a \circ a$ and since $x \sim_i y$, we obtain $y \in L_a$, that is $a \in R_y$. Similarly we obtain $R_y \subseteq R_x$ and then $R_x = R_y$. \Box

Now, if $R_x = R_y$ we have $x \in L_z \iff y \in L_z$, for $z \in H$, therefore $x \in z \circ t \iff y \in z \circ t$, for $z, t \in H$, which means $x \sim_i y$.

In the following, we investigate when two different elements $x, y \in H$ are in the relation $x \sim_e y$ in the hypergroups $\mathbb{H}_{\rho \cap \sigma}$ and $\mathbb{H}_{\rho \sigma}$.

Proposition 2.2. Let ρ and σ be two quasiorder relations on a non-empty set H. For any $x, y \in H$, $x \sim_e y$ in $\mathbb{H}_{\rho \cap \sigma}$ if and only if $x \sim_e y$ in \mathbb{H}_{ρ} and $x \sim_e y$ in \mathbb{H}_{σ} .

Proof. Since ρ and σ are two quasiorder relations, the hypergroupoids associated with ρ , σ and $\rho \cap \sigma$ are hypergroups. First, we suppose $x \sim_e y$ in \mathbb{H}_{ρ} and $x \sim_e y$ in \mathbb{H}_{σ} ; by the previous proposition we have $L_x^{\rho} = L_y^{\rho}$, $R_x^{\rho} = R_y^{\rho}$, $L_x^{\sigma} = L_y^{\sigma}$ and $R_x^{\sigma} = R_y^{\sigma}$, so $L_x^{\rho \cap \sigma} = L_y^{\rho \cap \sigma}$ and $R_x^{\rho \cap \sigma} = R_y^{\rho \cap \sigma}$, that is $x \sim_e y$ in $\mathbb{H}_{\rho \cap \sigma}$.

Conversely, suppose $x \sim_e y$ in $\mathbb{H}_{\rho \cap \sigma}$, that is $x \sim_o y$ and $x \sim_i y$ in $\mathbb{H}_{\rho \cap \sigma}$. It is enough to show the implications:

(1) $L_x^{\rho} \cap L_x^{\sigma} = L_y^{\rho} \cap L_y^{\sigma} \Longrightarrow L_x^{\rho} = L_y^{\rho} \text{ and } L_x^{\sigma} = L_y^{\sigma};$ (2) $R_x^{\rho} \cap R_x^{\sigma} = R_y^{\rho} \cap R_y^{\sigma} \Longrightarrow R_x^{\rho} = R_y^{\rho} \text{ and } R_x^{\sigma} = R_y^{\sigma}.$

We will prove the first one, the second one has a similar proof.

Since ρ and σ are reflexive relations, we write $x \in L_x^{\rho} \cap L_x^{\sigma}$, so $x \in L_y^{\rho} \cap L_y^{\sigma}$, that is $(y, x) \in \rho \cap \sigma$ and similarly, $(x, y) \in \rho \cap \sigma$.

Let us consider $z \in L_x^{\rho}$, that is $(x, z) \in \rho$ and since $(y, x) \in \rho$, by the transitivity of ρ , it results $(y, z) \in \rho$, $z \in L_y^{\rho}$. We have $L_x^{\rho} \subseteq L_y^{\rho}$ and similarly $L_y^{\rho} \subseteq L_x^{\rho}$. We obtain $L_x^{\rho} = L_y^{\rho}$ and, in the same way, $L_x^{\sigma} = L_y^{\sigma}$. \Box

Proposition 2.3. Let ρ and σ be two binary relations on H with full domain and full range such that $\rho^2 = \rho$, $\sigma^2 = \sigma$ and $\rho\sigma = \sigma\rho$. If, for $x, y \in H$, $x\sim_o y$ in \mathbb{H}_{ρ} and $x\sim_i y$ in \mathbb{H}_{σ} , then $x\sim_e y$ in $\mathbb{H}_{\rho\sigma}$. Moreover, $x\sim_e y$ in \mathbb{H}_{ρ} and $x\sim_e y$ in \mathbb{H}_{σ} lead to $x\sim_e y$ in $\mathbb{H}_{\rho\sigma}$.

Proof. In this hypothesis, the hypergroupoids \mathbb{H}_{ρ} , \mathbb{H}_{σ} and $\mathbb{H}_{\rho\sigma}$ are hypergroups.

