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Abstract

We consider the Inventory-Routing Problem where n geographically dispersed retailers must be supplied by a central
facility. The retailers experience demand for a product at a deterministic rate and incur holding costs for keeping inventory.
Distribution is performed by a 7eet of capacitated vehicles. The objective is to minimize the average transportation and
inventory costs per unit time over the in'nite horizon. In this paper, we focus on the set of 'xed partition policies. In
a 'xed partition policy, the retailers are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is
served independently of the others and at its optimal replenishment rate. We derive a deterministic (O(n)) lower bound
on the cost of the optimal 'xed partition policy. A probabilistic analysis of the performance of this bound demonstrates
that it is asymptotically 98.5%-e$ective. That is, as the number of retailers increases, the lower bound is very close to
the cost of the optimal 'xed partition policy.
c© 2003 Elsevier B.V. All rights reserved.
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0. Introduction

We consider the Inventory-Routing Problem (IRP), also called the One Warehouse Multi-Retailer Distribution Problem.
In this problem, retailers face constant retailer-speci'c demand rates for a single product. At each retailer a linear holding
cost per unit time is incurred for items held in inventory. We assume one warehouse serves as the supply point for the
retailers. Initially stationed at the warehouse and available to perform delivery is a 7eet of vehicles of limited capacity.
The objective is to determine a long-term integrated replenishment strategy (i.e., inventory rules, delivery quantities and
routing patterns) allowing all retailers to meet their demands while minimizing long-run average system-wide transportation
and inventory costs.

Managing such a system, which is common in vendor-managed inventory (VMI) situations, requires a careful coordi-
nation of deliveries to balance transportation and inventory charges. The problem is complicated by the fact that delivery
costs include the total distance traveled, which requires solving Traveling Salesman Problems (TSP) de'ned by the re-
tailers assigned to a route. In addition to the computational complexity, even if an optimal policy could be e>ciently
determined, the policy might be very complex and therefore not easily implemented. Hence there is a need to design
and e>ciently identify cost-e$ective policies that are of a simple nature. This has prompted research on this problem
that concentrates mainly on a speci'c policy class called partitioning policies. These are characterized by a set of routes
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with the following properties: (1) each route visits a subset of retailers at equidistant time intervals and (2) each route is
responsible for replenishing a certain fraction (which is retailer dependent) of the demand of each of the retailers it visits.

The literature distinguishes between two versions of the partitioning problem: the split and the unsplit demand case, see
Anily and Bramel [2]. In the split demand case, a retailer may be served by a number of routes, whereas in the unsplit
demand case, each retailer must be served on a single route. I.e., in the unsplit demand case, a route either serves all the
demand of a given retailer or it does not serve (visit) it at all. A policy for the unsplit demand case therefore consists of
a partition of the retailers into disjoint and collectively exhaustive sets where each set is served on a separate route. A
policy for the unsplit demand case is called a 9xed partition policy (FPP). Clearly, any feasible FPP is also a feasible
solution for the split demand case but not vice versa. Even though both versions of the problem are NP-Hard, the split
demand case is usually perceived as simpler since it allows for more 7exibility in combining deliveries on a route so that
the vehicles’ capacity is better exploited.

Anily and Federgruen [4,5] and Anily [1] design partitioning policies for the split demand case using region partitioning
schemes. Speci'cally, as a 'rst step each retailer is replaced by unit-demand retailers. Then using region partitioning the
unit-demand retailers are grouped into clusters that are served at optimal replenishment rates. These simple polynomial-time
schemes are shown to construct policies that are asymptotically optimal within this class.

Gallego and Simchi-Levi [11] analyze a particular policy for the unsplit demand case (an FPP) called direct shipping.
According to this policy each retailer is served individually (on a separate route) and at its optimal replenishment rate.
Thus no attempt is made to combine shipments of di$erent retailers into a single route. The authors show that this policy,
naive as it is, provides a solution whose cost is within 6% of the minimal policy cost as long as the optimal replenishment
quantity of each retailer (independent of the others) is at least 71% of the vehicle capacity.

In [7], Bramel and Simchi-Levi develop a heuristic to design an e$ective FPP. Their heuristic is based on formulating the
partitioning problem as a location problem, called a capacitated concentrator location problem, with conveniently chosen
costs and parameters. The solution to the location problem suggests an FPP which is shown, in a series of computational
experiments, to be cost-e$ective.

A number of other approaches and analyses of this problem have appeared, e.g., Herer and Roundy [12] consider
power-of-two policies for a version of the problem with uncapacitated vehicles. Vishwanathan and Mathur [16] develop
power-of-two policies for a similar problem with multiple products. See [2] for a recent survey of bounds, heuristics and
policy classes for the IRP.

Fixed partition policies are of interest for two important reasons: they have simple structure and can be very cost-e$ective.
Their simplicity comes from the following facts: each retailer is served at equidistant intervals, each shipment to the same
retailer is of the same size, and only a small number of routes (system-wide) need to be driven. Besides the computational
results of [7], the cost-e$ectiveness of FPPs was shown in a rigorous manner by Chan et al. [8]. They consider the FPP
class and show that the best FPP is within 41% of the minimal policy cost asymptotically. Also, as demonstrated in [8],
under certain conditions (described below), there exists an FPP that is asymptotically optimal with respect to all feasible
policies.

For a 'rm implementing an FPP, it is important to know the policy’s e$ectiveness. Thus a lower bound is required.
Chan et al. [8] develop a lower bound on the average cost of any feasible policy, and Anily and Federgruen [5] derive
a lower bound over all partitioning policies. Clearly, both lower bounds may also serve as a lower bound on the cost
of the optimal FPP. However, these comparisons may not be the most appropriate since they involve comparisons with
policies which cannot or would not be implemented even if known. Therefore, it is important to determine the quality of
a proposed FPP within the FPP class, thus providing a comparison among similar policies (or at least policies of similar
complexity, implementation-wise). The lower bound of [8] provides some information about the e$ectiveness of FPPs
within the FPP class. They show that, for certain instances, the lower bound over all feasible policies is asymptotically
tight with the best FPP, but generally, the best FPP does not exceed

√
2 · 100% of the lower bound asymptotically. In

addition, this bound is tight (see [6]).
In this paper, we develop a deterministic, linear-time lower bound on the cost of the best FPP, which depends only

on the problem’s parameters and a few characteristics of the joint probability distribution of the retailer’s locations and
demand rates. This bound is proven in Section 2.1 to be asymptotically 98.5%-e$ective. This means that as the number
of retailers increases, the lower bound becomes at least 98.5% of the cost of the optimal FPP. The convergence rate
of the lower bound to the optimal FPP solution is highly dependent on the joint p.d.f. of the retailer’s locations and
demand rates. For practical purposes, it will be interesting to investigate in future research the convergence rate of the
proposed lower bound for various forms of joint p.d.f. Such results are important for the assessment of the suitability of
the proposed lower bound for a given problem size.

