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Abstract-In this paper, we first give a generalization of Ky Fan’s inequality to vector-valued 
functions. We prove that, for every vector-valued function (satisfying some continuity and convex- 
ity conditions), there exists at least one essential component of the set of its Ky Fan’s points. As 
applications, we show that, for every multiobjective game (satisfying some continuity and convex- 
ity conditions), there exists at least one essential component of the set of its weakly Pareto-Nash 
equilibrium points. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION AND PRELIMINARIES 

Games with multiple noncommensurable criteria are called multicriteria games or games with 

vector payoffs. Blackwell’s [l] was the first paper which investigated zero-sum games with vector 

payoffs as a generalization of the scalar criterion games. In 1959, Shapley [2] introduced the 

concept of equilibrium points in games with vector payoffs. Recently, much attention has been 

attracted to such multicriteria models, since they can be better applied to real-world situations. 

As stated in (21 by Shapley, the payoff of a game sometimes most naturally takes the form of 

a vector having numerical components that represent commodities (such as men, ship, money, 

etc.) whose relative values cannot be ascertained. (Note that in our paper, the term component 

is adopted both for vector space and for topological space.) Besides Shapley’s notion, many other 

concepts of solutions for multicriteria games have been proposed and many results on existence 

of such solutions have been obtained, see [3-51 and references therein. 
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In game theory, the stability and perfection of Nash equilibrium points have become important 

topics, see (61 and references therein. Among those works, Kohlberg and Mertens’ work has been 

influential and significant, since they applied axiomatic methods to deal with such issues and put 

forward new concepts of strategic stability of Nash equilibrium points for finite noncooperative 

games (briefly, finite games). In 1986, Kohlberg and Mertens [7] proposed a list of requirements 

which satisfactory solution concepts for finite games should satisfy and they introduced hyper- 

stable set, fully stable set, and stable set of Nash equilibrium points, each of which satisfies most 

of the requirements. Besides, they proved that every finite game has finite components of its 

Nash equilibrium points and at least one component is essential in the sense that the component 

is robust to perturbations of the game’s payoffs, i.e., every game nearby has a Nash equilibrium 

nearby. Hillas [8] also proposed other versions of strategic stability, i.e., he considered the subset 

of Nash equilibrium points robust against perturbations of the best response correspondence. On 

the other hand, in 1963, Jiang [9] has proved that every finite game has at least one essential 

component of its Nash equilibrium points. Jiang’s work was motivated by [lo] in which Kinoshita 

introduced the notion of essential components of fixed points and proved that for any continuous 

mapping of the Hilbert cube into itself, there exists at least one essential component of the set of 

its fixed points. In recent years, some existence results for essential components of the solution 

sets of nonlinear problems have been obtained, see [ll-131. As for applications, Wilson [14] gave 

an algorithm for computing essential components of Nash equilibrium points. Govindan and Wil- 

son [15,16] studied intensively the properties of essential components of Nash equilibrium points 

for finite games. 

The aim of this paper is to establish the existence of essential components of the set of weakly 

Pareto-Nash equilibrium points for multiobjective games. Our approach can be stated as follows. 

Recall that in 1972, Ky Fan [17] gave a minimax inequality for real-valued functions, which is 

fundamental in proving many existence theorems in nonlinear analysis. There have been numer- 

ous generalizations of Ky Fan’s minimax inequality. For our purpose, we give a generalization 

of Ky Fan’s inequality to vector-valued functions (Theorem 1.1). Then we introduce the notion 

of vector Ky Fan’s points and of essential components of vector Ky Fan’s points. We prove 

the existence of essential components of vector Ky Fan’s points. As applications, we show that 

every multiobjective game (satisfying some continuity and convexity conditions) possesses at 

least one essential component of its weakly Pareto-Nash equilibrium points. Our results include 

corresponding results in the literature as special cases. 

Let H be a real Banach space and C be a cone of H. A cone C is convex if and only if 

C + C = C, and pointed if and only if C n (-C) = {Q}, w h ere 0 denotes the zero element of H. 