Let us consider $x, y \in H$ such that $x \sim_o y$ in \mathbb{H}_ρ and $x \sim_i y$ in \mathbb{H}_σ , so we have $L_x^\rho = L_y^\rho$ and $R_x^\sigma = R_y^\sigma$. It is enough to prove the implications

(1) $L_x^{\rho} = L_y^{\rho} \Longrightarrow L_x^{\rho\sigma} = L_y^{\rho\sigma};$ (2) $R_x^{\sigma} = R_y^{\sigma} \Longrightarrow R_x^{\rho\sigma} = R_y^{\rho\sigma}.$ Let $z \in L_x^{\rho\sigma}$; there exists $t \in L_x^{\rho}$ such that $z \in L_t^{\sigma}$, so there exists $t \in L_y^{\rho}$ such that $z \in L_t^{\sigma}$; therefore $z \in L_y^{\rho\sigma}$. Similarly $L_y^{\rho\sigma} \subseteq L_x^{\rho\sigma}$.

In the same way we can show the second implication.

Thus, if $x \sim_o y$ in \mathbb{H}_{σ} and $x \sim_i y$ in \mathbb{H}_{ρ} , it results $x \sim_e y$ in $\mathbb{H}_{\sigma\rho}$ and since $\rho\sigma = \sigma\rho$ we obtain the last assertion of the proposition. \Box

3. Reduced hypergroups associated with binary relations

In this section, first, we determine a necessary and sufficient condition for the hypergroup \mathbb{H}_{ρ} in order to be reduced; then we analyze this condition for different types of relations. Secondly, we prove that the hypergroupoid \mathscr{H}_{ρ} associated with a binary relation defined by Corsini [4] is not a reduced hypergroup.

Theorem 3.1. The hypergroup \mathbb{H}_{ρ} is reduced if and only if, for any $x, y \in H$, x different from y, either $L_x \neq L_y$ or $R_x \neq R_y$.

Proof. By the definition, the hypergroup \mathbb{H}_{ρ} is reduced if and only if, for any $x \neq y$, it is true $x \gamma_{o} y$ or $x \gamma_{i} y$ and by the Proposition 2.1 this is equivalent with $L_{x} \neq L_{y}$ or $R_{x} \neq R_{y}$. \Box

For some particular relations, the condition expressed in the previous theorem is simpler, as we see in the following results.

Proposition 3.2. If ρ is an equivalence on H, then the hypergroupoid \mathbb{H}_{ρ} is a reduced hypergroup if and only if $\rho = \Delta_H = \{(x, x) \mid x \in H\}.$

Proof. If ρ is an equivalence on *H*, then $\langle \mathbb{H}_{\rho}, \circ \rangle$ is a hypergroup.

Since ρ is symmetric, we have, for any $x \in H$, $L_x = R_x$ and then, \mathbb{H}_{ρ} is reduced if and only if, for any $x \neq y$, $L_x \neq L_y$. We show that this condition is equivalent with the following one: for any $x \in H$, $L_x = \{x\}$ and then, it is clear $\rho = \Delta_H$.

If, for any $x \in H$, $L_x = \{x\}$, it results for all $x \neq y$ that $L_x \neq L_y$.

Conversely, let $y \neq x, y \in L_x$; we obtain $\{x, y\} \subseteq L_y$. For any $z \in L_y \setminus \{x, y\}$ we have $(y, z) \in \rho$, $(x, y) \in \rho$ and by transitivity it follows $(x, z) \in \rho$, so $z \in L_x$. Similarly, it results $L_x \subseteq L_y$, thus $L_x = L_y$ which is in contradiction with the hypothesis. \Box

Proposition 3.3. If ρ is a non-symmetric quasiorder on H, then the hypergroup $\langle \mathbb{H}_{\rho}, \circ \rangle$ is reduced if and only if, for any $x \neq y, L_x \neq L_y$.

Proof. If ρ is a quasiorder on *H* then, for any $x \neq y \in H$, we have the implication $x \sim_o y \Longrightarrow x \sim_i y$.