The lower bound that we propose is a sort of cost allocation scheme: a cost is allocated to each retailer and for any
set of retailers (that can be feasibly served together), the sum of the cost allocations over the set is a lower bound on
the long-term average cost of serving the set in any FPP. This lower bound can then be used to assess the e$ectiveness
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of any FPP. As explained in the sequel, the lower bound value depends on a certain value characteristic of the demand
distribution of the retailers. This value is not always available or easily computable. Still, as it turns out in Anily and
Bramel [3], the existence proof of this lower bound and its proven asymptotic optimality gap are extremely valuable in the
probabilistic analysis of the region partitioning scheme proposed in [3] for designing a good FPP. This is most notable,
in view of the fact that the construction of an FPP in polynomial-time with an ex ante bound on its optimality gap has
eluded researchers for many years. The only exception is the result on direct shipping of [11] which only holds in certain
cases. The main reason for the relatively slow progress in this direction is due to the lack of a good lower bound on the
cost of policies in the class. The lower bound presented here has made it possible to revisit the issue. Indeed, in Anily
and Bramel [3] the authors develop a polynomial-time region partitioning procedure that constructs an FPP whose cost is
asymptotically within 1.5% of the lower bound derived in this paper and thus within 1.5% of the best FPP.

In the next section we describe the notation and the probabilistic assumptions used to derive the asymptotic e$ectiveness.
In Section 2, we develop the lower bound and in Section 2.1 we prove that it is asymptotically 98.5%-e$ective. In Section
3, we give some concluding remarks.

1. Preliminaries

Let N = {1; 2; : : : ; n} denote the set of retailers. We denote by wi the demand rate (in units of product per unit time)
at retailer i ∈N . An unlimited number of vehicles of limited capacity Q are available to perform the distribution. These
vehicles are initially stationed at the depot, which could be a warehouse, distribution center or manufacturing facility.
The cost of a delivery (loading the vehicle, traveling to a number of retailers, unloading at each retailer and returning to
the depot) is assumed to consist of a 'xed cost c¿ 0 plus a term that is proportional to the distance the vehicle travels.
Without loss of generality, we assume the cost per unit distance is 1.

Each retailer incurs a holding cost h per unit of product held in inventory per unit of time, independent of the location.
To avoid situations where retailers are served at excessive frequencies and for analytical tractability, our model assumes
(as in [1,4,5,8]) that there is a constraint on the maximum delivery frequency to each retailer. I.e., the inventory of a
retailer may not be replenished more than f times per time unit. More speci'cally, within any time interval of length
t ¿ 0 units, a retailer cannot get more than t · f deliveries.
A 'xed partition policy is speci'ed by a partition of N along with replenishment rates for each set in the partition.

A partition of N is any collection of non-empty sets {S1; S2; : : : ; Sm} such that Sk ∩ S‘ = ∅, for all 16 k; ‘6m (k 	= ‘),

and
⋃m

k=1 Sk = N . Note a set S ⊆ N can be feasibly served in an FPP if w(S)def=
∑

i∈S wi6Qf. That is, under our
assumptions a set of retailers with total demand rate greater than Qf cannot be feasibly served on a single route in an
FPP. To see this note that the maximum delivery rate to a retailer has a vehicle deliver a full load (Q units) every 1=f
units of time, i.e., a rate of Qf units per unit time. Given a partition {S1; S2; : : : ; Sm} we call it feasible if w(Sk)6Qf
for each k = 1; 2; : : : ; m.

Given a set S ⊆ N , let L∗(S) denote the length of an optimal traveling salesman tour through the depot and the retailers
of S. For any set S ⊆ N with w(S)6Qf, we de'ne

z(S)def=min
{

L∗(S) + c
t

+
1
2
htw(S) :

1
f
6 t6

Q
w(S)

}
:

The function z(S) gives the cost per unit time of serving S in an FPP. The value of t providing the minimum in z(S) is
the optimal replenishment interval of S. It follows that the cost of the FPP de'ned by the feasible partition {S1; S2; : : : ; Sm}
is given by

∑m
i=1 z(Si). Since for 'xed n the number of feasible partitions is 'nite and the number of di$erent sequences

with which the retailers in each set can be visited is 'nite, the set of FPPs that need be considered for optimality is also
'nite (assuming that each set is ordered at its optimal replenishment rate). We therefore let ZFP

n denote the cost of an
optimal 'xed partition policy for a problem with n retailers.

We propose a quite standard probabilistic model (the same one as in [8] and very similar to the one in [1,4,5]). We
assume the retailers and the depot are located on the Euclidean plane. Without loss of generality, we place the depot at
the origin. We assume the locations and demand rates of retailers are drawn from a joint distribution �. We denote by
 the marginal distribution of retailer demand rates, and without loss of generality assume the range of feasible rates is
(0; Qf]. Let � denote the average demand rate (as a proportion of Qf), thus �∈ (0; 1] and E[w]=�Qf. Denote by � the
marginal distribution of retailer locations, and assume � has compact support A ⊂ R2. We denote by ‖x‖ the Euclidean
distance between x ∈R2 and the depot. We denote by di the distance retailer i ∈N is from the depot, i.e., if retailer i is

located at xi ∈A, then di
def=‖xi‖.

In [5], Anily and Federgruen show that an asymptotically optimal policy (within the class of region partitioning policies)
for the IRP consists of partitioning the unit demand rate retailers into the minimum possible number of sets (routes).
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Thus, we can expect that a good 'xed partition policy is one that consists of a small number of feasible sets. Therefore
the well-known Bin Packing Problem (BPP) will play a crucial role in our analysis.

The BPP is de'ned by a set of item sizes and bins of 'xed capacity. The problem is to assign all the items into the
minimum number of bins in such a way that in no bin is the capacity exceeded. Excellent surveys of this problem appear
in [9,10]. In our context, we are concerned with packing the demand rates of a subset of retailers into the minimum
number of bins of capacity Qf. I.e., a set of retailers S makes up a feasible bin (route) if and only if w(S)6Qf.
An important bin-packing result concerns the number of bins required as the number of items increases. Let b∗

m be the
number of bins used in an optimal solution to the BPP de'ned on m items of size {w1; w2; : : : ; wm}. Using Kingman’s
theory of subadditive processes [13] (see also [15]), it is possible to show that there exists a constant �∈ (0; 1], dependent

only on  (the distribution of demand sizes) and the bin capacity, such that �def= limm→∞ b∗
m=m almost surely. This � is

called the bin-packing constant associated with  , and note that �6 �¡ 2�. We de'ne �= �=� as the packing e=ciency
of  , and note that �∈ [1; 2). We say a distribution with � = 1 allows perfect packing, i.e., as the number of items
increases the amount of wasted space in an optimal packing becomes a negligible fraction of the total space. On the other
hand, a distribution with � ≈ 2 has almost all bins in an optimal packing only slightly more than half-full.

To assess the strength of our lower bound, we use the following measure:

De�nition 1.1. A lower bound Zn on Zn is asymptotically �-e>ective if

lim
n→∞

1
n
Zn¿ � · Qlim

n→∞
1
n
Zn (a:s:):

In particular, if Zn is an asymptotically �-e$ective lower bound on ZFP
n then as the number of retailers increases, the

cost of the lower bound approaches at least � times the cost of the best FPP. A 100%-e$ective lower bound is an
asymptotically tight lower bound.

As we have noted, Chan et al. [8] analyze FPPs using an identical probabilistic model to ours. Their main result is that
'xed partition policies are asymptotically at most

√
� times the minimal policy cost (among all feasible policies). This is

done as follows. They present the following lower bound:

Bn =
n∑

i=1

wi

(
2di + c

Q
+

h
2f

)

and show that Bn is a lower bound on any feasible policy. They also construct an FPP (using an exponential-time grid
partitioning scheme) with cost ZC

n ¿ ZFP
n that satis'es

Qlim
n→∞

1
n
ZC
n 6

√
� · lim

n→∞

1
n
Bn (a:s:):

This result implies that the best FPP is asymptotically within a factor of
√
� of the best feasible policy. Since �¡ 2,

this result implies that 'xed partition policies are generally e$ective, in particular, no worse than
√
2 times an optimal

policy’s cost (asymptotically). Their e$ectiveness in fact depends on �, which is a function of speci'c characteristics of
the distribution of demand rates, the vehicle capacity and the frequency constraint. An interesting special case is � = 1,
i.e., when the demand rate distribution allows perfect packing. In this case, the results of [8] demonstrate that an optimal
FPP is asymptotically optimal with respect to all feasible policies.