Let A be a subset of H, we denote int A the topological interior of A in H. Z+ denotes the set 

of all positive integers. In the following context, E denotes a real Banach space and H denotes 

a real Banach space with a closed, convex, and pointed cone C with int C # 8. 

DEFINITION 1.1. Let X be a nonempty subset of E and ‘p : X x X + H be a vector-valued 

function. An element x* f X is called a vector Ky Fan’s point of ‘p (briefly, Ky Fan’s point of ‘p) 

if ()s(x*, y) +! int C for all y E X. 

If H = R and C = [0, +a~), then Ky Fan’s points of a vector-valued function reduce to the Ky 

Fan’s points of a real-valued function, defined by Tan, Yu and Yuan in [18]. 

In order to establish the existence theorem of vector Ky Fan’s points, we first recall some 

notions. The following two definitions can be found in [19]. 

DEFINITION 1.2. Let X be a nonempty subset of E and f : X + H be a vector-valued function. 

.f is said to be C-continuous at x0 E X if, for any open neighborhood V of 6’ in H, tJlere exists 

an open neigllborhood U of x0 in X such that, for all x E U, 

f(x) E f(x0) + V + C, 

and C-contin.uous on X if it is C-continuous at any point of X. 
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DEFINITION 1.3. Let X be a nonempty convex subset of E and f : X --) H be a vector-valued 

function. f is said to be C-concave if, for any x1,x2 E X and any X E [0, 11, 

f(h + (1 - X)x2) - (Wx1) + (1 - A)_f(x2)) E C, 

and C-convex if - f is C-concave. 

LEMMA 1.1. Let H be a Banach space with a closed, convex, and pointed cone C with int C # 8. 

Then we have int C + C C int C. 

PROOF. We only need to show that, for any x E int C and any y E C, x + y E int C. Since 

z E int C, there exists an open neighborhood V of Q in H, such that z + V c C. Since y f 

C,x+VcCsndCisaconvexconeofH,wehavey+x+V~C+C=C. Hence,y+xEintC 

and the proof is complete. 

LEMMA 1.2. If f is C-concave, then the set D := {z E X : f(x) E int C} is convex. 

PROOF. Let ~1~x2 E D, then f(xl) f int C and .f(xz) E int C. Since int C is convex, we have 

xf(x1) + (1 - X)f(x~) E int C for any X E [0, l]. It follows from the C-concavity of f that 

f(xzl + (1 - X)x2) E Xf(x.1) + (1 - x)f(x~) + C. By Lemma 1.1, f(Xxl + (1 - X)x2) E int C, i.e., 

Xx1 + (1 - X)x2 E D. Hence, D is convex and our proof is compIete. 

The following lemma is the well-known Ky Fan’s Section Theorem, see [20]. 

LEMMA 1.3. Let X be a nonempty compact convex subset of a Hausdorff’ topological vector 

space and A be a subset of X x X such that: 

(i) for each y E X, the set {x E X : (x, y) E A} is closed in X; 

(ii) for each x E X, the set {y E X : (x, y) $ A} is convex or empty; and 

(iii) for each 5 E X, (x,x) E A. 

Then there exists a point 20 E X such that (x0) x X c A. 

Now we can give our existence theorem of Ky Fan’s points of a vector-valued function. 

THEOREM 1.1. Let X be a nonempty convex compact subset of E. Suppose that cp : X x X + H 

satisfies the followirlg conditions: 

(i) for each fixed y E X, x -+ q(x, y) is C-continuous; 

(ii) for each fixed 5 E X, y + cp(z, y) is C-concave; and 

(iii) for each 2 E X, cp(x, x) I$ int C. 

Then there exists IC* E X such that (P(z*, y) # int C for all y E X. 

PROOF. Consider the set 

A = {(y,x) E X x X : 9(x, y) 4 int C}. 