Indeed, if we suppose $L_x = L_y$ and $R_x \neq R_y$, there exists $z \in R_x$, $z \notin R_y$; then $(z, x) \in \rho$ and $(z, y) \notin \rho$. But ρ is reflexive and then $y \in L_y = L_x$; thus $(x, y) \in \rho$ and by transitivity we obtain $(z, y) \in \rho$, which is false.

So, for any $x \neq y$, the condition " $L_x \neq L_y$ or $R_x \neq R_y$ " is equivalent with " $L_x \neq L_y$ ". \Box

Proposition 3.4. If ρ is a reflexive symmetric non-transitive relation on H, such that $\rho^2 = H \times H$, then the hypergroup $\langle \mathbb{H}_{\rho}, \circ \rangle$ is reduced if and only if $L_x \neq L_y$, for all $x, y \in H$, x different from y.

Proof. As in the previous proposition it is enough to prove that, for any $x \neq y, x \sim_o y \Longrightarrow x \sim_i y$.

If we suppose there exists $a \in H$ such that $x \in L_a$ and $y \notin L_a$, then, by the symmetry, we have $a \in L_x = L_y$ and thus $a \in L_y$, so $y \in L_a$, contradiction.

Given a binary relation ρ on H, Corsini [4] has defined another hyperoperation: for any $x, y \in H$,

$$x \otimes_{\rho} y = L_x \cap R_y$$

and he has proved that $\mathscr{H}_{\rho} = \langle H, \otimes_{\rho} \rangle$ is a hypergroupoid if and only if $\rho^2 = H \times H$.

In case that the Corsini hyperoperation \otimes_{ρ} is left or right reproductive, then \mathscr{H}_{ρ} is the total hypergroup (see [16, Remark 2.4]). So, the unique hypergroup obtained in this manner is the total hypergroup, which clearly is not reduced. \Box

4. The hypergroups $\mathbf{H}_{\rho\cap\sigma}$, $\mathbf{H}_{\rho\cup\sigma}$, $\mathbf{H}_{\rho\sigma}$ as reduced hypergroups

Let ρ and σ be two binary relations defined on a non-empty set *H*. The hypergroups $\mathbb{H}_{\rho \cap \sigma}$, $\mathbb{H}_{\rho \sigma}$ and $\mathbb{H}_{\rho \cup \sigma}$ are reduced independently if \mathbb{H}_{ρ} and \mathbb{H}_{σ} are or are not reduced hypergroups, as we will see in the following results.

Proposition 4.1. Let ρ and σ be two quasiorder relations on H. If the hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced, then the hypergroup $\mathbb{H}_{\rho\cap\sigma}$ is reduced too.

Proof. If we suppose that the hypergroup $\mathbb{H}_{\rho\cap\sigma}$ is not reduced, then it results there exist $x \neq y$ in H such that $x \sim_e y$ in $\mathbb{H}_{\rho \cap \sigma}$ and therefore $x \sim_e y$ in \mathbb{H}_{ρ} , $x \sim_e y$ in \mathbb{H}_{σ} , which is impossible because the hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced. \Box

Remark. If the hypergroup $\mathbb{H}_{\rho\cap\sigma}$ is reduced, then the hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} can be reduced or not, as one sees from the following examples.

Example 4.2. Let $H = \{1, 2, 3, 4\}$.

- (i) If $\rho \cap \sigma = \Delta_H = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ and ρ, σ are equivalences on H different from the diagonal relation Δ_H , then the hypergroup $\mathbb{H}_{\rho\cap\sigma}$ is reduced, but neither \mathbb{H}_{ρ} nor \mathbb{H}_{σ} is a reduced hypergroup (see Proposition 3.2).
- (ii) Set $\rho = \Delta_H \cup \{(1, 2)\}$ and $\sigma = \Delta_H \cup \{(1, 3)\}$. Then $\rho \cap \sigma = \Delta_H$, so $\mathbb{H}_{\rho \cap \sigma}$ is a reduced hypergroup and also \mathbb{H}_{ρ} and \mathbb{H}_{σ} .
- (iii) Set $\rho = \Delta_H \cup \{(1, 2), (2, 1), (1, 3), (2, 3)\}, \sigma = \Delta_H \cup \{(1, 2), (3, 4)\}, \text{ so } \rho \cap \sigma = \Delta_H \cup \{(1, 2)\}.$ It results the hypergroups $\mathbb{H}_{\rho\cap\sigma}$ and \mathbb{H}_{σ} are reduced, but the hypergroup \mathbb{H}_{ρ} is not $(L_{1}^{\rho} = L_{2}^{\rho}, R_{1}^{\rho} = R_{2}^{\rho})$.