As can be noted from [8], the lower bound expression Bn does not incorporate any measure related to the packing
constant � or the packing e>ciency �. This is a result of the fact that Bn is a lower bound on all feasible policies. The
objective of this paper is to obtain a better lower bound for 'xed partition policies by taking into account the inherent
bin-packing problem and thus relating the lower bound to � (or �). Indeed, we obtain a new lower bound with respect
to 'xed partition policies which is at least as large as the lower bound proposed by Chan et al. [8]. Our lower bound
depends, in addition, on the bin-packing constant � associated with  . In the special case that  allows perfect packing,
i.e., � = �, our lower bound coincides with the lower bound Bn derived in [8]. Co$man and Lueker [10] describe some
distributions for which the value of � is known. As we show in the sequel, even if the bin-packing constant associated
with  in an IRP instance is unknown, our technique usually allows to obtain a better (higher) lower bound than Bn on
the best FPP. For that sake we need to use another important concept from the bin packing literature called dual feasible
functions. These have played a key role in a number of important bin-packing results; details can be found in Co$man
and Lueker [10].

De�nition 1.2. A function u : [0; Qf] → [0; 1] is dual feasible for  if for all sets of items S generated from  with
w(S)6Qf we have

∑
i∈S u(wi)6 1.
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Fig. 1. A diagram of z(L;W ).

When  is clear from the context, we will call u simply dual feasible. For example, the function u(w) = w=Qf for
w ∈ [0; Qf] is always dual feasible. We call this function the trivial dual feasible function. For integers k¿ 2, the function
u(w)=(1=(k−1))�wk=Qf−1� is also dual feasible, where �x� is the smallest integer greater than or equal to x. A number
of other examples are presented in [14]. Dual feasible functions have a number of useful properties some of which we
present next.

Property 1.3. 1. If u is dual feasible for  , then �¿
∫
u(w) d (w) ≡ E[u(w)].

2. There exists a dual feasible function u∗ such that �=
∫
u∗(w) d (w) = E[u∗(w)].

Proof. 1. follows since
∑n

i=1 u(wi) is a lower bound on the number of bins required to pack {w1; w2; : : : ; wn}. Dividing
by n, taking the limit and using the strong law of large numbers proves the result. For 2, see Theorem 5.8 of [10], or
[15].

2. A lower bound on �xed partition policies

Given a set S with W def=w(S)6Qf and a route through S and the depot of length L, we de'ne the function:

z(L;W )def=min
{

L+ c
t

+
1
2
htW :

1
f
6 t6

Q
W

}
:

Let t∗ denote the value of t achieving the minimum in z(L;W ). The function z(L;W ) gives the cost per unit time of
dispatching one vehicle every t∗¿ 1=f units of time to serve S. The vehicle leaves the depot carrying Wt∗6Q units of
product. If t∗ =1=f we say the frequency constraint is active, while if t∗ =Q=W we say the capacity constraint is active.

To describe our lower bound, we begin by analyzing z(L;W ).

Property 2.1. The following can be easily shown:

1. For 9xed W , z(L;W ) is strictly increasing in L¿ 0.
2. For 9xed L and 06W 6Qf, z(L;W ) is strictly increasing in W and, in particular, z(L;W )6 z(L; Qf) =

(L+ c)f + hQ=2.
3. For 9xed L¿ 0, z(L;W ) is concave in W . In addition, the derivative of z(L;W ) with respect to W is continuous.
4. For any L¿ 0, W ¿ 0 and $¿ 0: z(L+ $; W )6 z(L;W ) + f$.

To help with the exposition that follows, consider Fig. 1 below.
In Fig. 1, we consider the function z(L;W ) by plotting L + c on the x-axis and W on the y-axis. In this 'gure, we

distinguish three important regions labeled F, C and N depending on the value of t∗. We consider each of these regions
in turn.

• Region F: In this region, t∗=1=f, i.e., the frequency constraint is active in z(L;W ). Thus z(L;W )=(L+c)f+hW=(2f).
Note that in this region we have W ¿ 2(L+ c)f2=h.

• Region C: In this region, t∗=Q=W , i.e., the capacity constraint is active in z(L;W ). Thus z(L;W )=(L+c)W=Q+hQ=2.
Note that in this region we have W ¿Q2h=(2(L+ c)).
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• Region N: In this region, t∗ =
√

2(L+ c)=hW , i.e., neither frequency nor capacity constraints are active in z(L;W ).
Thus z(L;W ) =

√
2hW (L+ c).

As can be observed from Fig. 1, it will be convenient to partition the (L+ c)-axis into the sets &1, &2 and &3, where

&1 =
[
0;

Qh
4f

)
; &2 =

[
Qh
4f

;
Qh
f

)
and &3 =

[
Qh
f

;+∞
)

:

These sets naturally de'ne three rings around the depot.
We start by constructing a lower bound on z(L;W ) for 9xed L and for W ¿Qf=2. Speci'cally, for 'xed L, we seek

a function z(L;W ) that is linear in W and satis'es z(L;W )6 z(L;W ) for all W ∈ (Qf=2; Qf]. Below we describe how
this is used in the lower bound. We consider three separate intervals for L:

• L+ c∈&1. Since z(L;W ) is linear in W , for W ∈ (Qf=2; Qf], we simply set z(L;W )= z(L;W )= (L+ c)f+ hW=(2f).
• L+ c∈&3. Since z(L;W ) is linear in W , for W ∈ (Qf=2; Qf], we simply set z(L;W ) = z(L;W ) = (L+ c)W=Q+ hQ=2.
• L + c∈&2. Here we let z(L;W ) be the line that connects the points of z(L;W ) at W = Qf=2 and W = Qf. Since

z(L;W ) is concave in W (Property 2.1, part 3), we have z(L;W )6 z(L;W ) for all W ∈ [Qf=2; Qf]. Since z(L; Qf=2)=√
(L+ c)hQf and z(L; Qf) = (L+ c)f + hQ=2, the line has slope:

mL =
2

Qf
((L+ c)f + hQ=2 −

√
(L+ c)hQf):

Let q(L) denote the intercept of this line, where

q(L)def=(L+ c)f + hQ=2 − QfmL = 2
√

(L+ c)hQf − [(L+ c)f + hQ=2]: (1)

We de'ne

p(L)def=QfmL = 2(L+ c)f + hQ − 2
√

(L+ c)hQf (2)

and therefore z(L;W ) = p(L)W=Qf + q(L).