By (iii), for any x E X, we have (x,~) E A. For each fixed z E X, by (ii) and Lemma 1.2, the set 

A(x)={y~X:(y,s)$A}={y~X:~(x.y)~intC} 

is convex. Furthermore, we show that, for any y E X, the set 

A(y) = {z E X : (2, y) E A} = (2 E X : y(x, y) 6 int C} 

is closed. Indeed, let {x~} be any sequence in A(y) with 2, + x E X. Suppose that n: $ A(y), 
then cp(z, y) E int C. Since int C is open, there exists an open neighborhood V of 8 such that 

~(s, y) + V c int C, and thus, by Lemma 1.1, ~(z, y) + V + C c int C + C C int C. By the 

C-continuity of cp(., y), we have (p(xrL, y) E cp(x, y) + V + C c int C for sufficiently large n, which 

contradicts that q(xnr y) $ int C. Hence, z E A(y). 
By Ky Fan’s Section Theorem (Lemma 1.3), there exists Z* E X such that X x {x*} c A, i.e., 

(F(IC*, y) =$ int C for al1 y E X. The proof is finished. 
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2. ESSENTIAL COMPONENTS OF 
THE SET OF KY FAN’S POINTS 

In this section, we establish the existence of essential components of Ky Fan’s points of vector- 

valued functions. First, we recall some notions of continuity for set-valued mappings. Let X be 

a Hausdorff topological space and 2x be the family of all nonempty subsets of X. Denote by 

I<(X) the collection of all nonempty compact subsets of X. 

DEFINITION 2.1. If X and Y are two Hausdorff topological spaces and T : Y -+ 2x is a set-valued 

mapping, then 

(i) T is upper semicontinuous at yo E Y if for each open set U in X with U > T(yo), there 

exists an open neighborhood O(y0) of yo such that U > T(y) for any y E O(ys); 

(ii) T is upper semicontinuous on Y if T is upper semicontinuous at every point Y/O E Y; and 

(iii) T is an usco mapping if T is upper semicontinuous on Y and T(y) is compact for every 

y E Y. 

Now let X be a nonempty convex compact subset of a Banach space E and H be a Banach 

space with a closed, convex, and pointed cone C with int C # 0. Let M be the collection of all 

vector-valued functions cp : X x X --+ H such that 

(i) for each y E X, 5 + cp(z, y) is C-continuous; 

(ii) for each z E X, y -+ cp(z, y) is C-concave; 

(iii) for each 5 E X, cp(z,z) = 0; and 

(iv) w(z,y)E~x~ llv(~7y)ll < $03. 

For each ‘p, II, E M, define 

Clearly, (M, p) is a complete metric space. For each ‘p E M, denote by F(p) the set of all Ky 

Fan’s points of cp. Then F defines a set-valued mapping from M into X and, by Theorem 1.1, 

F(v) # 0 for any cp E M. 

LEMMA 2.1. F:M --+ 2x ’ is an usco mapping. 

PROOF. Since X is compact, by Theorem 7.1.16 of [21], it suffices to show that F is a closed 

mapping, i.e., the graph Graph(F) of F is closed in M x X, where 

Graph(F) = {(cp,zr) E M x X : z E F(p)}. 

Let {((~~,z~)}~e~+ be any sequence in Graph(F) with (pn,zn) -+ ((p,z*) E M x X. Then 

50,(x,, y) $ int C for all n E Zf and all y E X. Suppose that (cp,z*) +! Graph(F), then there 

exists some y* E X such that (p(z*, y”) E int C. Since int C is an open set, there exists an open 

neighborhood V of 0 such that (p(z*, y*) +V c int C. Since cp(., y*) is C-continuous and 5, 4 z*, 

there exists NO E Zf such that, for any n > NO, 

Moreover, since (P,, -+ (p, there exists Ni E Z+ with Ni 2 NO such that, for any n > Ni, 

%z(& Y) E cph Y) + t1mv f or all (2,~) E X x X. Hence, we have, for any n 2 Nr , 

~n(z,,y*)E~(~7L,y*)+JjVC(;(2*,y*)+V+CCintC+CCintC, 

which is a contradiction. Therefore, (cp,zP) E Graph(F), and thus, Graph(F) is closed. The 

proof is complete. 
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For each cp E M, the component of a point x E F(p) is the union of all the connected subsets 

of F(p) containing x. Note that the components are connected closed subsets of F(q), and thus, 

are connected compact, see [22, p. 3561. It is easy to see that the components of two distinct 

points of F(p) either coincide or are disjoint, so that all components constitute a decomposition 

of F(y) into connected pairwise disjoint compact subsets, i.e., 

where A is an index set, for each cy E A, Fa((p) 1s a nonempty connected compact subset of F(q) 

and, for any Q,P E A(a # P), F,(v) n Fo(cp) = 0. 