Proposition 4.3. Let ρ and σ be two binary relations on H with full domain and full range such that $\rho^2 = \rho$, $\sigma^2 = \sigma$ and $\rho\sigma = \sigma\rho$. If the hypergroup $\mathbb{H}_{\rho\sigma}$ is reduced, then both hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced.

Proof. From the Proposition 2.3 we have the implications:

- (1) $L_x^{\rho\sigma} \neq L_y^{\rho\sigma} \Longrightarrow L_x^{\rho} \neq L_y^{\rho} \text{ and } L_x^{\sigma} \neq L_y^{\sigma};$ (2) $R_x^{\rho\sigma} \neq R_y^{\rho\sigma} \Longrightarrow R_x^{\rho} \neq R_y^{\rho} \text{ and } R_x^{\sigma} \neq R_y^{\sigma}.$

If $\mathbb{H}_{\rho\sigma}$ is a reduced hypergroup then, for any $x \neq y$, we have $x \neq_e y$, so, for any $x \neq y$, $L_x^{\rho\sigma} \neq L_y^{\rho\sigma}$ or $R_x^{\rho\sigma} \neq R_y^{\rho\sigma}$. It follows $(L_x^{\rho} \neq L_y^{\rho})$ and $L_x^{\sigma} \neq L_y^{\sigma}$ or $(R_x^{\rho} \neq R_y^{\rho})$ and $R_x^{\sigma} \neq R_y^{\sigma})$ and therefore the hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced. \Box

Remark. In the same hypothesis as in the Proposition 4.3, if \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced hypergroups, then the hypergroup $\mathbb{H}_{\rho\sigma}$ is reduced or not, as the following examples show.

Example 4.4. We consider the following two situations.

- (1) Set $H = \{1, 2, 3, 4\}, \rho = \Delta_H \cup \{(1, 2)\} = \rho^2$ and $\sigma = \Delta_H \cup \{(1, 3)\} = \sigma^2$. Clearly, \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced hypergroups (see the Proposition 3.3); since $\rho\sigma = \Delta_H \cup \{(1, 2), (1, 3)\} = \sigma\rho$, it results that the hypergroup $\mathbb{H}_{\rho\sigma}$ is reduced.
- (2) Set $H = \{1, 2, 3\}, \rho = \Delta_H \cup \{(2, 1), (2, 3)\} = \rho^2$ and $\sigma = \Delta_H \cup \{(1, 3), (1, 2)\} = \sigma^2$. Again it results that \mathbb{H}_{ρ} and If σ are reduced hypergroups; we obtain $\rho\sigma = \Delta_H \cup \{(1, 2), (1, 3), (2, 1), (2, 3)\} = \sigma\rho$, and then $L_1^{\rho\sigma} = H = L_2^{\rho\sigma}$, $R_1^{\rho\sigma} = \{1, 2\} = R_2^{\rho\sigma}$, therefore the hypergroup $\mathbb{H}_{\rho\sigma}$ is not reduced.

Remark. Let ρ and σ be two binary relations defined on H such that the hypergroupoids \mathbb{H}_{ρ} , \mathbb{H}_{σ} and $\mathbb{H}_{\rho\cup\sigma}$ are hypergroups. If \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced hypergroups, then the hypergroup $\mathbb{H}_{\rho\cup\sigma}$ can be reduced or not and conversely, if $\mathbb{H}_{\rho\cup\sigma}$ is a reduced hypergroup, it does not result that the hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced, too, as it follows from the following examples.

Example 4.5. We present the following situations.