In each of the three regions, z(L;W ) is linear in W and provides a lower bound on z(L;W ), as long as W ¿Qf=2. For
the next step in our lower bound, consider a set S of retailers with w(S)=W ∈ (Qf=2; Qf] and L= L∗(S). We assume L
is 'xed and z(L;W ) = aW + b (for some a and b dependent on L). From the derivation above it is clear that z(L;W ) is
a lower bound on the cost (per unit time) of serving S in an FPP. This cost can be interpreted as a charge of a per unit
of demand rate in S and a 'xed charge of b for the set itself. We allocate a portion of this lower bound to each retailer
in S, in such a way that the sum of the allocations over the retailers in S does not exceed z(L;W ). This is where the
concept of dual feasible functions is useful. Let u be dual feasible for  . We charge awi + bu(wi) to retailer i ∈ S. Since
u is dual feasible, summing these charges over all retailers of S, the total charge is at most aW + b= z(L;W ). Thus the
allocation provides a lower bound on z(L;W ) and therefore also a lower bound on z(L;W ). We now have a charge per
retailer which we can use to bound the cost of any FPP. Unfortunately, it is not quite this simple since a and b depend
on L, the length of the optimal traveling salesman tour through the retailers of S. We will therefore use a lower bound
on L in the cost allocation.

The cost allocation is formally done as follows. For any d¿ 0, w ∈ [0; Qf] and dual feasible function u, de'ne the
function:

gu(d; w) =




hw=(2f) + u(w)(2d+ c)f if 2d+ c∈&1;

p(2d)w=Qf + u(w)q(2d) if 2d+ c∈&2;

(2d+ c)w=Q + u(w)hQ=2 if 2d+ c∈&3:

We now show that the sum of the evaluations of the function gu over each retailer is a lower bound on the optimal
FPP. To prove this we show a stronger result, namely that for any set S ⊆ N with w(S)6Qf (not just w(S)¿Qf=2),
the cost per unit time of serving the set is no less than the sum of the evaluations of g over the retailers of S. The proof
is given in the appendix.

Lemma 2.2. Let u be dual feasible for  . For any S ⊆ N with w(S)6Qf, we have∑
i∈S

gu(di; wi)6 z(S):

The following lower bound theorem is a direct result of Lemma 2.2.
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Theorem 2.3. For any u dual feasible for  , we have
n∑

i=1

gu(di; wi)6 ZFP
n :

We now derive the probabilistic (asymptotic) version of this lower bound. The proof follows directly from Theorem
2.3 and the strong law of large numbers.

Theorem 2.4. Assume n retailer locations and demand rates are drawn from a joint distribution �(x; w), where x ∈A

and w ∈ (0; Qf]. Assume u is dual feasible for  def=
∫
�(x; ·) dx. Then

lim
n→∞

1
n
ZFP
n ¿E[gu]

def=
∫

gu(‖x‖; w) d�(x; w) (a:s:):

Also:

Corollary 2.5. Let U be the set of functions that are dual feasible for  , then:

lim
n→∞

1
n
ZFP
n ¿ Zdef=sup

u∈U

E[gu] (a:s:):

Our next theorem characterizes the value of the lower bound Z under the probabilistic assumptions described in Section
1 and under the additional assumption that retailer locations and demand rates are independent. For this purpose, for

‘∈ {1; 2; 3}, de'ne A‘
def={x ∈A : 2‖x‖ + c∈&‘} and let Qd‘ denote the average distance to the depot of retailers in ring

A‘. The following result will be needed to prove the asymptotic e$ectiveness.

Theorem 2.6. If retailer locations and demand rates are independent, then

lim
n→∞

1
n
ZFP
n ¿ Z

= �(A1)[�hQ=2 + �(2 Qd1 + c)f]

+ �(A2)[(2� − �)((2 Qd2 + c)f + hQ=2) + 2
√

hQf(� − �) · E[
√
2d+ c|2d+ c∈&2]]

+ �(A3)[(2 Qd3 + c)�f + �hQ=2] (a:s:): (3)

Proof. Given  , Property 1.3, part 2 shows that there exists a dual feasible function u∗ with �=
∫
u∗(w) d (w). Use this

particular u∗ to de'ne gu, i.e., gu = gu∗ . Now consider separately the term associated with each ring. Each of the terms
is derived from the de'nition of gu, the strong law of large numbers and the de'nitions of � and �.

We now present a few examples to illustrate how the bound can be used. Given an instance with n retailers, determining
the largest possible lower bound (in Theorem 2.3) entails choosing the dual feasible function u maximizing the bound.
We refer the reader to [10,14] for additional examples of dual feasible functions to those used here. Generally, it is not
possible to say which function u will give the largest lower bound, however we can say that asymptotically the best dual
feasible function to use in g is u∗ from Property 1.3, part 2.

One special case is to consider using the trivial dual feasible function in g, i.e., u(w) = w=Qf for w ∈ (0; Qf]. We get

gu(d; w) = w
(
2d+ c

Q
+

h
2f

)

for all d¿ 0 and w ∈ (0; Qf]. In this case, the lower bound is exactly the lower bound derived by Chan et al. [8].
Interestingly, this lower bound is known (see [8]) to be a lower bound on all feasible policies, not just 'xed partition
policies. In general, this will not yield an asymptotically tight lower bound on 'xed partition policies. In fact, the only
case where the lower bound is asymptotically tight is when the trivial u is the best possible dual feasible function (u∗ in
Property 1.3, part 2). This is true if and only if  allows perfect packing.

Fix k¿ 2 and consider the case where all retailer demand rates are greater than Qf=k, i.e.,  is zero over [0; Qf=k].
Then we can choose the dual feasible function u(w) = (1=(k − 1))�kw=Qf − 1� for w¿ 0. For example, if  is the
uniform distribution over (Qf=k; Qf], then � = (k + 1)=2k. According to Property 1.3, part 2, this is asymptotically the
best possible choice for u.
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We now show that the lower bound Z is asymptotically 98.5%-e$ective within the class of 'xed partition policies. This
is done by constructing an FPP using grid partitioning and then showing that, asymptotically, the lower bound is at least
98.5% of the cost of this 'xed partition policy.

From here on we assume that the retailer demand rates and retailer locations are independent of each other. We assume
the retailer locations are generated according to a distribution � with compact support A ⊂ R2, and the retailer demand
rates are generated according to a distribution  on (0; Qf].

The 'xed partition policy we construct is called Grid Partition (GP) and its cost is denoted ZGP
n . A similar solution

was constructed by Chan et al. [8]. We remark that this FPP cannot be constructed in polynomial-time since it requires
solving a number of bin-packing problems to optimality. The construction is used solely to prove that our lower bound
is asymptotically e$ective. Identifying, in polynomial-time, a provably e$ective FPP is a separate challenge which is
addressed in [3].

The upper bound construction is based on a parameter ,∈ [1; 2). Later on, this number will be 'xed but for now we
will write it in this more general way. We partition A in a manner di$erent from in the lower bound, and based on ,.
Note that in the notation below we often omit the dependence on ,. De'ne

&′
1 =

[
0;

Qh
2f,

)
; &′

2 =
[

Qh
2f,

;
Qh,
2f

)
and &′

3 =
[
Qh,
2f

;+∞
)

:

Since ,∈ [1; 2) we see that &1 ⊂ &′
1, &′

2 ⊂ &2, and &3 ⊂ &′
3. These three sets naturally de'ne three rings around the

depot. Let A′
‘ = {x ∈A : 2‖x‖ + c∈&′

‘}, for ‘∈ {1; 2; 3}, denote these rings.
Select an $¿ 0. The GP($) policy is constructed as follows. Superimpose on A an in'nite grid of side $=

√
2 and let

R′
‘ be an index set of the square 1 subregions in A′

‘ that have strictly positive measure under �. Let .j denote the minimal
distance between subregion j ∈R′

‘ and the depot. We consider each square subregion in turn. In each we determine an
optimal packing of the retailer demands into bins of capacity Qf. Let {S‘jk} denote the retailers in the kth bin of subregion
j ∈R′

‘ (in ring A′
‘). Then

ZFP
n 6 ZGP($)

n 6
3∑

‘=1

∑
j∈R′

‘

∑
k

z(L∗(S‘jk); w(S‘jk)):

It is easy to see that if a set of retailers S is fully contained in subregion j then L∗(S)6 2.j + (|S| + 1)$. By Property
2.1, part 1:

ZGP($)
n 6

3∑
‘=1

∑
j∈R′

‘

∑
k

z(2.j + (|S‘jk | + 1)$; w(S‘jk)):

Hence by Property 2.1, part 4:

ZGP($)
n 6

3∑
‘=1

∑
j∈R′

‘

∑
k

z(2.j; w(S‘jk)) + 2nf$: (4)

In the next step, we construct an upper bound on z(L;W ). This upper bound is linear in W , for 'xed L.

