Short communication

Genomovar status, virulence markers and genotyping of
Burkholderia cepacia complex strains isolated from Brazilian cystic fibrosis patients

Kátia Maia Martins\(^a\), Giuliana F. Fongaro\(^a\), André B. Dutra Rodrigues\(^c\), Adriana F. Tateno\(^c\), Ana Carolina Azzuz-Chernishev\(^b\), Doroti de Oliveira-Garcia\(^b\), Joaquim C. Rodrigues\(^a\), Luiz Vicente F. da Silva Filho\(^{a,c,*}\)

\(^{a}\) Pediatric Pulmonology Unit, Instituto da Criança, HC-FMUSP, São Paulo, Brazil
\(^{b}\) Bacteriology Section, Adolfo Lutz Institute, São Paulo, Brazil
\(^{c}\) Laboratory of Virology, Instituto de Medicina Tropical de São Paulo, University of São Paulo, São Paulo, Brazil

Received 8 August 2007; received in revised form 6 November 2007; accepted 10 December 2007
Available online 19 February 2008

Abstract

Burkholderia cepacia complex isolates obtained by microbiological culture of respiratory samples from Brazilian CF patients were studied by *recA* based PCR, screened by specific PCR for virulence markers and genotyped by RAPD. Forty-one isolates of *B. cepacia* complex were identified by culture and confirmation of identity and genomovar determination obtained in 32 isolates, with predominance of *B. cenocepacia* (53.1%). Virulence markers were not consistently found among isolates. Genotyping did not identify identical patterns among different patients. *B. cenocepacia* was the most prevalent *B. cepacia* complex member among our patients, and cross-infection does not seem to occur among them. © 2008 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

Keywords: *Burkholderia cepacia* complex; Cystic fibrosis; Children; Virulence factors; Molecular epidemiology

1. Introduction

The *Burkholderia cepacia* complex has been recognized as a significant pathogen for CF patients since the early 1980s and consists of ten closely related species, also called genomovars [1]. Most specialized centres report a prevalence of *B. cepacia* complex of up to 10% [2–4]. *B. cenocepacia* is a member of the *B. cepacia* complex showing the highest prevalence among CF patients, followed by *B. multivorans*, although regional differences in genomovar distribution have been reported [5]. Highly transmissible strains of the *B. cepacia* complex have been identified in some CF centres, mainly in the United Kingdom and Canada, and genetic markers including cable pilus gene (*cblA*) and an insertion sequence named *B. cepacia* epidemic strain marker (BCESM) are commonly detected in these strains [6, 7].

There is little published data regarding prevalence and genomovar distribution of *B. cepacia* complex strains isolated from Brazilian cystic fibrosis patients [8–10]. The Pediatric Pulmonology Unit of Instituto da Criança is one of the referral centres for CF care in Brazil and, although segregation of patients based on respiratory colonization has not been implemented to date, cross-colonization with *P. aeruginosa* strains has not been identified among patients [11]. The objective of the present study was to analyse *B. cepacia* complex strains isolated from CF patients attending our CF centre, by determining genomovar distribution, virulence-related genetic markers and the genotype of these isolates for epidemiological purposes.
2. Materials and methods

2.1. Patients and samples

Samples identified as belonging to the B. cepacia complex in the microbiology laboratory during two periods (regular use of B. cepacia complex-selective medium) were studied: period A (September 2000 to April 2001) and period B (June 2003 to June 2004). A total of 140 CF patients attended our unit during these two periods, and the diagnosis of CF was based on international consensus guidelines [12]. Respiratory samples were collected from the patients during routine and unscheduled visits to the outpatient clinic and cultured on selective media, including B. cepacia complex-selective medium (Oxoid, Basingstoke, United Kingdom). Plates were incubated at 36 °C for 18 to 96 h.

During the first period of the study (period A), bacteria were identified using the Vitek automated system (bioMérieux Vitck Inc., St. Louis, MO, USA), with additional biochemical tests when indicated. During the second period of the study (period B), bacterial identification was performed by classical phenotypical testing.

The study was approved by the Ethics Committees of all Institutions involved.

2.2. DNA purification and PCR

Isolates identified as B. cepacia complex were submitted to DNA extraction as described elsewhere [8], and DNA was quantified in an ultraviolet spectrophotometer (BioPhotometer 6131, Eppendorf AG, Hamburg, Germany).