- (1) Set $H = \{1, 2, 3\}$, $\rho = \Delta_H \cup \{(1, 2)\} = \rho^2$ and $\sigma = \Delta_H \cup \{(2, 1)\} = \sigma^2$; we find $\rho \cup \sigma = \Delta_H \cup \{(1, 2), (2, 1)\} = (\rho \cup \sigma)^2$. It is clear that \mathbb{H}_{ρ} and \mathbb{H}_{σ} are reduced hypergroups, but the hypergroup $\mathbb{H}_{\rho \cup \sigma}$ is not reduced, since $L_1^{\rho \cup \sigma} = \{1, 2\} = L_2^{\rho \cup \sigma}$, $R_1^{\rho \cup \sigma} = \{1, 2\} = R_2^{\rho \cup \sigma}$ (see the Proposition 3.3).
- (2) Set $H = \{1, 2, 3\}$, $\rho = \Delta_H \cup \{(1, 2)\} = \rho^2$ and $\sigma = \Delta_H \cup \{(1, 3)\} = \sigma^2$; we obtain $\rho \cup \sigma = \Delta_H \cup \{(1, 2), (1, 3)\} = (\rho \cup \sigma)^2$. It follows that all the three hypergroups \mathbb{H}_{ρ} , \mathbb{H}_{σ} and $\mathbb{H}_{\rho \cup \sigma}$ are reduced.
- (3) Set again $H = \{1, 2, 3\}$ and the relations $\rho = \Delta_H \cup \{(1, 2), (2, 1)\} = \rho^2$, $\sigma = \Delta_H \cup \{(1, 3)\} = \sigma^2$, therefore $\rho \cup \sigma = \Delta_H \cup \{(1, 2), (2, 1), (1, 3)\}$ which is different from $(\rho \cup \sigma)^2 = \Delta_H \cup \{(1, 2), (2, 1), (1, 3), (2, 3)\}$. In this case the hypergroup \mathbb{H}_{ρ} is not reduced, the hypergroup \mathbb{H}_{σ} is reduced and the hypergroup $\mathbb{H}_{\rho\cup\sigma}$ is reduced, too. The hypergroupoid $\mathbb{H}_{\rho\cup\sigma}$ is a hypergroup because $\rho \cup \sigma \subset (\rho \cup \sigma)^2$ and for the outer elements 1 and 2 of $\rho \cup \sigma$, condition (iv) of the Theorem 1.3 holds.

5. The cartesian product of the reduced hypergroups

Let $\langle H_1, \circ_1 \rangle$, $\langle H_2, \circ_2 \rangle$ be two hypergroups. On the cartesian product $H_1 \times H_2$ we define the hyperoperation

$$(x_1, x_2) \otimes (y_1, y_2) = (x_1 \circ_1 y_1, x_2 \circ_2 y_2)$$

and we obtain the hypergroup $\langle H_1 \times H_2, \otimes \rangle$ [2].

Proposition 5.1. In the hypergroup $(H_1 \times H_2, \otimes)$, the following implications hold:

(i) $(x_1, x_2) \sim_o (y_1, y_2) \iff x_1 \sim_o y_1 \text{ in } H_1 \text{ and } x_2 \sim_o y_2 \text{ in } H_2;$

(ii) $(x_1, x_2) \sim_i (y_1, y_2) \iff x_1 \sim_i y_1 \text{ in } H_1 \text{ and } x_2 \sim_i y_2 \text{ in } H_2.$

Proof. (i) By the definition of the relation \sim_o we have $(x_1, x_2) \sim_o (y_1, y_2)$ if and only if, for any $(a_1, a_2) \in H_1 \times H_2$, it is true: $(x_1, x_2) \otimes (a_1, a_2) = (y_1, y_2) \otimes (a_1, a_2)$ and $(a_1, a_2) \otimes (x_1, x_2) = (a_1, a_2) \otimes (y_1, y_2)$, which is equivalent with $x_1 \circ_1 a_1 = y_1 \circ_1 a_1$, $x_2 \circ_2 a_2 = y_2 \circ_2 a_2$ and $a_1 \circ_1 x_1 = a_1 \circ_1 y_1$, $a_2 \circ_2 x_2 = a_2 \circ_2 y_2$, that is, $x_1 \sim_o y_1$ and $x_2 \sim_o y_2$.

(ii) By the definition of the relation \sim_i we get $(x_1, x_2) \sim_i (y_1, y_2)$ if and only if, for $(a_1, a_2), (b_1, b_2) \in H_1 \times H_2$, we have $(x_1, x_2) \in (a_1, a_2) \otimes (b_1, b_2)$ equivalently $(y_1, y_2) \in (a_1, a_2) \otimes (b_1, b_2)$, therefore $x_1 \in a_1 \circ_1 b_1$ and $x_2 \in a_2 \circ_2 b_2$ if and only if $y_1 \in a_1 \circ_1 b_1$ and $y_2 \in a_2 \circ_2 b_2$, that is, $x_1 \sim_i y_1$ and $x_2 \sim_i y_2$. \Box

Theorem 5.2. The hypergroup $\langle H_1 \times H_2, \otimes \rangle$ is reduced if and only if the hypergroups $\langle H_1, \circ_1 \rangle$ and $\langle H_2, \circ_2 \rangle$ are reduced.