Lemma 2.7. Fix ,∈ [1; 2). For any L¿ 0 and W ∈ [0; Qf]:

z(L;W )6 Qz,(L;W )def=




hW=(2f) + (L+ c)f if L+ c∈&′
1;

W
√

(L+ c)h,=2Qf +
√

(L+ c)hQf=2, if L+ c∈&′
2;

(L+ c)W=Q + hQ=2 if L+ c∈&′
3:

Proof. The upper bound Qz,(L;W ) is linear in W for 'xed L. In A1 ⊆ A′
1 and A3 ⊆ A′

3, the upper bound is easy to
see. That is, if L + c∈&′

1 then from Fig. 1, either (L + c;W )∈F or (L + c;W )∈N and in both cases we have
z(L;W )6 hW=(2f) + (L + c)f. Similarly, if L + c∈&′

3 then from Fig. 1, either (L + c;W )∈C or (L + c;W )∈N and
in both cases we have z(L;W )6 (L+ c)W=Q + hQ=2.

1 Note we will use the term “square” for simplicity, even though some of these subregions may not be square since they are intersections
of squares with the rings or with the border of A.
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Region A2 (which intersects A′
1, A

′
2 and A′

3) requires a more careful analysis. Assume L+c∈&′
2. In this region, Qz,(L;W )

simply represents the line that is tangent to z(L;W ) at the point W = Qf=,. Since for 'xed L the function z(L;W ) is
concave in W , the tangent line is always above the function z(L;W ). To formally prove the inequality, we consider all
three cases: (L+ c;W )∈F, (L+ c;W )∈N and (L+ c;W )∈C.

Case 1: (L+ c;W )∈F. Both z(L;W ) = (L+ c)f+ hW=(2f) and the claimed upper bound are linear in W , hence we
compare slopes. Since in &′

2 the slope of the claimed upper bound is no less than h=(2f), we can make W as small as
possible, i.e., W =2f2(L+ c)=h. Then z(L;W )=2(L+ c)f. The claimed upper bound is of the form U

√
,+V=

√
, where

U =
2f2(L+ c)

h

√
(L+ c)h
2Qf

and V =
√

(L+ c)hQf=2: (5)

Note that
√
UV =(L+c)f. If , were variable, the minimum possible value of the claimed upper bound would be obtained

at , = V=U . In that case, the claimed upper bound is 2
√
UV = 2(L+ c)f and the result follows.

Case 2: (L+c;W )∈N. We again assume , is variable and set , to make the claimed upper bound as small as possible
(without a$ecting the value of z(L;W )). The best , to choose is ,=Qf=W and then the claimed upper bound coincides
with z(L;W ) =

√
2(L+ c)hW . The bound follows directly.

Case 3: (L + c;W )∈C. Then z(L;W ) = (L + c)W=Q + hQ=2. Again, both the claimed upper bound and z(L;W ) are
linear in W , so we compare slopes. In &′

2 the slope of the claimed upper bound is no less than (L+ c)=Q, and hence we
can make W as small as possible, i.e., we set W = hQ2=(2(L + c)). We then have z(L;W ) = hQ and the claimed upper
bound is of the form U ′√, + V=

√
, where

U ′ =
hQ2

2(L+ c)

√
(L+ c)h
2Qf

and V is as de'ned in (5). Note that
√
U ′V = hQ=2. Therefore, we can set ,= V=U ′ to determine the minimum possible

value of the claimed upper bound. In that case, the claimed upper bound is 2
√
U ′V = hQ proving the result.

Using this upper bound in (4) gives

ZGP($)
n 6

3∑
‘=1

∑
j∈R′

‘

∑
k

Qz,(2.j; w(S‘jk)) + 2nf$: (6)

We now investigate the asymptotic cost of the FPP we have constructed. For this purpose, let Qd′
‘ denote the average

distance to the depot for retailers in the ring A′
‘, for ‘∈ {1; 2; 3}.

Lemma 2.8.

Qlim
n→∞

1
n
ZGP($)
n 6 �(A′

1)[(2 Qd
′
1 + c)�f + �hQ=2] + �(A′

2)
√

2hQf�� · E(
√
2d+ c|2d+ c∈&′

2)

+ �(A′
3)[(2 Qd

′
3 + c)�f + �hQ=2] + 2$f (a:s:): (7)

Proof. Below we use the upper bounding function Qz,(L;W ) de'ned in Lemma 2.7 with , = �.
For ‘∈ {1; 2; 3}, let N‘ denote the set of retailers in ring A′

‘, and let n‘ = |N‘|.
For ‘∈ {1; 2; 3}, de'ne

Z (‘)def=
∑
j∈R′

‘

∑
k

Qz�(2.j; w(S‘jk)):

Thus, (6) can be rewritten:

ZGP($)
n 6

3∑
‘=1

Z (‘) + 2nf$:
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Now dividing by n and taking the limit results in (almost surely):

Qlim
n→∞

1
n
ZGP($)
n 6

3∑
‘=1

Qlim
n→∞

1
n
Z (‘) + 2$f

=
3∑

‘=1

Qlim
n→∞

n‘

n
Z (‘)

n‘
+ 2$f

6
3∑

‘=1

(
Qlim

n→∞
n‘

n

)(
Qlim

n→∞
Z (‘)

n‘

)
+ 2$f

=
3∑

‘=1

�(A′
‘) Qlim

n‘→∞
Z (‘)

n‘
+ 2$f (since n → ∞ ⇒ n‘ → ∞): (8)

Recall R′
‘ is the index set of the square subregions in ring A′

‘, for ‘∈ {1; 2; 3}. We use the term “square” even though
the subregions on the boundaries may not be completely square. Also, we omit subregions that have no density (holes),
i.e., subregions S ⊂ A for which �(S) = 0. For the jth (square) subregion of A′

‘, for ‘∈ {1; 2; 3}, let N‘j denote the set
of retailers in the subregion, n‘j = |N‘j| and b∗

‘j denote the number of bins created by GP($) in the subregion. Note that
for ‘∈ {1; 2; 3}, j ∈R′

‘ implies that 2.j + c∈&′
‘. We consider the three rings A′

1, A
′
2 and A′

3 in turn.
In the analysis, each of the rings has in common a term of a speci'c form and therefore we analyze it here separately.