DEFINITION 2.2. Let cp E M and S be a nonempty closed subset of F(p). S is said to be an 

essential set of F(p) if, for each open set 0 > S, there exists cf > 0 such that for any c+? E ill 

with p(p, cp’) < 6, F(I#) n 0 # 0. If a component F,(p) of F(cp) is an essential set, then Fey(p) 

is said to be an essential component of F(p). An essential set S of F(p) is said to be a minimal 

essential set of F(p) if S is a minimal element of the family of essential sets in F(p) ordered by 

set inclusion. 

LEMMA 2.2. For each y E M, there exists at least one minimal essential set of F(p). 

PROOF. By Lemma 2.1, the set-valued mapping F : AZ -+ K(X) is upper semicontinuous. It 

follows that F(v) is an essential set of itself. Denote by @ the family of all essential sets of F(q) 

ordered by set inclusion relation. Then Cp is nonempty and every decreasing chain of elements 

in @ has a lower bound as the intersection is still in @ due to the compactness. By Zorn’s Lemma, 

@ has a minimal element S which is a minimal essential set of F(y). 

LEMMA 2.3. For each p E M, each minimal essential set in F(p) is connected. 

PROOF. By Lemma 2.2, there exists at least one minimal essential set of F(q). Let in be 

a minimal essential set of F(q). Suppose otherwise that nz(cp) were not connected. Then there 

exist two nonempty closed subsets cl(q) and Q(P) of F(q) satisfying ?n(‘p) = q(p) u Q(P) and 

two open sets VI and Vz in X satisfying VI n Vz = 0 such that VI > cl (cp), VJ > c2 (p). Since 

in is minimal, neither cl(p), nor ~(9) is essential. Thus, there exist two open sets O1 1 cl(q) 

and 02 > cz(‘p) such that, for any S > 0, there exists cp1. ‘p2 E M with p((~, ql) < 6, p((~, p2) < 6, 

but F(ql) n 01 = 0, F(cpz) n 02 = 0. Letting W, := VI n 01, W2 := V2 n 02, then both W1 

and W2 are open and WI > cl(y) and W2 > c~((P). Since cl (cp) and c~((P) are compact, there 

exist two open sets U1 and U2 such that cl (cp) c U1 c VI c IV1 , Q(P) c Uz c 02 c IV’... Since 

U1 U US > m(p) and m(q) is essential, there exists 6’ > 0 such that, for each p’ E Ad with 

P(‘F, cp’) < h’, F(p’) n (U, u U2) # 0. M oreover, since U1 c 01 and UZ c 02, there exist &, 

$2 E M with p(cp,,$l) < (1/3)6’,~((~,&) < (l/3)6’, but F(ti1) n Ul = 8, F($Jz) n U2 = 0. 
Now we define a function 4 : X x X + H by 

where 
d (xc, u2) 

A(z) = d (z, &) + d (x, u2) ’ 

d(x,&) 

‘L(z) = d (x:, Ul) + d (x, U2) 

Note that X(x) and p(z) are continuous, X(z) > 0, p(z) > 0, and X(z) + p(z) = 1 for any .2: E X. 

It can be checked that 

(1) for each fixed y E X, z - $(z, y) is C-continuous; 

(2) for each fixed x E X, Y ----) $(x, y) is C-concave; 

(3) for each z E X, $(z,z) = 8; and 

(4) suP(,,y)ESxX 11+(x! Y)ll < +m. 
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Hence, $ E M. Note that 

P(cp, $) L P(% $1) + P($l, $J) < 6’7 

and thus, F(G) rl (VI U Vz) # 0. Without loss of generality, we may assume that F($) II U1 # 0, 
i.e., there exists x* E F($) n U1. Since Z* E U1, we have X(x*) = 1, p(x*) = 0, and thus, 

+(x*,Y) = $~(z*,Y). Th ere ore, f $1(x*, y) $! int C for all y E X since z* E F(q), i.e., 2* E F(&), 
which contradicts that F($J~) n VI = 0. Hence, m(cp) must be connected. 