Proof. First, we suppose that $\langle H_1 \times H_2, \otimes \rangle$ is a reduced hypergroup and that H_1 is not reduced. Then there exists $x_1 \neq y_1$ in H_1 such that $x_1 \sim_e y_1$, that is, $x_1 \sim_o y_1$ and $x_1 \sim_i y_1$. It follows that, for any $x_2 \in H_2$, we have $(x_1, x_2) \sim_o (y_1, x_2)$ and $(x_1, x_2) \sim_i (y_1, x_2)$ (by the previous proposition), that is $(x_1, x_2) \sim_e (y_1, y_2)$ with $(x_1, x_2) \neq (y_1, x_2)$; this means that $\langle H_1 \times H_2, \otimes \rangle$ is not reduced, which is in contradiction with the hypothesis.

Conversely, we suppose that $\langle H_1, \circ_1 \rangle$ and $\langle H_2, \circ_2 \rangle$ are reduced hypergroups, but $\langle H_1 \times H_2, \otimes \rangle$ is not. Then there exist $(x_1, x_2) \neq (y_1, y_2) \in H_1 \times H_2$ such that $(x_1, x_2) \sim_e (y_1, y_2)$. By the previous proposition we find $x_1 \sim_e y_1$ and $x_2 \sim_e y_2$. Since $\langle H_1, \circ_1 \rangle$ and $\langle H_2, \circ_2 \rangle$ are reduced, it follows that $x_1 = y_1, x_2 = y_2$, thus $(x_1, x_2) = (y_1, y_2)$ which is false. \Box

Proposition 5.3. Let ρ_1 , ρ_2 be two binary relations defined on the non-empty sets H_1 , H_2 such that the associated hypergroupoids $(\mathbb{H}_1)_{\rho_1}$ and $(\mathbb{H}_2)_{\rho_2}$ are hypergroups.

- (i) If $(\mathbb{H}_1)_{\rho_1}$ and $(\mathbb{H}_2)_{\rho_2}$ are reduced hypergroups and, for $j \in \{1, 2\}$, the implication $\rho_j^2 \neq H_j^2 \Longrightarrow \rho_{3-j} = \rho_{3-j}^2$ (that is $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is a hypergroup) ([4]) holds, then $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is a reduced hypergroup.
- (ii) If $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is a reduced hypergroup, then at least one of the hypergroups $(\mathbb{H}_1)_{\rho_1}$ and $(\mathbb{H}_2)_{\rho_2}$ is reduced.

Proof. (i) If we suppose that $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is not reduced, then there exist $(x_1, x_2) \neq (y_1, y_2) \in H_1 \times H_2$ such that $L_{(x_1, x_2)} = L_{(y_1, y_2)}$ and $R_{(x_1, x_2)} = R_{(y_1, y_2)}$, that is $L_{x_1} = L_{y_1}$, $L_{x_2} = L_{y_2}$, $R_{x_1} = R_{y_1}$, $R_{x_2} = R_{y_2}$. This implies that $x_1 \sim_e y_1$ in $(\mathbb{H}_1)_{\rho_1}$ and $x_2 \sim_e y_2$ in $(\mathbb{H}_2)_{\rho_2}$, but since $(\mathbb{H}_1)_{\rho_1}$ and $(\mathbb{H}_2)_{\rho_2}$ are reduced, it follows $x_1 = y_1$ and $x_2 = y_2$, therefore $(x_1, x_2) = (y_1, y_2)$, which is false.