Consider ‘∈ {1; 2; 3} and {tj : j ∈R′
‘} (arbitrary) then (almost surely):

Qlim
n‘→∞

1
n‘

∑
j∈R′

‘

tjb
∗
‘j 6

∑
j∈R′

‘

tj Qlim
n‘→∞

b∗
‘j

n‘

=
∑
j∈R′

‘

tj Qlim
n‘→∞

n‘j

n‘

b∗
‘j

n‘j

6
∑
j∈R′

‘

tj Qlim
n‘→∞

n‘j

n‘

Qlim
n‘→∞

b∗
‘j

n‘j

=
∑
j∈R′

‘

tj Qlim
n‘→∞

n‘j

n‘

Qlim
n‘j→∞

b∗
‘j

n‘j
(since n‘ → ∞ ⇒ n‘j → ∞)

= �
∑
j∈R′

‘

tj Qlim
n‘→∞

n‘j

n‘
(since b∗

‘j=n‘j → � a:s: as n‘j → ∞)

= �
∑
j∈R′

‘

tj�(A
′
‘j)=�(A

′
‘); (9)

where �(A)def=
∫
A �, and A′

‘j corresponds to the jth subregion of A′
‘.

Now consider subregion A′
1. We have

Z (1) =
∑
j∈R′

1

∑
k

Qz�(2.j; w(S1jk))

=
∑
j∈R′

1

∑
k

[hw(S1jk)=(2f) + (2.j + c)f]

=
∑
i∈N1

hwi=(2f) + f
∑
j∈R′

1

(2.j + c)b∗
1j :
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Thus, almost surely

Qlim
n1→∞

Z (1)

n1
= h=(2f) Qlim

n1→∞
1
n1

∑
i∈N1

wi + f Qlim
n1→∞

1
n1

∑
j∈R′

1

(2.j + c)b∗
1j

6 hE(w)=(2f) + �f
∑
j∈R′

1

(2.j + c)�(A′
1j)=�(A

′
1) (by (9))

= �hQ=2 +
�f

�(A′
1)

∑
j∈R′

1

(2.j + c)�(A′
1j)

6 �hQ=2 + �f(2 Qd′
1 + c): (10)

The last inequality follows since .j6di for all i ∈R′
1j , i.e., for all points i falling within subregion A′

1j .
Now consider subregion A′

2. We have

Z (2) =
∑
j∈R′

2

∑
k

Qz�(2.j; w(S2jk))

=
∑
j∈R′

2

∑
k

[w(S2jk)
√

(2.j + c)h�=2Qf +
√

(2.j + c)hQf=2�]

=
∑
j∈R′

2

[w(N2j)
√

(2.j + c)h�=2Qf + b∗
2j

√
(2.j + c)hQf=2�]

6
∑
i∈N2

wi

√
(2di + c)h�=2Qf +

∑
j∈R′

2

b∗
2j

√
(2.j + c)hQf=2�:

Thus, almost surely

Qlim
n2→∞

Z (2)

n2

6 Qlim
n2→∞

1
n2

∑
i∈N2

wi

√
(2di + c)h�=2Qf +

√
hQf=2� Qlim

n2→∞
1
n2

∑
j∈R′

2

b∗
2j

√
2.j + c

6E(w)
√

h�=2Qf · E(
√
2d+ c|2d+ c∈&′

2) + �
√

hQf=2�
∑
j∈R′

2

√
2.j + c[�(A′

2j)=�(A
′
2)] (by (9))

6E(w)
√

h�=2Qf · E(
√
2d+ c|2d+ c∈&′

2) + �
√

hQf=2� · E(
√
2d+ c|2d+ c∈&′

2)

=
√

��hQf=2 · E(
√
2d+ c|2d+ c∈&′

2) +
√

��hQf=2 · E(
√
2d+ c|2d+ c∈&′

2)

=
√

2��hQf · E(
√
2d+ c|2d+ c∈&′

2): (11)

Now consider ring A′
3. We have

Z (3) =
∑
j∈R′

3

∑
k

Qz�(2.j; w(S3jk))

=
∑
j∈R′

3

∑
k

[(2.j + c)w(S3jk)=Q + hQ=2]

6
∑
i∈N3

(2di + c)wi=Q + (hQ=2)
∑
j∈R′

3

b∗
3j :
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Thus, almost surely

Qlim
n3→∞

Z (3)

n3
6 Qlim

n3→∞
1
n3

∑
i∈N3

(2di + c)wi=Q + (hQ=2) Qlim
n3→∞

1
n3

∑
j∈R′

3

b∗
3j

6 (2 Qd′
3 + c)�f + hQ�=2

∑
j∈R′

3

�(A′
3j)=�(A

′
3) (by (9))

= (2 Qd′
3 + c)�f + hQ�=2: (12)

The result then follows by combining (10)–(12) with (8).

We now relate this upper bound (7) to the lower bound derived in Section 2. To do this we will need to de'ne two
functions c and Qc.

Lemma 2.9 (Lower bound cost allocation). De9ne

c(d) =




hQ�=2 + (2d+ c)f� if 2d+ c∈&1;

(2� − �)((2d+ c)f + hQ=2) + 2(� − �)
√

(2d+ c)hQf if 2d+ c∈&2;

(2d+ c)f� + �hQ=2 if 2d+ c∈&3:

Then

Qlim
n→∞

1
n

n∑
i=1

c(di) = Z6 lim
n→∞

1
n
ZFP
n (a:s:):

Proof. The result follows by using Corollary 2.5 and noting that Qlimn→∞ (1=n)
∑n

i=1 c(di) is, by the strong law of large
numbers, almost surely equal to the right-hand side of (3).

Lemma 2.10 (Upper bound cost allocation). De9ne

Qc(d) =




hQ�=2 + (2d+ c)f� if 2d+ c∈&′
1;√

2hQf��(2d+ c) if 2d+ c∈&′
2;

(2d+ c)f� + �hQ=2 if 2d+ c∈&′
3:

Then

Qlim
n→∞

1
n
ZFP
n 6 lim

n→∞

1
n

n∑
i=1

Qc(di) (a:s:):

Proof. By de'nition

Qlim
n→∞

1
n
ZFP
n 6 Qlim

n→∞
1
n
ZGP($)
n :

By the strong law of large numbers,

lim
n→∞

1
n

n∑
i=1

Qc(di) + 2$f

is almost surely equal to the right-hand side of (7). Therefore

Qlim
n→∞

1
n
ZFP
n 6 Qlim

n→∞
1
n
ZGP($)
n 6 lim

n→∞

1
n

n∑
i=1

Qc(di) + 2$f (a:s:);

holds for any $¿ 0. Letting $ go to zero, we conclude that

Qlim
n→∞

1
n
ZFP
n 6 lim

$→0

Qlim
n→∞

1
n
ZGP($)
n 6 lim

n→∞

1
n

n∑
i=1

Qc(di) (a:s:):

An analysis of the ratio of c to Qc allows us to derive the asymptotic e$ectiveness of the lower bound, as described
next.
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Lemma 2.11. Let

�def=inf
{

c(‖x‖)
Qc(‖x‖) : x ∈A

}

then

Z¿ � · Qlim
n→∞

1
n
ZFP
n (a:s:);

i.e., Z is an asymptotic �-e>ective lower bound on the average cost per retailer in the best FPP.

Proof. First note that c(‖x‖)¿ � Qc(‖x‖) for any x ∈A. The result then follows by using the de'nitions of Qc and c and
Lemmas 2.9 and 2.10.

Theorem 2.12. Z is an asymptotic 98.5%-e>ective lower bound on the cost of the best FPP.