The genomovar status of the B. cepacia complex isolates was identified by sequential PCR targeting specific regions of the recA gene as previously described [13–15]. Positive controls consisting of DNA from the B. cepacia complex strain belonging to the genomovar tested were included in all reactions.

Virulence markers were identified by PCR targeting the cblA (cable pilus) and esmR (BCESM) genes as previously described [6,7]. DNA from the B. cepacia complex strain AU0355 (epidemic strain expressing both virulence factors) was included in the reactions as positive control.

After amplification, PCR products were visualized by electrophoresis on 1.5% agarose gel stained with 0.5 mg/mL ethidium bromide under UV illumination using an automated system (AlphaImager®, Alpha Innotech Co., San Leandro, California, USA). A negative control consisting of sample without DNA was included in all reactions. All reactions were carried out under a laminar flow UV hood according to standard precautions to prevent PCR carry-over [16].

2.3. DNA sequencing

DNA sequencing of the recA gene was performed to confirm the results of the specific PCR. DNA sequencing was carried out using a panel of four primers (BCR 1–4) [13] and BUR1 and BUR2 primers [17], using the Big Dye Terminator kit (Applied Biosystems Incorporation, Foster City, CA, USA) in an automated DNA sequencer (ABI Prism 377, Applied Biosystems). The results obtained were compared to sequences deposited in the Genebank database using the BLAST program.

2.4. Molecular epidemiology (RAPD)

B. cepacia complex isolates were genotyped by the RAPD method using primer 272 (5′-AGGGGCGCA-3′), as previously described [18]. After amplification, the RAPD products were visualized by electrophoresis on 7.5% acrylamide gel stained with 0.2% silver nitrate. The results were interpreted by direct visualization of the band patterns and isolates which differed by two or more major bands were considered sufficiently divergent to warrant separate strain designations.

3. Results

During the two periods of the study, a total of 672 respiratory samples were obtained from 140 CF patients attending our CF centre. B. cepacia complex isolates were identified by culture in 41 samples (35 sputum and 6 oropharyngeal swabs) from 21

| Patient Isolate Period of isolation Genomovar recA PCR Epidemic strain marker (esmR) RAPD typing DNA sequencing of recA gene |
|-----------------|----------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| B 2 B IIIA – 2 2 2. cepacia | C 3 B IIIA – 3 2 2. cepacia | D 4 A IIIA – 4 2 2. cepacia | E 5 5 2. cepacia | F 7 7 2. cepacia | G 8 8 2. cepacia |
| H 9 9 2. cepacia | I 10 10 2. cepacia | J 11 11 2. cepacia | K 12 12 2. cepacia | L 13 13 2. cepacia | M 14 14 2. cepacia |
| N 15 15 2. cepacia | O 16 16 2. cepacia | P 17 17 2. cepacia | Q 18 18 2. cepacia | R 19 19 2. cepacia | S 20 20 2. cepacia |
| T 21 21 2. cepacia | U 22 22 2. cepacia | V 23 23 2. cepacia | W 24 24 2. cepacia | X 25 25 2. cepacia | Y 26 26 2. cepacia |
| Z 27 27 2. cepacia | AA 28 28 2. cepacia | AB 29 29 2. cepacia | AC 30 30 2. cepacia | AD 31 31 2. cepacia | AE 32 32 2. cepacia |
| AF 33 33 2. cepacia | AG 34 34 2. cepacia | AH 35 35 2. cepacia | AI 36 36 2. cepacia | AJ 37 37 2. cepacia | AK 38 38 2. cepacia |
| AL 39 39 2. cepacia | AM 40 40 2. cepacia | AN 41 41 2. cepacia |

NP: not performed.
patients. Confirmation of *B. cepacia* complex identity was obtained in 32 isolates (4.7%), from 16 patients (11.4%). *B. cenocepacia* was the most common genomovar identified (17 isolates from 9 patients), followed by *B. multivorans* (12 isolates from 4 patients). Two isolates were identified as *B. vietnamiensis* and one as *B. cepacia* (genomovar I).

DNA sequencing of the *recA* gene confirmed the PCR results of genomovar assignment for all 32 isolates of *B. cepacia* complex. The nine samples with phenotypic misidentification were tested by PCR using BUR1/2 primers and only seven isolates tested positive. After DNA sequencing of these PCR products, isolates were characterized as *Burkholderia gladioli* (5 isolates) and *Xanthomonas campestris* (2 isolates). The other two isolates remained unidentified.