THEOREM 2.1. For each cp E M, there exists at least one essential component of F(p). 

PROOF. By Lemmas 2.2 and 2.3, there exists at least one minimal essential connected subset 5’ of 
F(p). By Theorem 3.2 of [23, p. 1121, there is a component Fa(p) of F(q) such that S c F,(p). 

It is obvious that F,(q) is essential. 

3. ESSENTIAL COMPONENTS OF THE SET OF 
WEAKLY PARETO-NASH EQUILIBRIUM POINTS 

A finite-player noncooperative multiobjective game in its strategic form (also called a normal 
form) G := (Xz,Fi)ZE~, where N := {1,2,. . , w}, is defined as follows: for each i E N, Xi is 
the set of player i’s strategies; each Fi, the payoff of player i, is a vector-valued function from 
X := flieN X, into Rke, where k, is a positive integer. 

For each positive integer m, denote 

R;” := { (ul,. . . ‘urn) E Rm : u3 > 0, for all j = 1,. . ,m} , 

and 
int R;” := {(u’, . . . , u”) E R” : uj > 0, for all j = 1,. . . , m} . 

For Rm, we take the norm jlr/( = cz”=, 1~~1 where T = (~1,. . . ,T,) E R”. For each i E N, 

denote 2? = N\(i), X;: = fljeN,Ii)Xj, x:; := (xl,. . . ,xi-l,xi+l,. . ,z,) E Xi, and 5 := 
(xl, x;) E X. Without loss of generality, we assume that kl 5 k:! < . . . 5 k,. 

DEFINITION 3.1. A strategy profile x* E X is called a weakly Pareto-Nash equilibrium point of 
a multiobjective game G := (X,, Fi)ie~ if, for each i E N, 

F” (yi,zi) -F” (z~,&) $ intRy, for ail yi E X,. 

If ki = 1, for all i = l,... , n, then the noncooperative multiobjective game G := (Xi, Fi)iC~ 

is just a noncooperative game in the literature and the weakly Pareto-Nash equilibrium points 
reduce to Nash equilibrium points of usual noncooperative games. 

In order to prove our existence theorem of weakly Pareto-Nash equilibrium points for multi- 
objective games, we give the following lemmas which can be proved easily, and hence, the proofs 
are omitted. 

LEhlMA 3.1. Let f : X + R” be a vector-valued function, where f = (fl, . . . , fm). Then f is 
RT-continuous if and only if fi is lower semicontinuous for every i = 1, . , m. 

LEMMA 3.2. Let X be a convex subset of a normed space and f : X -+ R” be a vector function, 
where f = (fl:. . . , fm). Then f is Ry-concave if and only if fi is concave for every i = 1,. . . , m. 

By applying Theorem 1.1, we obtain the following existence theorem. 

THEOREM 3.1. Let G := (Xi, Fi)ie~ be a multiobjective game, where F” = (fi, . , , fi,). Sup- 
pose that G satisfies the following conditions: 

(i) for each i E N, X, is a nonempty convex compact subset of a normed space Ei; 

(ii) foreachiENandeachj=l,..., k,, fi is upper semicontinuous on X; 
(iii) for fixed i E N a.nd each fixed zi E X,, 2~; -+ f;(x,, IL;) is lower semicontinuous on X; for 

every j = 1,. . . , k,; and 
(iv) for fixed i E N and each fixed x; E X;, uz +f~(~~,x;)isconcaveforeveryj=l,...,k,. 

Then there exists a weakly Pareto-Nash equilibrium point IC* of G. 