Proof. By Lemma 2.11 we need only determine the value of �. For 2d+ c∈&1 ∩ &′
1 = &1 and 2d+ c∈&3 ∩ &′

3 = &3,
the cost allocations are identical. We therefore consider 2d + c∈&2. This is separated into three cases. In each case we
use the substitutions 2= 2(2d+ c)f=hQ (or equivalently (2d+ c)f = 2hQ=2) and � = �=�.
Case 1: 2d + c∈&2 ∩ &′

1. Hence 2d + c∈ [Qh=4f;Qh=(2f�)) and 1
2 6 2¡ 1=�. Taking the derivative of the ratio

c= Qc with respect to 2 shows that the ratio is decreasing with 2 and thus we replace 2 with its upper bound of 1=� (i.e.,
2d+ c = hQ=(2f�)). The ratio can then be written as

(2 − �)(1 + �) + 2(� − 1)
√
2�

2�
: (13)

This expression is minimized at � satisfying the equation �2 − √
2�(�+ 1)+ 2= 0. This is at � ≈ 1:2599 where the ratio

is approximately 99.12%.
Case 2: 2d+ c∈&2 ∩ &′

2. Hence 2d+ c∈ [Qh=(2f�); Qh�=(2f)] and 1=�6 26 �. The ratio c= Qc is minimized at 2= 1
(or 2d+ c = hQ=2f). At this point the ratio is

(
√
2 − 1)

� +
√
2√

�
: (14)

This ratio is minimized at � =
√
2 where its value is (4 − 2

√
2)=
√√

2 ≈ 98:52%.
Case 3: 2d+ c∈&2 ∩ &′

3. Hence 2d+ c∈ (Qh�=(2f); Qh=f] and �¡26 2. Taking the derivative of c= Qc with respect
to 2 shows that the ratio is increasing in 2 as long as 26 2. We therefore set 2= �. This corresponds to replacing 2d+ c
with its lower bound of Qh�=(2f). We get an expression which is minimized at � satisfying the same equation as in
Case 1 and giving the same value (99.12%).

It can be veri'ed that the asymptotic e$ectiveness of the lower bound for a general distribution of demand rates with
packing e>ciency � is given by

(
√
2 − 1)

� +
√
2√

�
: (15)

That is, for any �∈ [1; 2), the value in expression (13) is no less than the value in (14). In the following 'gure, the
asymptotic e$ectiveness of the lower bound (15) is graphed as a function of � (Fig. 2).
We now show that the asymptotic bound is the tightest possible.

Theorem 2.13. If c¡hQ=2f, then the asymptotic e>ectiveness bound proven in Theorem 2.12 is the tightest possible.

Proof. We prove this by showing that for any value of �∈ [1; 2), we can construct an example where the ratio of the
lower bound to the best possible 'xed partition policy is as given by (15). Consider an example with n retailers that are
located at various points on a ring at a distance exactly hQ=(4f)− c=2¿ 0 from the depot. Assume each retailer demand
rate is equal to Qf=�, and thus � = 1 and � = 1=�. For this example, since Qf=�¿Qf=2 there is only one possible
partition: each retailer is served separately. In the optimal FPP each of these sets is served at its optimal replenishment
rate. Note that for all sets (retailers) neither frequency nor capacity constraint is active. The cost of the policy is hQ=

√
�

per retailer, therefore the total cost is n · hQ=
√
�. By setting u(w) = 1, for all w¿Qf=2 (and u(w) = 0 otherwise), the

lower bound is hQ(
√
2− 1)(

√
2=�+ 1) per retailer or nhQ(

√
2− 1)(

√
2=�+ 1) in total. The ratio of these two quantities

is exactly the expression in (15).
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Fig. 2. The asymptotic e$ectiveness of the lower bound Z as a function of �.

We note that if c¿ hQ=2f then the asymptotic e$ectiveness of the lower bound is at least 98.5%.

3. Conclusion

For an appropriately chosen u, the lower bound
∑

i∈N gu(di; wi) converges to 98.5% of the cost of the best FPP. This
bound can be used to gauge the e$ectiveness of any 'xed partition policy. In a companion paper [3], we actually construct
an FPP using a region partitioning scheme and show, using the lower bound developed here, that its cost is within 1.5%
of the best FPP (asymptotically).

We conclude with an additional remark concerning the lower bound above. It can also be used to further understand
the results of Chan et al. [8] concerning the asymptotic e$ectiveness of 'xed partition policies in general. In particular,
when the demand rates are “di>cult to pack” (i.e., � ≈ 2), Chan et al. show that the best FPP is no more than

√
2

times their lower bound (asymptotically). Unfortunately, it is not clear whether the gap comes from their speci'c choice
of FPP and another FPP exists that comes closer to their lower bound, or their lower bound is weak within the class
of FPPs. We have shown here that the latter is the case. In fact, for the case of � ≈ 2, the 'xed partition policy they
construct using GP($) is very nearly asymptotically optimal (as $ → 0) within the class of 'xed partition policies (though
it takes exponential-time to construct it). This can be deduced from the fact that in this case our lower bound is essentially
asymptotically tight, since � → 1 as � → 2.
In our analysis of the upper bound, we assume that the retailers in each subregion are assigned separately to routes by

using an optimal solution to the bin-packing problem. However, an interesting question is whether the quality of the FPP
constructed is sensitive to the speci'c optimal packing, in case the optimal bin-packing solution is not unique. Moreover,
assume that for a given subregion there exists two optimal packings, where in one all bins are assigned the same weight
and in the other there is an imbalance among the bins. Which packing is expected to give a better upper bound? These
are open questions for future research. We provide here an example which demonstrates that the quality of the solution
can be signi'cantly a$ected by the speci'c choice of the optimal packing.
An example. For any integers n1; n2 with n1=n2 ∈ [1; 2), the example has n1(2n2 − n1 + 1) retailers that are located at a

single point that is a distance exactly hQ=(4f)− c=2¿ 0 from the depot. The demand rate is equal to Qf=2+ . for n1 of
the retailers and (n2Qf−n1(Qf=2+.))=n1(2n2 −n1) for the rest of them. In this case, �=(2n2 −n1 +1)−1, �=�n2=n1 and
�=n1=n2. By setting u(w)=1 for all w¿Qf=2 (and u(w)=0 otherwise), the lower bound is n1hQ(

√
2−1)(

√
2n2=n1 +1)

in total.
We now construct an optimal bin packing solution. This puts each retailer with demand rate Qf=2 + . with 2n2 − n1

retailers with demand rate (n2Qf − n1(Qf=2 + .))=n1(2n2 − n1) together in one bin. Each of these subsets of retailers is
then served at its optimal replenishment rate. Note that for all these subsets of retailers neither frequency nor capacity
constraint is active. The cost of the policy is hQ=

√
n1=n2 for each set of retailers. Therefore the total cost is n1hQ=

√
n1=n2.

The ratio of the lower bound to this quantity is exactly the expression in (15).
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On the other hand, put each retailer with demand rate Qf=2 + . into one bin and then n1 of the retailers with demand
rate (n2Qf − n1(Qf=2 + .))=n1(2n2 − n1) to each of the 2n2 − n1 of these n1 bins is also an optimal bin-packing
solution. Note that for all these subsets of retailers neither frequency nor capacity constraint is active. By serving
these subsets at their optimal replenishment rates, the total cost of the policy is 2(n1 − n2)2

√
hQ=2f[h=2(Qf=2 + .)] +

(2n2 − n1)2
√

hQ=2f[h=2(Qf=2 − (2(n2 − n1)=(2n2 − n1)).)] that goes to the lower bound as . → 0.
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Appendix A.