Investigation of virulence markers showed that all isolates were negative for the pilin gene (*cblA*), whereas two isolates were positive for the epidemic strain marker gene (*esmR*), both identified as *B. cenocepacia*.

Genotyping using RAPD detected 17 genotypes among 31 *B. cepacia* complex isolates. One *B. cepacia* complex isolate was not studied (isolate was lost), but it was obtained from patient L who had 5 other isolates, all characterized as *B. multivorans* and showing the same RAPD profile (Table 1). Patients with two or more *B. cepacia* complex isolates during the two study periods conserved the same genotype (Fig. 1) and no identical patterns were identified among different patients. Only one patient presented the last of four isolates of *B. cenocepacia* showing a different genotype (patient H, isolate 16).

4. Discussion

The present study shows that the distribution of genomovars of the *B. cepacia* complex in our Institution is quite similar to that observed elsewhere [19], with a predominance of *B. cenocepacia*, followed by *B. multivorans*. The prevalence of *B. cepacia* complex found was 11.4%, a significantly higher rate than the 2.9% reported for the North American CF population [4]. Data regarding the prevalence of the *B. cepacia* complex in Brazil are scarce, but a recent paper reported a prevalence of 5.2% during a 10-year survey, although the authors did not use selective medium [20].

There is also a lack of information concerning genomovar distribution of *B. cepacia* complex isolates in Brazil, and a well known inconsistent distribution throughout the world. *B. cenocepacia* is the most common genomovar in Canada [21], the United States [22] and Italy [3], but its prevalence may range from 50% in the United States to 80% in Canadian CF centres. However, data from Belgium [23] and France [24] indicate a predominance of infections with *B. multivorans*. In Portugal, recent data indicate a significant increase in the prevalence of *B. cepacia* [25,26], maybe related to contamination of nasal saline solutions [26]. One study combining CF and non-CF *B. cepacia* complex isolates from Recife, Brazil, reported a high prevalence of *B. cenocepacia* (72%) among non-CF isolates, but the genomovar status was determined only in 5/11 CF isolates, with *B. cenocepacia* and *B. vietnamiensis* accounting for 2 isolates each and the other isolate assigned as *B. cepacia* [9].

Microbiological culture identified 41 *B. cepacia* complex isolates but this identity was confirmed in only 32 (78%) isolates. Phenotypic identification of *B. cepacia* complex strains is very difficult due to close similarities among these species and related genera, and misidentifications have therefore been reported [27,28].

Besides that, although *B. cepacia*-selective agar is an excellent culture medium for the isolation of *B. cepacia* complex strains, other similar organisms, such as *B. gladioli* and *Ralstonia* spp., may also grow on this medium. Additional workup of these 9 isolates misidentified by culture was performed by PCR and DNA sequencing resulting positive in seven isolates characterized as *B. gladioli* (5 isolates) and *X. campestris* (2 isolates), while two isolates remained unidentified. These two isolates may warrant future study using 16S rRNA gene sequencing.

Molecular epidemiology using RAPD showed 100% concordance with the results of genomovar determination, and different patients did not share common genotypes. Previous studies have shown that RAPD analysis presents a satisfactory discriminatory power when compared to PFGE [18,29] and its simplicity may favour its routine use for infection control in CF centres.

In the present study, virulence markers were not identified in a high proportion of isolates. This finding is in accordance with the apparent lack of cross-infection among our patients, a situation markedly differing from that observed in other countries such as Canada [21]. A previous Brazilian study of *B. cepacia*...
complex isolates has shown a higher prevalence of $esmR$ (22/30 isolates) among $B. cenocepacia$ isolates, but only two of these isolates were obtained from CF patients and, interestingly, this study also did not find any CF isolate positive for the $cblA$ gene [9].

In conclusion, the present study shows that $B. cenocepacia$ is the most prevalent member of the $B. cepacia$ complex among the CF patients studied here and cross-infection among patients seems unlikely. The prevalence of virulence markers was very low. We also observed that phenotypic misidentifications of $Burkholderia$ genus members may occur even when appropriate microbiologic procedures are carefully followed and this finding reinforces the need for the implementation of molecular methods in microbiology laboratories involved in the care of CF patients.

Acknowledgements

The authors thank FAPESP for financial support (grant 2002/13111–0). We also thank Dr. Elizabeth Marques, Dr. Eshwar Mahenthiralingam and Dr. John LiPuma for the donation of the $B. cepacia$ complex type strains.

References