(ii) Now, if $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is a reduced hypergroup and if we suppose that both hypergroups $(\mathbb{H}_1)_{\rho_1}$ and $(\mathbb{H}_2)_{\rho_2}$ are not reduced, it follows there exist $x_1 \neq y_1 \in H_1$ and $x_2 \neq y_2 \in H_2$ such that $x_1 \sim_e y_1$ in $(\mathbb{H}_1)_{\rho_1}$ and $x_2 \sim_e y_2$ in $(\mathbb{H}_2)_{\rho_2}$; we obtain $L_{x_1} = L_{y_1}$, $R_{x_1} = R_{y_1}$ and $L_{x_2} = L_{y_2}$, $R_{x_2} = R_{y_2}$, which lead to the relations $L_{(x_1,x_2)} = L_{(y_1,y_2)}$ and $R_{(x_1,x_2)} = R_{(y_1,y_2)}$. This is in contradiction with the hypothesis that $(H_1 \times H_2)_{\rho_1 \times \rho_2}$ is reduced. \Box

6. Conclusions

The hypergroup associated with a binary relation ρ in the sense of Rosenberg is reduced if and only if, for any $x, y \in H$, either $L_x \neq L_y$ or $R_x \neq R_y$. The unique equivalence relation ρ defined on H such that the hypergroup \mathbb{H}_{ρ} is reduced is the diagonal relation Δ_H . Given two binary relations ρ and σ on H, the property of being reduced of the associated hypergroups \mathbb{H}_{ρ} and \mathbb{H}_{σ} may or may not influence the same property of the hypergroups $\mathbb{H}_{\rho\sigma}$, $\mathbb{H}_{\rho\cap\sigma}$, $\mathbb{H}_{\rho\cup\sigma}$ and conversely. Finally, we proved that the cartesian product of reduced hypergroups is a reduced hypergroup.

Acknowledgments

The authors are highly grateful to the referees for their constructive suggestions for improving the paper.

References

- J. Chvalina, Commutative hypergroups in the sense of Marty and ordered sets, Proceedings of the Summer School on General Algebra and Ordered Sets, 1994, Olomouc, Czech Republic, pp. 19–30.
- [2] P. Corsini, Prolegomena of Hypergroups Theory, Aviani Editore, 1993.
- [3] P. Corsini, On the hypergroups associated with binary relations, Multiple-Valued Logic 5 (2000) 407-419.
- [4] P. Corsini, Binary relations and hypergroupoids, Italian J. Pure Appl. Math. 7 (2000) 11-18.
- [5] P. Corsini, V. Leoreanu, Hypergroups and binary relations, Algebra Universalis 43 (2000) 321-330.
- [6] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, in: Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [7] I. Cristea, Some remarks on the reduced hypergroups, in: Advances in Abstract Algebra (vol. in the memory of Prof. Ghe. Radu), Al. Myller, Faculty of Mathematics of the University" Al. I. Cuza" Iasi, Romania, 2006, accepted for publication.
- [8] M. De Salvo, G. Lo Faro, Hypergroups and binary relations, Multiple Valued Logic 8 (2002) 645-657.
- [9] J. Jantosciak, Homomorphism, equivalence and reductions in hypergroups, Riv. Mat. Pura Appl. 9 (1991) 23-47.
- [10] J. Jantosciak, Reduced hypergroups, in: T. Vougiouklis, (Ed.), Algebraic Hyperstructures and Applications Proceedings of 4th International Congress, Xanthi, Greece, 1990, World Scientific, Singapore, 1991, pp. 119–122.
- [11] M. Konstantinidou, K. Serafimidis, Sur les P-supertreillis, in: T. Vougiouklis, (Ed.), New Frontiers in Hyperstructures and Rel. Algebras, Hadronic Press, Palm Harbor, USA, 1996, pp. 139–148.
- [12] F. Marty, Sur une généralization de la notion de group, Eight Congress Math. Scandenaves, Stockholm, 1934, pp. 45-49.
- [13] I.G. Rosenberg, Hypergroups and join spaces determined by relations, Italian J. Pure Appl. Math. 4 (1998) 93-101.
- [14] S. Spartalis, Hypergroupoids obtained from groupoids with binary relations, Italian J. Pure Appl. Math. 16 (2004) 201–210.
- [15] S. Spartalis, The hyperoperation relation and the Corsini's partial or not-partial hypergroupoids (a classification), Italian J. Pure Appl. Math. (2007), accepted for publication.
- [16] S. Spartalis, C. Mamaloukas, On hyperstructures associated with binary relations, in: Computers and Mathematics with Applications, Elsevier, Amsterdam, vol. 51, no. 1, 2006, pp. 41–50.