Property A. The function gu(d; ·) is non-decreasing in d¿ 0.

Proof. This can be easily veri'ed algebraically.

Lemma 2.2. Let u be dual feasible for  . For any S ⊆ N with w(S)6Qf, we have
n∑

i∈S

gu(di; wi)6 z(S):

Proof. Consider a set S served on a route. Let Ldef=L∗(S), W def=w(S) and Kdef=L + c. De'ne mdef=�Qf=W �, i.e.,
Qf=(m+ 1)¡W 6Qf=m. Note that since u is dual feasible:

W 6
Qf
m

⇒
∑
i∈S

u(wi)6
1
m
: (A.1)

This follows since m copies of S correspond to a feasible bin, and therefore must satisfy the feasibility constraint, i.e.,
m
∑

i∈S u(wi)6 1.
We consider three cases:
Case 1: K ∈&1. Then∑

i∈S

gu(di; wi) =
∑
i∈S

[hwi=(2f) + u(wi)(2di + c)f]

6
∑
i∈S

[hwi=(2f) + u(wi)Kf] (since 2di6 L; ∀i ∈ S)

= hW=(2f) + Kf
∑
i∈S

u(wi)

6 hW=(2f) + Kf=m;

where the last inequality follows from (A.1). We consider two subcases:
Subcase 1.1: (K;W )∈F. Since z(S) = hW=(2f) + Kf, the result follows since m¿ 1.
Subcase 1.2: (K;W )∈N, i.e., W ¡ 2Kf2=h. Since z(S) =

√
2hWK , we need only show that

hW=(2f) + Kf=m6
√
2hWK

for m¿ 2 (see Fig. 1, K ∈&1 and (K;W )∈N implies W 6Qf=2). Again, considering the inequality as a function of
W , we see that the inequality is satis'ed as long as W is between the two numbers:

2Kf2

h

(
1 ±

√
1 − 1

m

)2

:
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Since W ¡ 2Kf2=h, W is clearly less than the larger of the two numbers. We must therefore check that

Qf
m+ 1

¿
2Kf2

h

(
1 −

√
1 − 1

m

)2

:

We can set K to its largest possible value in &1 (i.e., K = Qh=4f). This becomes

2
m+ 1

¿

(
1 −

√
1 − 1

m

)2

; (A.2)

which holds for any m¿ 2.
Case 2: K ∈&2. We use the shorthand notation: p ≡ p(L) and q ≡ q(L). Since 2di6 L and by Property A:∑

i∈S

gu(di; wi)6
∑
i∈S

gu(L=2; wi)

=
∑
i∈S

[pwi=Qf + u(wi)q]

= pW=Qf + q
∑
i∈S

u(wi)

6 pW=Qf + q=m;

where the last inequality follows from (A.1).
We consider three subcases.
Subcase 2.1: (K;W )∈C, and thus m=1. Since z(S)=KW=Q+hQ=2 we need only show that: KW=Q+hQ=2¿pW=Qf+q.

Note that each is linear in W hence we can compare slopes. Since p=Qf¿K=Q we make W as large as possible (equal
to Qf) and see that the bound does hold (since p+ q6Kf + hQ=2, see (1) and (2)).
Subcase 2.2: (K;W )∈N. Since z(S) =

√
2hWK we need only show that

pW=Qf + q=m6
√
2hWK: (A.3)

We consider two cases: m= 1 and m¿ 2.
If m=1, then W ¿Qf=2. By construction, pW=Qf+q is a lower bound on the function z(L;W ) for any W ∈ (Qf=2; Qf]

and for L+ c = K ∈&2. Therefore it is a lower bound on the strictly concave part of the function.
If m¿ 2, then we consider (A.3) and see that the inequality is satis'ed as long as W is between the two numbers:

Q2f2hK
2p2

(
1 ±

√
1

2pq
mQfhK

)2

:

We 'rst consider the larger of the two numbers. We perform the substitution a = Kf + hQ=2 and b =
√

KhQf. Then
p= 2(a − b) and q = 2b − a. We must show that

Qf
m
6

Qfb2

8(a − b)2

(
1 +

√
1 − 4(a − b)(2b − a)

mb2

)2

: (A.4)

We then use the substitution x = a=b, and note that in &2 we have
√
26 x6 3

2 . Inequality (A.4) then becomes

1
m
6

1
8(x − 1)2

(
1 +

√
1 − 4(x − 1)(2 − x)

m

)2

: (A.5)

Or equivalently√
8
m

(x − 1)6 1 +

√
1 − 4(x − 1)(2 − x)

m
:

Then (√
8
m
(x − 1) − 1

)2

6 1 − 4(x − 1)(2 − x)
m

;
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which is equivalent to

x2 − x(1 +
√
2m) +

√
2m6 0:

This inequality is satis'ed as long as x is between the numbers 1 and
√
2m which is the case for m¿ 2.

We now consider the smaller of the two numbers. Using the same substitutions and following (A.5), we must show
that

1
m+ 1

¿
1

8(x − 1)2

(
1 −

√
1 − 4(x − 1)(2 − x)

m

)2

:

Or, equivalently√
8

m+ 1
(x − 1)¿ 1 −

√
1 − 4(x − 1)(2 − x)

m
:

Then

x2(m − 1) + x(3 − m − m
√

2(m+ 1)) + m
√

2(m+ 1) − 26 0:

We need only check that the inequality holds for the extreme values of x, i.e., x=
√
2 and x= 3

2 . This is the true for all
m¿ 2.
Suubcase 2.3: (K;W )∈F, and thus m=1. Since z(S)=Kf+ hW=(2f), we need only show that: pW=Qf+ q6Kf+

hW=(2f). Each is linear in W hence we compare slopes. Since one can verify that p=Qf¿ h=2f, we make W as large
as possible (equal to Qf) and, using the fact that p+ q6Kf + hQ=2, we see that the bound does hold.
Case 3: K ∈&3. Then∑

i∈S

g(di; wi) =
∑
i∈S

[(2di + c)wi=Q + u(wi)hQ=2]

6
∑
i∈S

[Kwi=Q + u(wi)hQ=2] (since 2di6 L; ∀i ∈ S)

= KW=Q + hQ
∑
i∈S

u(wi)=2

6 KW=Q + hQ=(2m);

where the last inequality follows from (A.1). We consider two subcases:
Subcase 3.1: (K;W )∈C. Since z(S) = KW=Q + hQ=2, the result follows since m¿ 1.
Subcase 3.2: (K;W )∈N, i.e., WK ¡Q2h=2 and m¿ 2. Then z(S) =

√
2hWK . We therefore need to show that

KW=Q + hQ=(2m)6
√
2hWK;

for m¿ 2. If we consider this inequality as a function of W , it is satis'ed as long as W is between the two numbers,
i.e.:

Q2h
2K

(
1 ±

√
1 − 1

m

)2

:

Since W ¡Q2h=(2K), W is clearly less than the larger of the two numbers. We must therefore check that the lower
bound on W is at least the smaller of the two numbers:

Qf
m+ 1

¿
Q2h
2K

(
1 −

√
1 − 1

m

)2

:

We can assume K is at its smallest value in &3 (i.e., K = Qh=f). This results in

2
m+ 1

¿

(
1 −

√
1 − 1

m

)2

;

which is exactly (A.2) and was veri'ed to be true for all m¿ 2 in Subcase 1.2.
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