Essential Components 559 

PROOF. Define the vector-valued function cp : X x X + Rkrt by 

where 

cpi(z, y) = (Fi (yz,q) - F” (zi, z;); f,i (yi, q) - f; (~1, CC;) , . . , f; (yi, q) - f; (Q, z;)) E R”,*. 
\ / 

k; components k,, -I;, components 

It is easy to check that 

(1) for each fixed y E X, z + cp(z, y) is R’“,” -continuous (by Lemma 3.1); 

(2) for each fixed z E X, y -+ cp(z, y) is R$‘-concave (by Lemma 3.2); and 

(3) for each z E X, cp(z:, z) = 0 +! int R?. 

Therefore, by Theorem 1.1, there exists z* E X such that (F((c*, y) +J int R> for al1 y E X. For 

each i E N and each yi E Xi, set y = (yi,zr) E X, then (p%(z*,y) = 9(x*,2/) $ intR’i;,. If 

F’(yi,zz) - F”(zf,zz) E intR$, then fj(yi,zp) --f~($,z~) E intR+ for eachj = l,...$k, and 

(pi(z*, y) E int R$’ which contradicts that (P%(IC*, y) 4 int R$j. Hence, FZ(y,,zCf) - F’(n:,r,$) @ 

int R$ for each i E N, i.e., z* is a weakly Pareto-Nash equilibrium point of the game G. The 

proof is complete. 

Now for each i E N, let Xi be a nonempty convex compact subset of a normed space Ej 

and 2 be the collection of all vector functions z = (F1, . . . , F”) such that Conditions (ii), (iii), 

(iv) in Theorem 3.1 hold and (iv) supzEx Cl”=, IIF’(z)lI < +co. For any z1 = (F:. , F;“), 

z2 = (F;, . . . , FF) E 2, define 

Clearly (2, h) is a complete metric space. Every 2 E 2 determines a multiobjective game, 

denoted also by z. Denote by E(z) the set of all weakly Pareto-Nash equilibrium points of the 

game t. By Theorem 3.1, for each .z E 2, E(z) # 0. Similar to Definition 2.2, we can define 

the minimal essential set and essential component of E(z). In order to establish the existence of 

essential components of E(z), we need the following lemma. 

LEMMA 3.3. Let (M,p), Y and (2, h) be three metric spaces; F : Af --) 2’ be an usco mapping 

and G : Z --f 2’ be a set-valued mapping. Suppose that there exists a continuous mapping 

T : Z --+ Ad such that G(z) > F(T(z)) for each 2 E Z. Suppose furthermore that there exists at 

least one essential component of F(p) for each p E At. Then there exists at least one essential 

component of G(z) for each z E Z. 

PROOF. For any z E Z, cp = T(z) E Ad, F(y) = UNEAcQ(~), and ca(p) is a component 

of F(p) for each ai E A. Suppose that c=,(q) is an essential component of F(q) for some 

CYO E A. Since G(z) > F(q) = UaE,, co(p), c,,(p) is contained in a component S/j of G(z). 

Then So is an essential component of G(z). Indeed, for any open set 0 > Sif, clearly we have 

0 2 c,,((p), and thus, there exists S > 0 such that, for any I& E M with p(c,, (1) < ~,F(,I/,J) n 
0 # 8. Since T is continuous, there exists 6’ > 0 such tIllat for any 7u E Z with h( z. ~1) < fi’, 

P(CP, T(lu)) = /Q(z), T(w)) < 6. H ence, F(T(w)) n 0 # 8. Finally, since G(W) 1 F(T(zv)). we 

have G(W) n 0 # 8 and our proof is complete. 

THEOREM 3.2. For each z E Z, there exists at least one essential component of E(t). 

PROOF. For any z E Z, define T : Z -+ M by T(Z) = p, where p(z, y) = Cyz, 9,(x:, y) and, for 

each i, (pz(.z, y) is the same as that in Theorem 3.1. Then T is continuous. Indeed, for any & > 0, 
there exists 6 = (1/2kn)& > 0 such that for any 7u E Z with h(z>7u) < 6, 
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where $ = T(w). The same argument as in the proof of Theorem 3.1 states that E(z) > F(T(z)). 

Thus, by Theorem 2.1 and Lemma 3.3, there exists at least one essential component of E(z). 
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